TECHNICAL MANUAL

GENERAL SUPPORT MAINTENANCE MANUAL

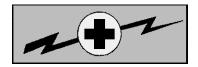
RADIO SET AN / PRC- 1 04(A) (NSN 5820-01-141-7953)

HEADQUARTERS, DEPARTMENT OF THE ARMY 15 JANUARY 1986

5	SAFETY STEPS TO FOLLOW IF SOMEONE IS THE VICTIM OF ELECTRICAL SHOCK
	SAFETT STEPS TO FOLLOW IF SOMEONE IS THE VICTIM OF ELECTRICAL SHOU

DO NOT TRY TO PULL OR GRAB THE INDIVIDUAL

IF POSSIBLE, TURN OFF THE ELECTRICAL POWER


IF YOU CANNOT TURN OFF THE ELECTRICAL POWER, PULL, PUSH, OR LIFT THE PERSON TO SAFETY USING A DRY WOODEN POLE OR A DRY ROPE OR SOME OTHER INSULATING MATERIAL

А

SEND FOR HELP AS SOON AS POSSIBLE

AFTER THE INJURED PERSON IS FREE OF CONTACT WITH THE SOURCE OF ELECTRICAL SHOCK, MOVE THE PERSON A SHORT DISTANCE AWAY AND IMMEDIATELY START ARTIFICIAL RESUSCITATION

HIGH VOLTAGE

is used in the operation of this equipment

DEATH ON CONTACT

may result if personnel fail to observe safety precautions

Never work on electronic equipment unless there is another person nearby who is familiar with the operation and hazards of the equipment and who is competent in administering first aid. When the technician is aided by operator's, he must warn them about dangerous areas.

Whenever possible, the power supply to the equipment must be shut off before beginning work on the equipment. Take particular care to ground every capacitor likely to hold a dangerous potential. When working inside the equipment, after the power has been turned off, always ground every part before touching it.

Be careful not to contact high-voltage connections or 115 volt ac input connections when installing or operating this equipment.

Whenever the nature of the operation permits, keep one hand away from the equipment to reduce the hazard of current flowing through the body.

Warning: Do not be misled by the term "low voltage." Potentials as low as 50 volts may cause death under adverse conditions.

For Artificial Respiration, refer to FM 21-11.

SAFETY SUMMARY

The following are general safety precautions that are not related to any specific procedures and therefore do not appear elsewhere in this publication. These are recommended precautions that personnel must understand and apply during many phases of operation and maintenance.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must at all times observe all safety regulations. Unless specifically directed in this manual, do not replace components or make adjustments inside the equipment with any power supply turned on. Under certain conditions, dangerous potentials may exist in the power supplies when the power control is in the off position. To avoid causalities, always remove power and discharge and ground a circuit before touching it.

DO NOT SERVICE OR ADJUST ALONE

Under no circumstances should any person reach into or enter the enclosure for the purpose of servicing or adjusting the equipment except in the presence of someone who is capable of rendering aid.

RESUSCITATION

FIRST AID

Each person engaged in electrical operations will be trained in first aid, particularly in the technique of mouth to mouth resuscitation and closed chest heart massage (FM 21-11).

The following warnings appear in this volume, and are repeated here for emphasis.

WARNING

A 3-wire (line, neutral, and safety ground) AC line power connections is required when operating the equipment. If a 3-wire safety grounded AC power receptacle is not available, a separate ground wire must be installed from the chassis ground to an earth ground. Without an adequate ground, the equipment chassis and frame will float to a dangerously high potential.

WARNING

Lethal voltage is used in the operational checkout of this unit. Death on contact may result if personnel fail to observe the following safety precautions. Remove watches and rings and exercise extreme caution when working inside the equipment throughout the remainder of this procedure.

WARNING

Prior to performing the following functions all electrical power is to be removed from the system. External power disconnected and a "MAINTENANCE IN PROGRESS" tag attached or power switches will be locked out to prevent inadvertent energizing of the system.

WARNING

Lifting heavy equipment incorrectly can cause serious injury. Do not try to lift more than 35 pounds by yourself. Get a helper. Bend legs while lifting. Don't support heavy weight with your back.

Technical Manual

No. 11-5820-919-40-2

HEADQUARTERS DEPARTMENT OF THE ARMY Washington, DC, 15 January 1986

GENERAL SUPPORT MAINTENANCE MANUAL RADIO SET AN/PRC-104A (NSN 5820-01-141-7953)

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in the back of this manual direct to: Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSELME-MP, Fort Monmouth, NJ 07703-5007. A reply will be furnished to you.

TABLE OF CONTENTS

Section	Page
WARNINGS	A through D

O GENE	RAL	
0-1	Scope	0-1
0-2	Consolidated Index of Army Publications and Blank Forms	0-1
0-3	Maintenance Forms, Records and Reports	0-1
0-4	Reporting Equipment Improvement Recommendations	
0-5	Administrative Storage	
0-6	Destruction of Army Electronics Materiel	0-1

TABLE OF CONTENTS

Paragraph

Page

INTRODUCTION1 APPENDIX A - REFERENCES1 1.

NOTE

Maintenance Kit, OA-9169/GRC-213, Is available for Army use In maintaining this equipment.

LIST OF ILLUSTRATIONS

Figure	Title	Page
1-1 1-2 1-3 1-4	Radio Set Block Diagram (2 Sheets) Radio Set Power Distribution Radio Set Performance Test Setup Radio Set Performance Test (2 Sheets)	4 5
2-1 2-2 2-3 2-4	Receiver/Exciter A1 Schematic Receiver/Exciter A1 Component Location (2 Sheets) Receiver/Exciter A1 Performance Test Setup Receiver/Exclter A1 Performance Test (2 Sheets)	10 12
3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14	Modulator/Demodulator A1A1 Schematic Modulator/Demodulator A1A1 Component Location (2 Sheets Modulator/Demodulator A1A1 Performance Test and Alignment Setup Modulator/Demodulator A1A1 Performance Test (4 Sheets Modulator/Demodulator A1A1 Alignment First Frequency Converter A1A1A1 Schematlc First Frequency Converter A1A1A1 Component Location (2 Sheets Frequency Converter A1A1A1 Component Location (2 Sheets Frequency Converter A1A1A1 Performance Test Second Frequency Converter A1A1A2 Schematic Second Frequency Converter A1A1A2 Performance Test Second Frequency Converter A1A1A2 Component Location (2 Sheets). Second Frequency Converter A1A1A2 Performance Test Third Frequency Converter A1A1A3 Schematic Third Frequency Converter A1A1A3 Component Location (2 Sheets Third Frequency Converter A1A1A3 Performance Test Third Frequency Converter A1A1A3 Component Location (2 Sheets	16 18 19 23 25 26 otup 28 29 31 32 34 35 36
4-1 4-2 4-3 4-4 4-5 	Harmonic Filter A1A2 Schematic Harmonic Filter A1A2 Component Location Harmonic Filter A1A2 Module Performance Test Setup Harmonic Filter A1A2 Performance Test (3 Sheets Harmonic Filter A1A2 Alignment Setup. Harmonic Filter A1A2 Alignment	40 41 42 45

	Figure	Title
5-1 5-2 5-3 5-4	Synthesizer A1A3 Schematic Synthesizer A1A3 Component Loca Synthesizer A1A3 Performance Tes Synthesizer A1A3 Performance Tes Synthesizer A1A3 Alignment.	tion (2 st_and st (2 SI
6-1 6-2 6-3 6-4	Control Panel A1A4 Schematic (2 S Control Panel A1A4 Component Loc Control Panel A1A4 Performance To Control Panel A1A4 Performance To	cation est Se
7-1 7-2 7-3 7-4	Power Supply A1A5 Schematic Power Supply A1A5 Component Lo Power Supply A1A5 Performance T Power Supply A1A5 Performance T Power Supply A1A5 Alignment	cation est an est (2
8-1 8-2 8-3 8-4	Amplifler/CouplerA2 Schematic Amplifier/Coupler A2 Component Lo Amplifier/Coupler A2 Performance Amplifier/Coupler A2 Performance	ocatior Fest S
9-1 9-2 9-3 9-4	Power Amplifier A2A1 Schematic (2 Power Amplifier A2A1 Component L Power Amplifier A2A1 Performance Power Amplifier A2A1 Performance Power Amplifier A2A1 Alignment	_ocatio Test a Test (
10-1 10-2 10-3 10-4 10-5	Antenna Tuner A2A2 Schematic (2 Antenna Tuner A2A2 Component Lo Antenna Tuner A2A2 Performance Antenna Tuner A2A2 Performance Antenna Tuner A2A2 Alignment Set Antenna Tuner A2A2 Alignment	ocatior Test S Test (3 tup

Page

2 Sheets d Alignment Setup Sheets)	47 48 50 51 53
s) n (2 Sheets etup l Sheets	54 56 58 59
n (2 Sheets) nd A1ignment Setup 2 Sheets)	63 64 66 67 69
on (2 Sheets Setup	71 72 74 75
ets) ion (3 Sheets) and Alignment Setup (3 Sheets	76 78 81 82 85
its) on (3 Sheets Setup (3 Sheets	86 88 91 92 95 96

SECTION 0

GENERAL

0-1. SCOPE. This manual covers Radio Set AN/PRC-104(A). This manual provides instructions for general support maintenance. Throughout this manual AN/PRC-104 should be AN/PRC-104(A).

0-2. CONSOLIDATED INDEX OF ARMY PUBLICATIONS AND BLANK FORMS Refer to the latest issue of DA Pam 310-1 to determine whether there are new editions, changes or additional publications pertaining to the equipment.

0-3. MAINTENANCE FORMS, RECORDS, AND REPORTS

a. Reports of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those prescribed by DA Pam 738-750 as contained in Maintenance Management Update.

b. Report of Packaging and Handling Deficiencies. Fill out and forward SF 364 (Report of Discrepancy (ROD)) as prescribed in AR 735-11-2/DLAR 4140.55/NAVMATINST 4355.74AJAFR400-54/MCO 4430.3F.

c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 55-38/NAVSUPINST 4610.33C/AFR 75-18/MCO P4610.19/DLAR 4500.15.

0-4. REPORTING EQUIPMENT IMPROVEMENT RECOMMENDATIONS (EIR). If your Radio Set AN/PRC-104(A) needs improvement, let us know. Send us an EIR. You, the user, are the only one who can tell us why you don't like the design. Put it on an SF 368 (Quality Deficiency Report). Mail it to Commander, US Army Communications-Electronics Command and Fort Monrnouth, ATTN: AMSEL-ME-MP, Fort Monmouth, New Jersey 07703-5007. We'll send you a reply.

0-5. ADMINISTRATIVE STORAGE. Administrative Storage of equipment issued to and used by Army activities will have preventive maintenance performed in accordance with the PMCS charts before storing. When removing the equipment from administrative storage the PMCS should be performed to assure operational readiness. Disassembly and repacking of equipment for shipment or limited storage are covered in TM 740-90 1.

0-6. DESTRUCTION OF ARMY ELECTRONICS MATERIEL. Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244 2.

INTRODUCTION

This technical manual provides maintenance prints for Radio Set ANtPRC-104 (radio set). It is used in conjunctions, maintenance information, and theory contained with the general instructions, maintenance information, and theory contained in TM 11-5820-919-40-1. For parts ordering information refer to TM 11-5820-919-24P

Maintenance prints are provided for the radio set; the receiver/exciter unit and its 5 modules; and the amplifier/coupler unit and its 2 modules. The maintenance prints radio set and the two units are the same as those contained in TM 11-5820-919-40-lo The maintenance prints include schematics, power distribution; component location; test and alignment setup; performance test; and alignment procedures.

Schematic diagrams contain pertinent voltage and waveform reference data to assist in fault isolation and are used an conjunction with the performance test flowcharts.

Component location diagrams locate and list every replaceable component, and identify the location of test points and pins required to monitor voltages and waveforms on performance test flowcharts.

Test and alignment setup diagrams provide a list of special tools and materials, fabricated cables and fixtures, and initial connections for the test setup, They are used in conjunction with the performance test flowcharts. Module performance tests may be performed more easily if the module is tested while inside the radio set, rather than extended via cables. Once a fault is indicated, the module should be removed from the radio set and connected via appropriate extender cables.

Performance test flowcharts provide performance test (heavy flow line) and troubleshoot mug procedures (light flow line) for fault isolating to a component or group of components. The flowcharts are supported by the reference information provided in the other diagrams.

Alignment procedures are used in conjunction with the performance test flowcharts.

NOTE

Poor electrical connection due to dirty or bent connector plus may often be the cause of equipment malfunction or faulty test indication. All electrical connections should be double-checked before proceeding with test or fault isolation.

TECHNICAL CHARACTERISTICS

CharacterIstlc	Description	Characteristic	Description	Characteristic	Description
RAD	DIO SET AN/PRC-104 (Radio Set)	Power Requirements	20.0 to 32.0 vdc with input at 3.5 amp	Audio Distortion	5 percent at 5 mw, 350 to 3000 Hz
Frequency Range	2.0000 to 29.9999 MHz in. 0.0001 MHz (100 Hz) increments (280,000 possible		(24 vdc) for transmit (typical). 200 ma for receive (typical).	Desensitization (signal to degrade SINAD 3 db)	±2.5% to -29 dbm; ±10% to -15 dbm;
Frequency Accuracy	frequency settings) ±1 ppm for -51°F (-46°C) to +160°F (+71°C)	Operating Temperature Range Environmental	-51°F (-46°C) to +160°F (+71°C) Meets applicable provisions of MIL-		±50% to +17 dbm TRANSMITTER
	(±2 to 30 Hz of setting) from 2 to 30 MHz respectively.	Mean Time Between Failure (MTBF)	· · ·	RF Output Power	0.3 W (PEP) for RT-1209, 20W (PEP or average) with AM-6874
Operating Modes	 Single sideband (selectable USB or LSB) Voice/cw (Morse or burst cw at 300 wpm) 	Mean Time to Repair (MTTR)	STD-785) 15 minutes (module replacement)	Intermodulation Distortion (IMD)	 -25 db (two equal tones at rated output power
	 Data (FSK or DPSK up to 2400 bps) compatible with 75 baud military teletype 	Dimensions	12 1/2 x 10 1/2 x 2 5/8 (31.75 cm x 26.67 cm x 6.66 cm) D x U x H	Harmonic Radiation Carrier Suppression	-50 db -42 db
Audio Input Impedance	 Receive only (inhibits transmit operation) 150 ohms, -56 dbm (voice) or, 6 mv. RMS. 	Weight	14 pounds (6.36 Kg), including 4.8 AN silver zinc battery (without	Unwanted Sideband Suppression All Other Spurious	-45 db -45 to -60 db
and Level RP Output Power	600 ohms, 0 dbm (data) or, 77 v. RMS, 20w (PEP), 0.25w (PEP) exciter output		accessories) RECEIVER	Duty Cycle	1 minute continuous keydown, 9:1 transmit/receive ratio
RF Output Impedance	50-ohms, unbalanced. Output protected to infinite VSWR due to antenna short or open.	Sensitivity SSB, Cal, FSK	0.7 v for 10 db SINAD (-110 dbm	Battery	BATTERY PACK Silver-zinc (AgZn), rechargeable 4.8 AH
Antenna Tuning	Automatic to 1.5:1 VSWR (3 seconds tuning time, typical)	Selectivity SSB, CW, FSR Image Rejection	voice, -70 dbm data) 2.5 kHz Bandwidth at -3 db 6.0 kHz Bandwidth at -60 db 70 db	,	
		I.F. Rejection Audio Output	60 db 25 tow into 500 (nominal)		

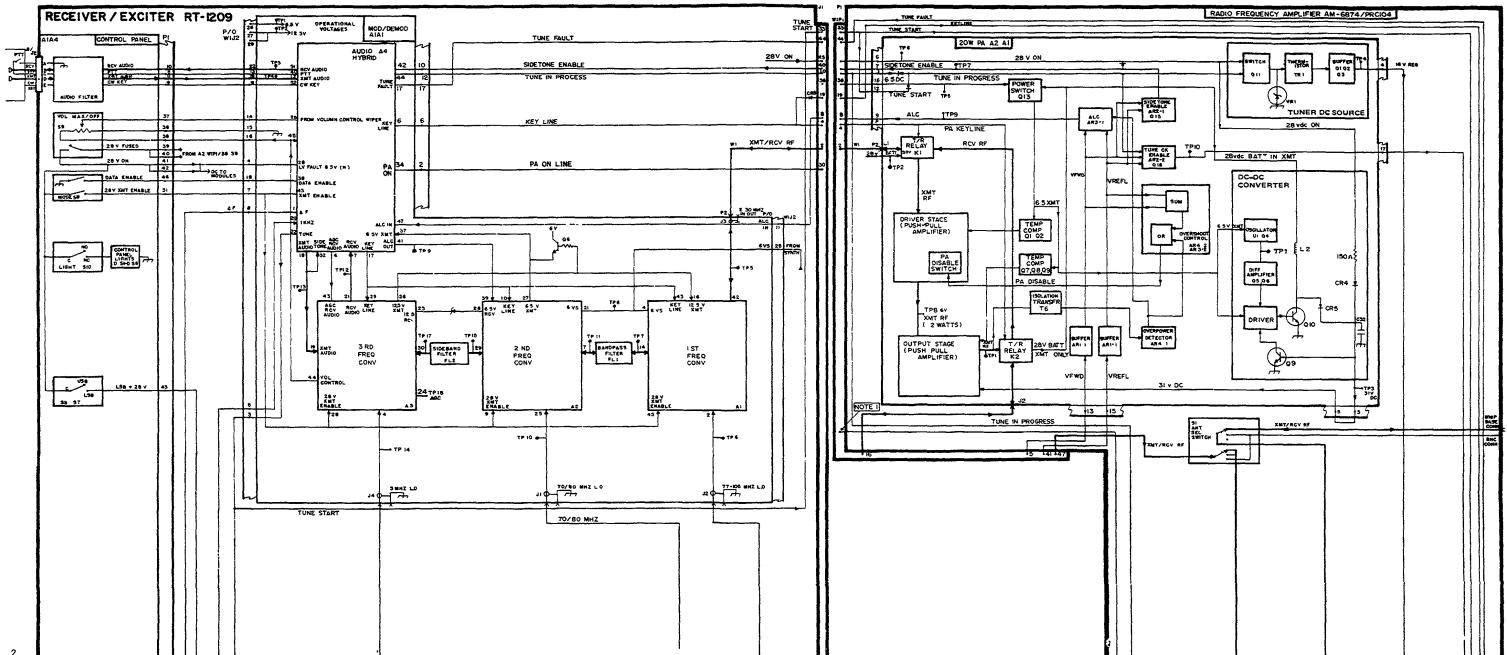


Figure 1-1. Radio Set Block Diagram (Sheet 1 of 2)

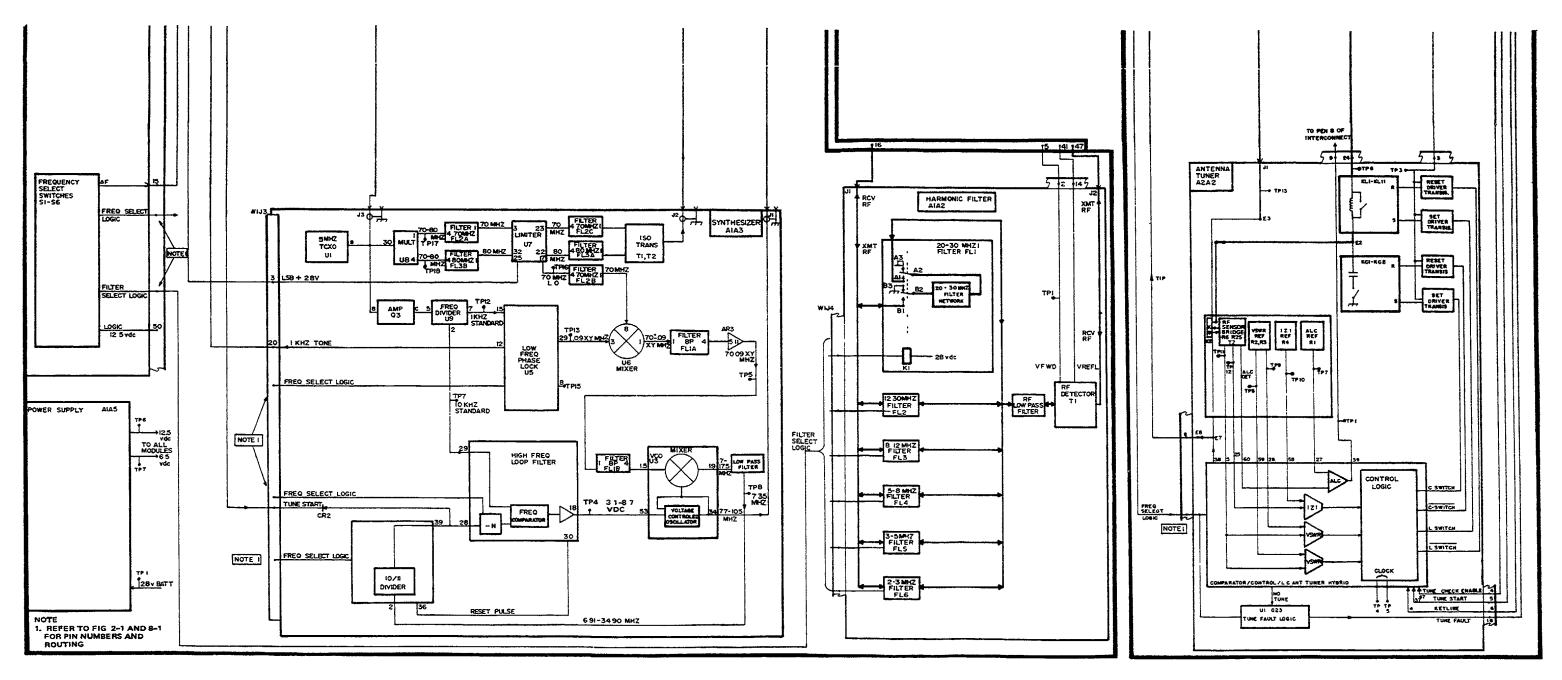


Figure 1-1. Radio Set Block Diagram (Sheet 2 of 2)



Figure 1-2. Radio Set Power Distribution

4

SPECIAL TOOLS, MATERIALS, AND FABRICATED TEST CABLES AND FIXTURES

Description	Part Number	Reference
Audio Input/Keying Adapter		Figure 3-11C
Whip Adapter		Figure 3-11D
Kit, Tool, Electrons	TK-100/G	None
Bench Repair Center	Pace PRC-350C	None
Maintenance Kit, Printed Circuit	MK-984/A	None

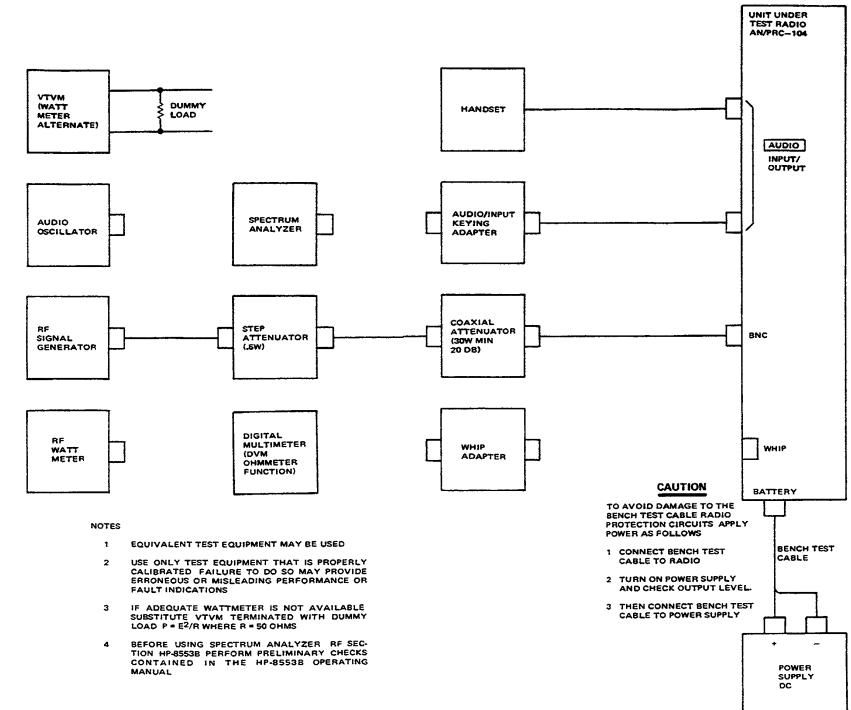


Figure 1-3. Radio Set Performance Test Setup

	TEST EQUIPMENT	
Name	Designation	Quantity
Audio Oscillator	AN/URM-127	1
VTVM	AN/USM-116	1
Dummy Load (50 ohm)	DA-553()/4	1
Signal Generator, RF	AN/USH-323	1
Digital Multimeter	AN/USM-341	1
(DVM, oh meter function)		
Attenuator, Step CN-1128/U	1	
10-db steps, 0.5w, 50 ohm		
Watt Meter, RF		
- Power Meter	Hewlett Packard HP-43	35A 1
- Thermocouple Power	Hewlett Packard HP-84	482A 1
Sensor		
Spectrum Analyzer	Hewlett Packard HP-14	41-T 1
- High Resolution	Hewlett Packard HP-88	552B 1
IF Section		
- RF Section Hewlett	Packard HP-8553B	1
- Tracking Generator	Hewlett Packard HP-84	443A 1
Attenuator, Coaxial	Narda 765-20	1
Power Supply, DC	Hewlett Packard HP-64	439B 1

NOTE 1:

RADIO SET PERFORMANCE TEST

	Radio Set <u>Frequency (kHz)</u>	<u>Sideband</u>	RF Signal Generator <u>Frequency (MHz)</u>
No. 1. a.	2,221.0	USB	2.2220
b.	2,221.0	LSB	2.2200
No. 2 a.	3,334.0	USB	3.3350
b.	3,334.0	LSB	3.3330
No. 3 a.	6,665.0	USB	6.6660
b.	6,665.0	LSB	6.6640
No. 4 a.	8,889.0	USB	8.8900
b.	8,889.0	LS	8 .8880
No. 5 a.	15,554.0	USB	15.5550
b.	15,554.0	LSB	15.5530
No. 6 a.	27,778.0	USB	27.7790
b.	27,778.0	LSB	27.7770

NOTE 2: Harmonic filter bands are 2-3 MHz, 3-5 MHz, 5-8 MHz, 8-12 MHz, 12-20 MHz, and 20-30 MHz.

NOTE 3: For a thorough test, use all the test frequencies listed in Note 1 on USB only.

NOTE 4: Frequency must be changed each tine to cause tune-up tone when PIT is closed.

NOTE 5: See page 8.

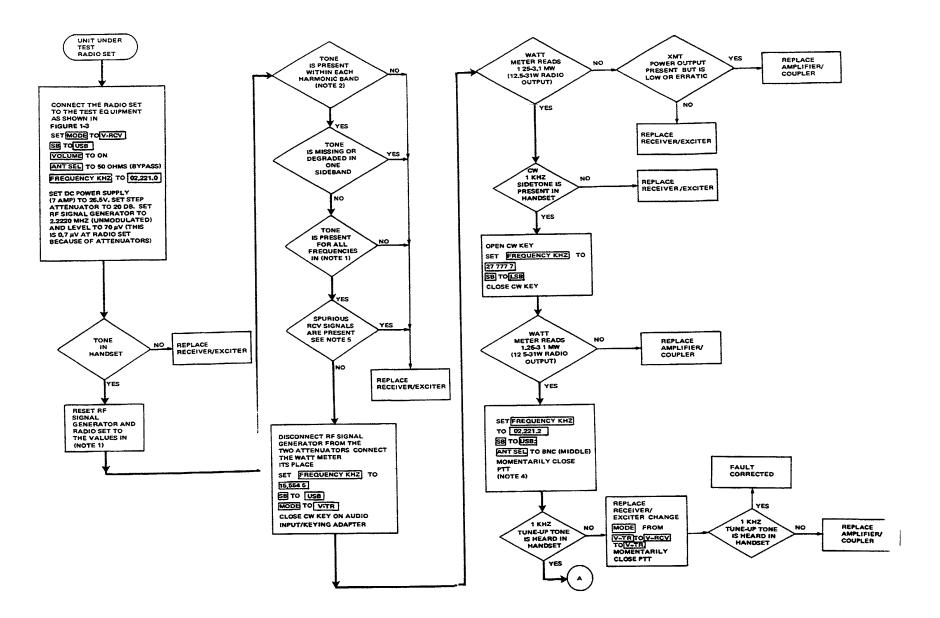


Figure 1-4. Radio Set Performance Test (Sheet 1 of 2)

BANDWIDTH
SCAN (INNER RED)
INPUT ATTEN
RANGE
CENTER FPEQ
VIDEO FILTER
SCAN MODE
10 DB LOG
SCAN TRIGGER
LOG REF
LINEAR SENSITIVITY
SCAN WIDTH
SCAN TIME
STORAGE
INTENSITY

300 KHZ

PER DIV

50 mhz

100 HZ

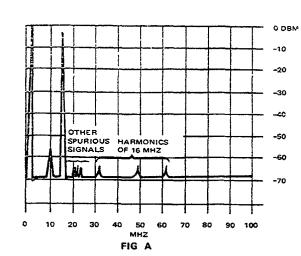
SINGLE

AUTO

10 DB

10 MHZ 1 SECOND

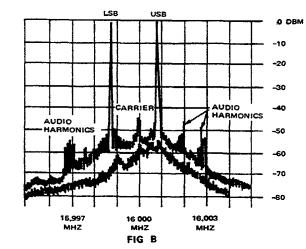
CENTERED


0

STD

0-110 MHZ

10 DB LOG


20 DB

REVALIDATE

BANDWIDTH	0.1 KHZ
SCAN	1 KHZ/DIV
INPUT ATTEN	20 DB
RANGE	0-110 MHZ
CENTER FREQ	16,000 MHZ
VIDEO FILTER	10 HZ
SCAN MODE	SINGLE
10 D8 LOG	10 DB LOG
SCAN TRIGGER	AUTO
LOG.REF +10	0 DB
LINEAR SENSITIVITY*	-12 D8
SCAN TIME/DIV	2 SECONDS
STORAGE	STD
INTENSITY	CENTERED

*VARY LINEAR SENSITIVITY TO OBTAIN WAVEFORM LEVEL SIMILAR TO FIGURE B

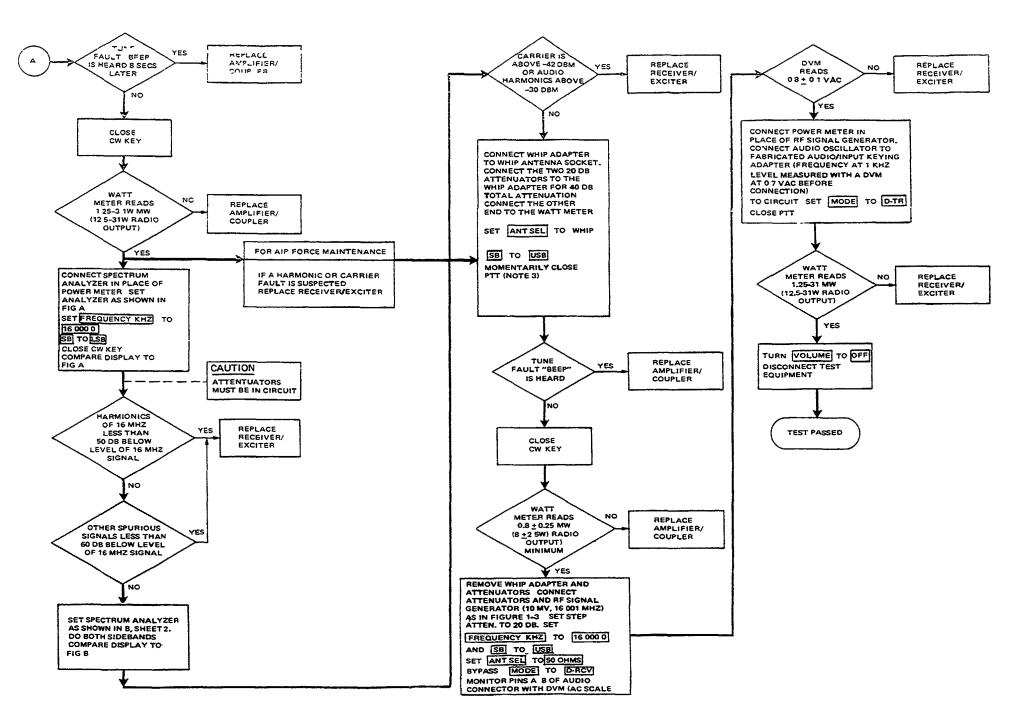


Figure 1-4. Radio Set Performance Test (Sheet 2 of 2)

NOTE 5. SPURIOUS RECEIVE SIGNALS

		FREQ (MHz)	FREQ (MHz)
1.	A spurious receive signal is an audio tone heard in the handset in receive when no tone should be present (i.e., no signal present at the antenna connector). These signals are produced as a result of interaction (harmonic crossover)	2.2222	5.6250
	between the first and second local oscillators. Military specifications for this radio set permit a maximum of 200	2.5000	5.7143
	spurious signals to be generated within the frequency synthesizer, A1A3, without adversely affecting the radio set's	2.9412	5.8000
	acceptability. Table A lists those frequencies at which acceptable spurious signals may be encountered in some	3.0555	5.8333
	radio sets. In addition to those frequencies listed in table A are the fundamental of the 5 MHz local oscillator (see	3.1250	6.0000
	frequency [sited on case of 5 MHz L.O., A1A3U1).	3.3333	6 1338
2	Use of table A: For each frequency listed at which acceptable spurious signals may be encountered, there are	3.4375	6 2500
Ζ.	several dial frequencies at which audible tones may be heard.	3.5294	6.6666
		3.7500	7.0833
	Example: Internally generated spurious signal at 13.5000 MHz.	4.0000	7.2727
	a. With a dial frequency of 13,501.0KHz, LSB selected, the audio tone produced would be 1.0 KHz.	4.0625	7.5000
		4 1666	7.6471
	b. With a dial frequency of 13,498.6~Bz, USB selected, the audio tone produced would be 1.4 KHz.	4 2857	7 8125
		4.3750	8 0000
		4.4444 4.5000	8.1818 8.6375
		4.5000	8.5000
		4.5833	8.6666
		4.6154	8.9474
		4 6429	9.1666
		4 6666	9 3333
		4.6875	9 5000
		4 7059	9.6429
		4 7222	9 6875
		4.7368	9 7222
		5 2632	10.0000
		5 2777	10.3125
		5.2941	10.3371
		5.3125	10 6666
		5.3333	10 7692
		5.3571	11.0714
		5.3846	11.1111
		5 4167	11.2500
		5 4545	11 5385
		5.5000	11 8182
		5.5555	11.8750

TABLE A

FREQ (MHz)	FREQ (MHz)	FREQ (MHz)
12.0833	17.7777	25.3571
12.5000	17.9167	25.4167
12.7273	17.9169	25.5555
12.8125	18.6666	25.6250
12.9167	18-7500	25.7143
13.1250	18.8235	26.0000
13.3333	18.8888	26.2500
13.5000	19.0909	26.3636
13.6111	19-1666	26.6666
13.6364	19.6429	26.9231
13.7500	20.0000	27.1429
14.0000	20.3125	27.2727
14.1176	20.3571	27 5000
14.2857	20.5000	27 6923
14.3750	20.6250	28.2143
14.4444	20.6666	28.5000
14.5455	20.9091	28.5714
14.6875	21.3333	28.7500
14.7059	21.5000	29.1666
15.3125	21.5385	29.2308
15.3333	21-7857	29.3750
15.3571	21.8750	29.5000
15.5000	22.0000	29.5833
15.6250	22.2222	29.9999
15.7141	22.3077	
15.7143	22.5000	
16.0000	23.0769	
16.0714	23.3333	
16.1538	23.5000	
16.5000	23.7500	
16.6000	23.8462	
16.7857	24.0000	
16.9231	24.2857	
17.1429	24.3750	
17.5000	24.5833	
17.6923	24.6875	

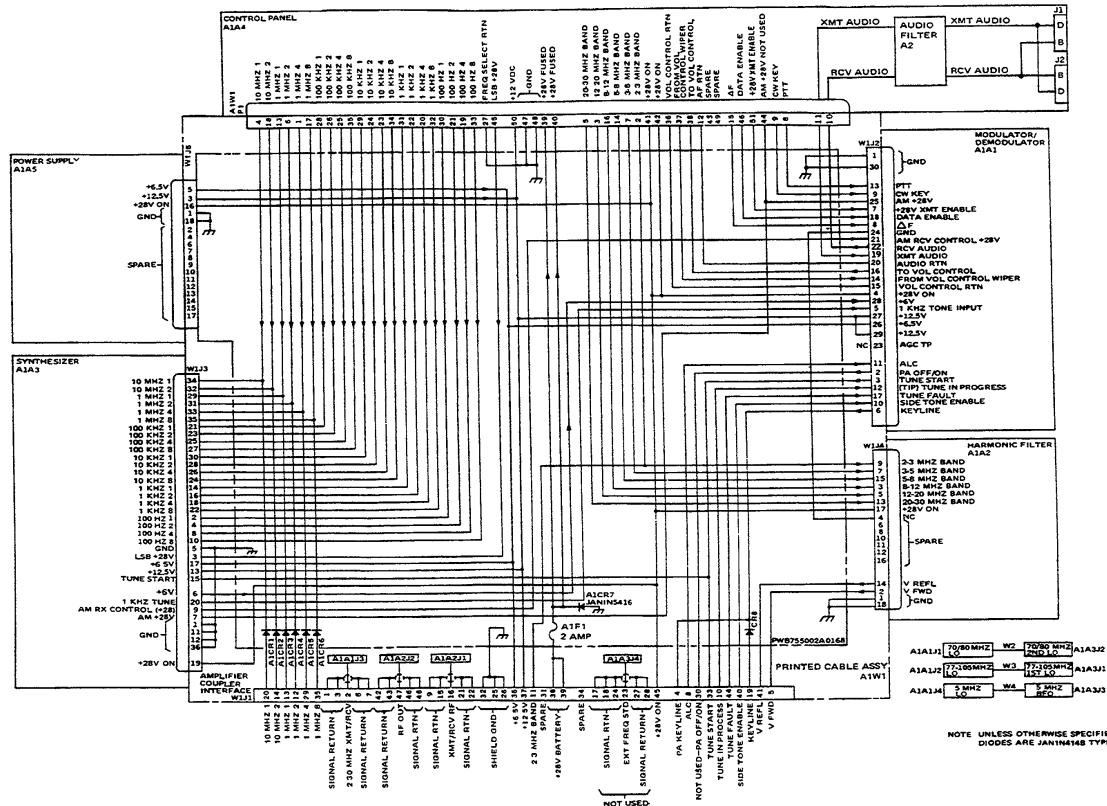
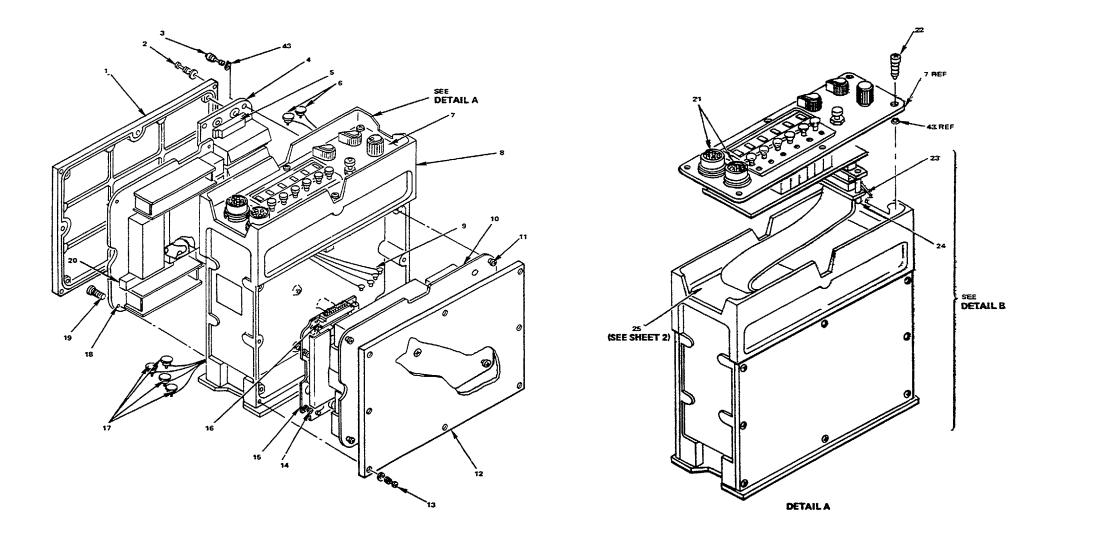
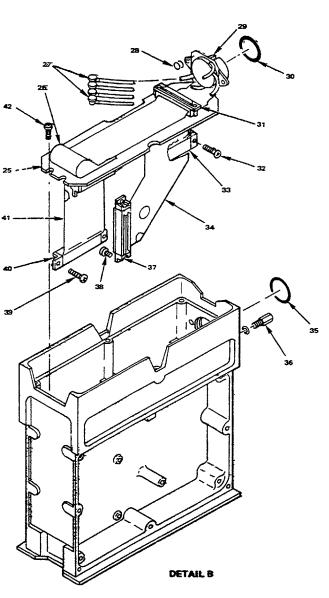




Figure 2-1. Receiver/Exciter A1 Interconnection Schematic

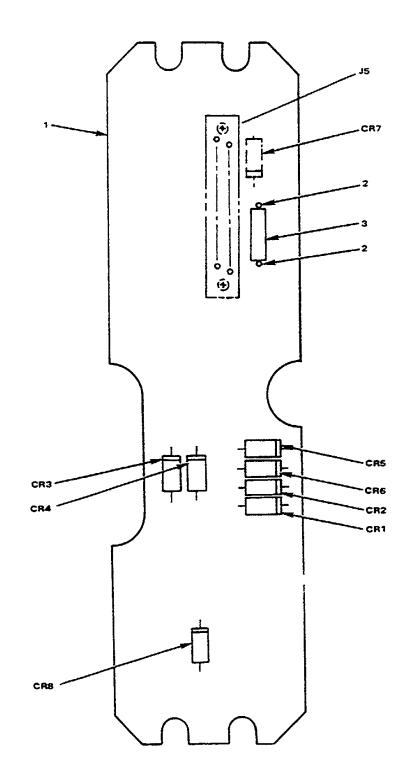
10		2ND LO
77-105MHZ	<u>w3</u>	77-105MHZ A1A3J1
5 MHZ	W4	5 MHZ A1A3J3

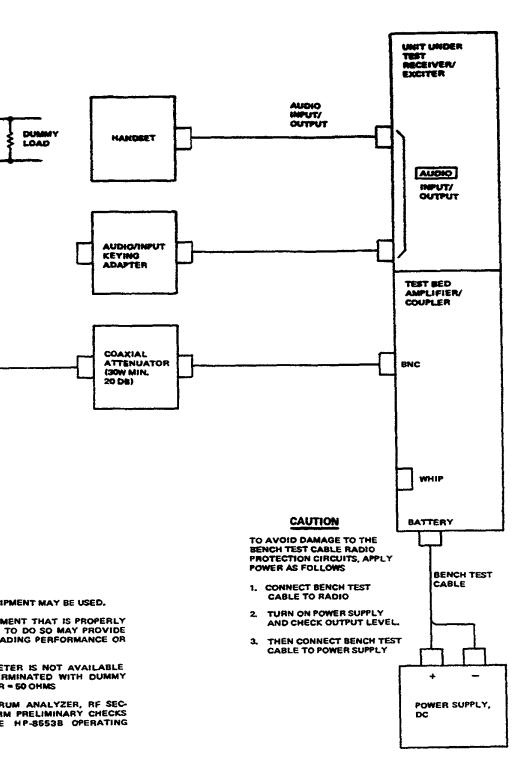
NOTE UNLESS OTHERWISE SPECIFIED DIODES ARE JANINAIAB TYPE.

ITEM	DESCRIPTION
1.	Cover Assembly
2.	Screw, Captive
3.	(8 places) Screw, Captive
5.	(4 places)
4.	Harmonic Filter
_	Module A1A2
5.	Multipin Connector
	(Harmonic Filter Module) A1A2P1
6.	RF Cables
	A1A2J1(W1P4),1
7	A1A2J2(W1P3)
7.	Control Panel cover Assembly (Face) A1A4
8.	Receiver/Exciter A1
9.	RF Cables A1A3J3(W4),
	A1A3J4(W1P5),
	A1A3J2(W2),
10.	A1A3J1(W3) Synthesizer Module A1A3
11.	Screw, Captive
	(5 places)
12.	Cover, Assembly
13.	Screw, Captive
14.	(8 places)
14.	Screw, Captive (4 places)
15.	Power Supply Module
	A1A5
16.	Multipin Connector
	A1A5P1
17.	RF Cables A1A1J1(W2),
	A1A1J2(W3),
	A1A1J3(W1P2),
4.0	A1A1J4(W4)
18.	Modulator/Demodulator Module A1A1
19.	Screw, Captive
	(4 places)
20.	Multipin Connector
21	A1A1P1
21.	Audio Connector Plugs A1A4J1, J2
22.	Screw, Captive
	(6 places)

ITEM DESCRIPTION 23. Multipin Connector A1A4P1 Captive Allen Screw 24. (2 places) Printed Wiring Board 25. 26. Ribbon Cable Assembly 27. RF Cables A1A2J2(W1) A1A2J1(W1), A1A2J3(W1), A1A2J4(W1) Mount mug Nut (2 places) 28. 29. Jack Receptacle Connector J1 30. Packing, Preform 31. Connector, Plug (Multipin) A1A4P1 32. Mounting Screw (2 places) 33. Multipin, Connector, A1A2J4 34. Ribbon Cable Assembly A1W1 35. Packing, Preform 36. Connector, Stud 37. Multipin Connector A1A3J3 38. Mounting Screw (2 places) 39. Mounting Screw) (2 places Multipin Connector 40. A1A1J2 41. Ribbon Cable Assembly A1W1 42. Circuit Board Mounting Screws, A1len (4 places) 43. .020" C Spring Clip (22 places) DISASSEMBLY NOTE When disassembling radio or modules for the first time it may be necessary to heat screws to

loosen the loctite compound applied at the factory




Figure 2-2. Receiver/Exciter A1 Component Location (Sheet 2 of 2)

TM 11-5820-919-40-2

ITEM DESCRIPTION

1 J5 CR7 2 3 CR5 CR6	Printed Wiring Board Connector, Receptacle Diode Lead Socket Fuse, Instr Diode Diode
CR2	Diode
CR1	Diode
CR8	Diode
CR4 CR3	Diode Diode

Description		erence				
Audio Input/Keying Adapter	••• Figure	3-11C				
Lip Adapter		3-11D				
Kit, Tool, Electronic	TK-100/G None					
Bench Repair Center	Pace PRC-350C None					
Maintenance Kit, Printed Circuit	MR-984/A None			ł		
NOTE: Referenced figures are in TM	11-5820-919-40-1.		SPECTRUM ANALYZER		VTVM (WATT METER	
	TEST EQUIPMENT			Γ	ALTERNATE)	
Name	Designation	Quantity				
		4	 ,	1	[]	
Radio Set, Test Bed	AN/PRC-104	1	DIGITAL			1
Audio Oscillator	AN/URM-127	1	MULTIMETER (DVM, OHMMETER	ļ		
VTVM	AN/USM-116	1	FUNCTION			
				J		
Dummy Load (50 ohm)	DA-553()/4	1		ו	[]	
Signal Generator, RF	AN/USM-323	1	RF		STEP	1
Digital Multimeter	AN/USM-341	1	SIGNAL GENERATOR	┟╻┠╾╼╼╼╼╼╼┥╻	ATTENUATOR L5W, 50 OHM)	
(DVM, ohmmeter function)						
Attenuator, Step	CN-1128/U	1		-		
10-db steps, 0.5w, 50 ohm			ſ	1		
Watt Meter, RF			RF			
			WATT			
- Power Meter	Hewlett Packard HP-435A	1				
- Thermocouple Power	Hewlett Packard HP-8482A	1		3		
Sensor						
Spectrum Analyzer	Hewlett Packard HP-141-T	1		NOTES		
		A		1.	EQUIVALENT TEST E	QUIPMENT MAY
- High Resolution IF Section	Hewlett Packard HP-8552B	1		2	USE ONLY TEST EQ CALIBRATED FAILU	UIPMENT THAT
					ERRONEOUS OR MIS	LEADING PERFO
- RF Section	Hewlett Packard HP-8553B	1		3.	IF ADEQUATE WAT	TMETER IS NOT
- Tracking Generator	Hewlett Packard HP-8443A	1			SUBSTITUTE VTVM	TERMINATED W
-		A		4	BEFORE USING SPE TION HP-85538 PERI	FORM PRELIMIN
Power Supply, DC	Hewlett Packard HP-6439b	1			CONTAINED IN MANUAL.	
Attenuator, Coaxial 20 db, 30w min., 50 ohm	Narda 765-20	1				

NOTE 1:

	Radio Set <u>Frequency (kHz</u>)	<u>Sideband</u>	RF Signal Generator Frequency (MHz)
No. 1. a.	2,221.0	USB	2.222
b.	2,221.0	LSB	2.220
No. 2. a.	3,334.0	USB	3.335
b.	3,334.0	LSB	3.333
No. 3. a.	6,665.0	USB	6.666
b.	6,665.0	LSB	6.664
No. 4. a.	8,889.0	USB	8.890
b.	8,889.0	LSB	8.888
No. 5. a.	15,554.0	USB	15.555
b.	15,554.0	LSB	15.553
No. 6. a.	27,778.0	USB	27.779
b.	27,778.0	LSB	27.777

- NOTE 2: Harmonic bands are 2-3 MHz, 3-5 MHz, 5-8 MHz, 8-12 MHz, 12-20 MHz, and 20-30 MHz.
- NOTE 3: Replace original modules in reverse order (except for the faulty module) and listen for tone in handset. Otherwise, the good modules would be condemned as faulty.
- NOTE 4: Frequency must be changed, or mode changed, each time to cause tune-up tone when PTT is closed.

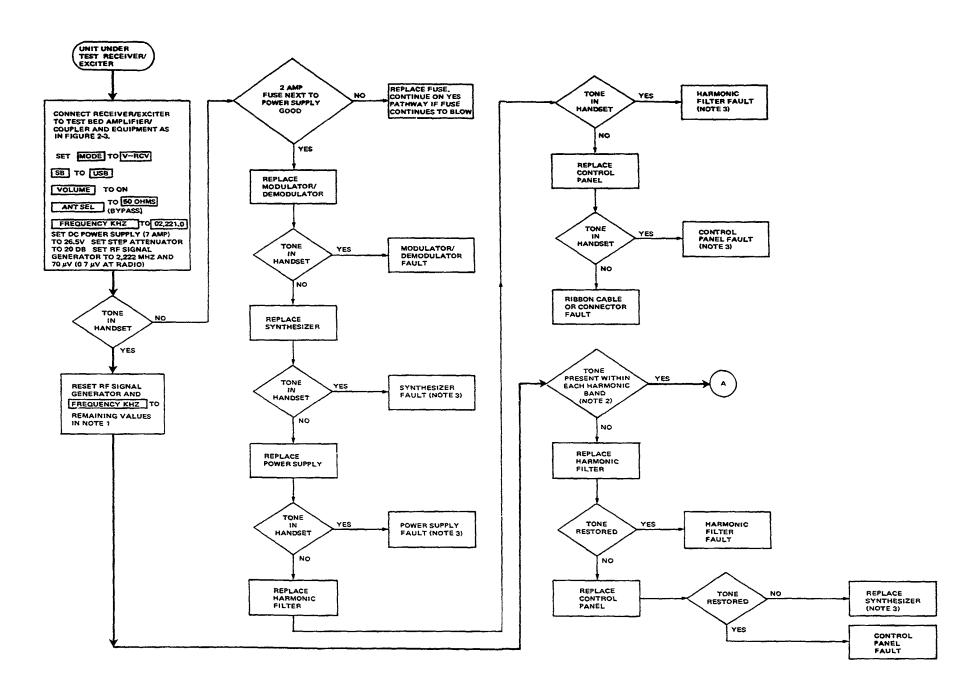
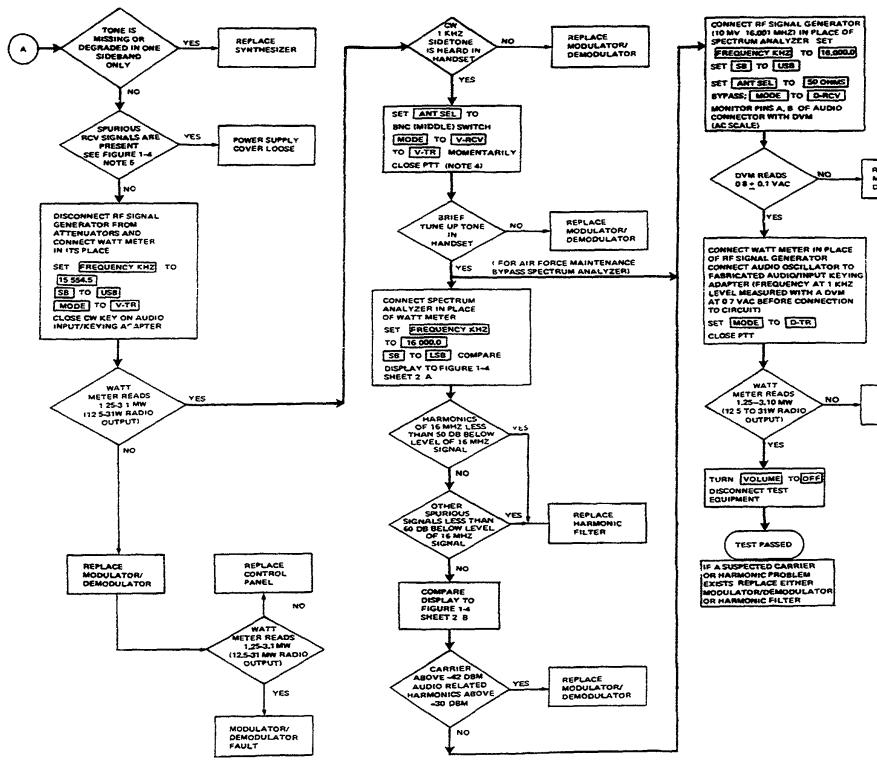



Figure 2-4. Receiver/Exciter A1 Performance Test (Sheet 1 of 2)

TM 11-5820-919-40-2 Figure 2-4. Receiver/Exciter A1 Performance Test (Sheet 2 of 2)

REPLACE MODULATOR DEMODULATOR

REPLACE MODULATOR/ DEMODULATOR

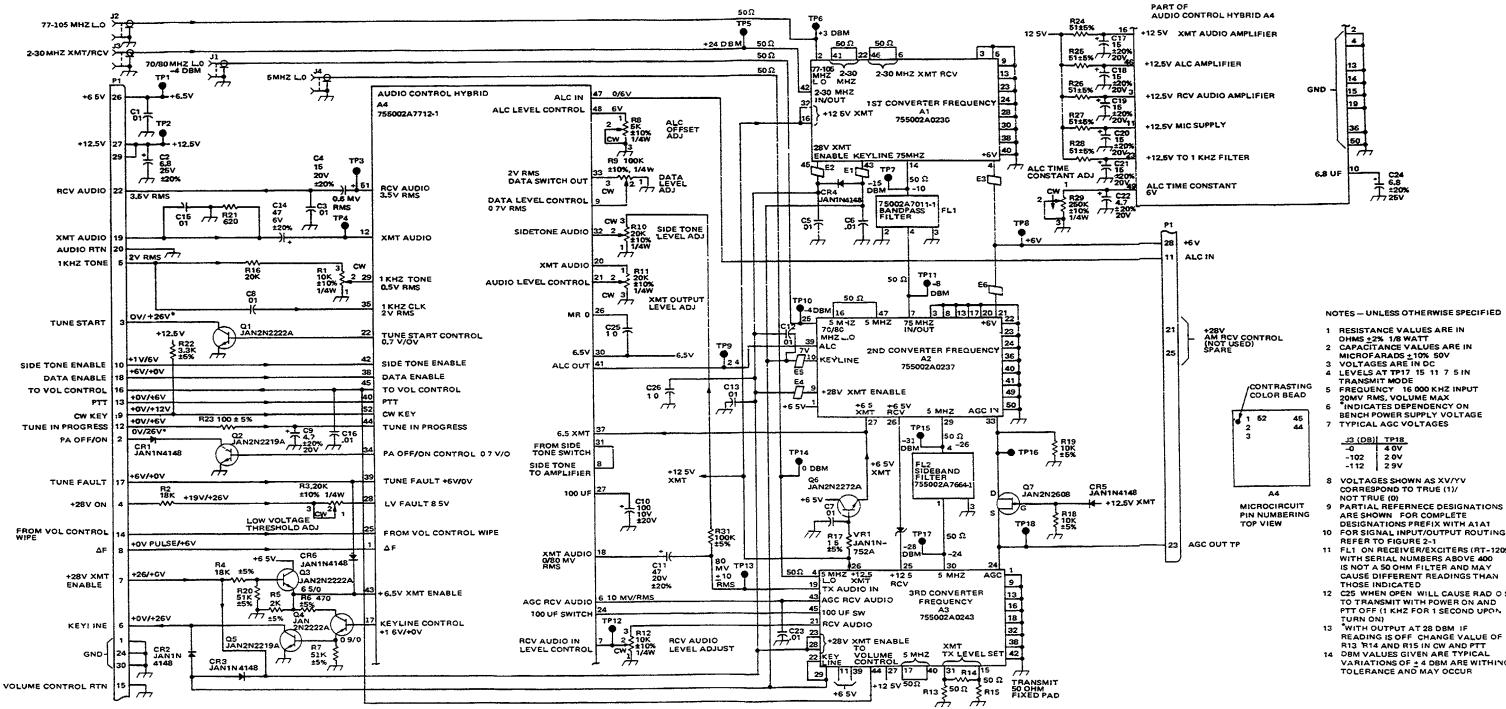
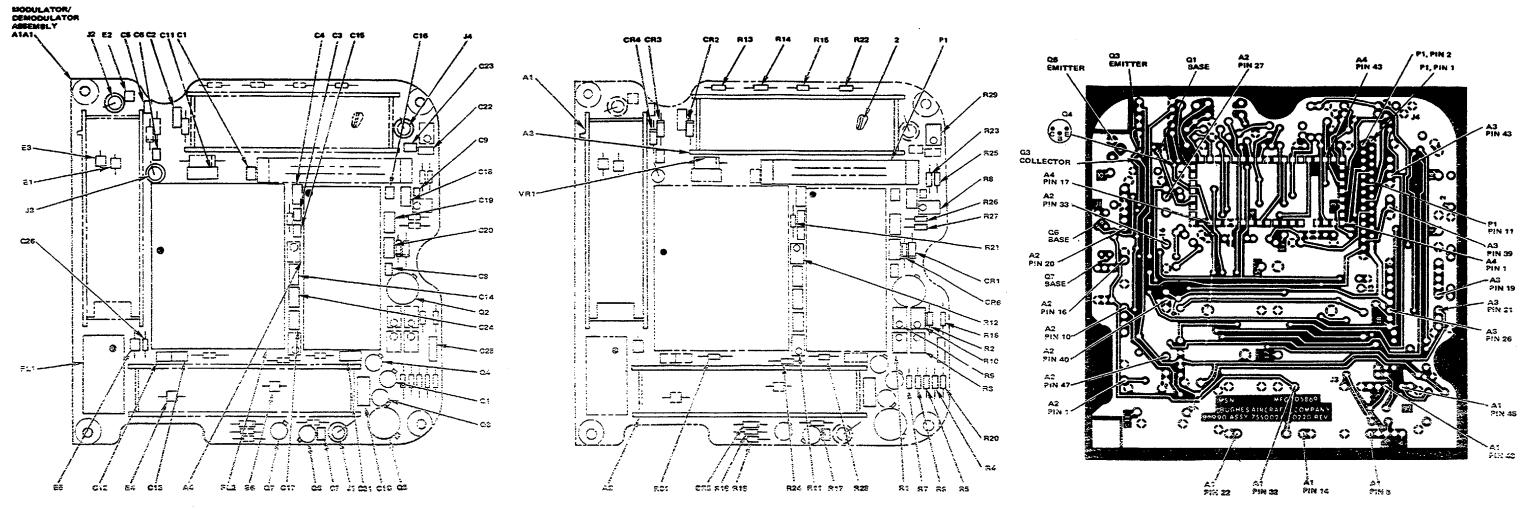


Figure 3-1. Modulator/Demodulator A1A1 Schematic


NOTES - UNLESS OTHERWISE SPECIFIED

- 1 RESISTANCE VALUES ARE IN

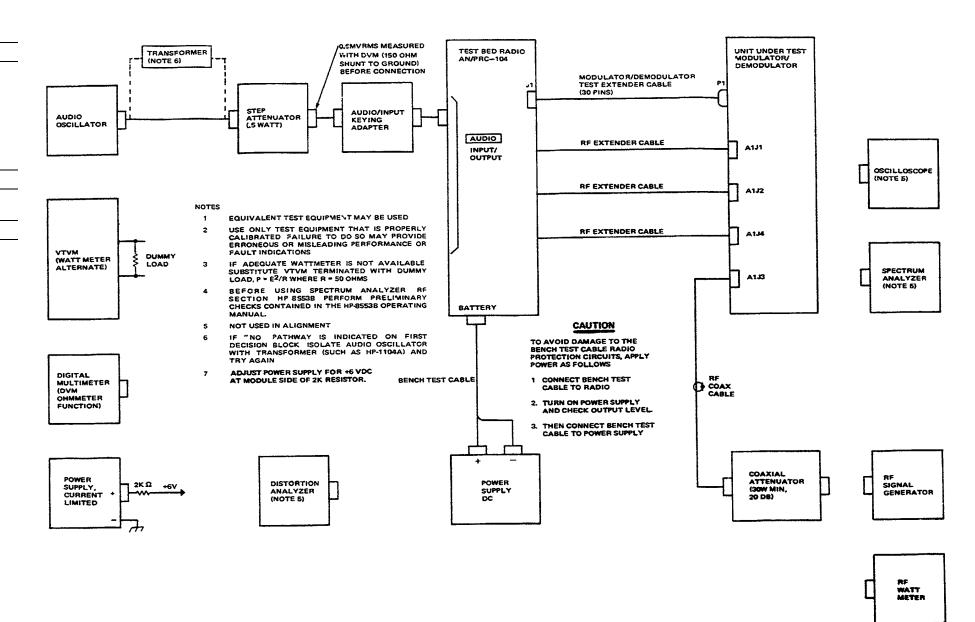
- 7 TYPICAL AGC VOLTAGES

J3 (DB)	TP18_
۹ ا	4 0V
-102	2 OV
-112	2 9 V

- VOLTAGES SHOWN AS XV/YV CORRESPOND TO TRUE (1)/
- ARE SHOWN FOR COMPLETE DESIGNATIONS PREFIX WITH A1A1
- FOR SIGNAL INPUT/OUTPUT ROUTING REFER TO FIGURE 2-1
- REFER TO FIGURE 2-1 11 FL1 ON RECEIVER/EXCITERS (RT-1209) WITH SERIAL NUMBERS ABOVE 400 IS NOT A 50 OHM FILTER AND MAY CAUSE DIFFERENT READINGS THAN THOSE INDUCTED
- THOSE INDICATED C25 WHEN OPEN WILL CAUSE RAD O SET TO TRANSMIT WITH POWER ON AND PTT OFF (1 KHZ FOR 1 SECOND UPON TURN ON)
- WITH OUTPUT AT 28 DBM IF READING IS OFF CHANGE VALUE OF R13 R14 AND R15 IN CW AND PTT DBM VALUES GIVEN ARE TYPICAL
- VARIATIONS OF ± 4 DBM ARE WITHING TOLERANCE AND MAY OCCUR

Α

В


16

Note: 🧼 3 Exnotes test point 5 etc. Sid marx on capacitor denotes positive terminal (electrolytic only)

ITEM	DESCRIPTION <u>A</u>	ITEM	DESCRIPTION <u>B</u>
ITEM A1A J2 E2 C5 C6 C2 C11 C1 C4 C3 C15 C16 J4 C23 C29 C18 C20 C8 C14 Q2 C29 C18 C20 C8 C14 Q2 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C11 C16 C20 C16 C20 C11 C16 C20 C17 C16 C20 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C17 C16 C20 C20 C17 C16 C20 C20 C17 C16 C20 C20 C17 C20 C20 C17 C16 C20 C20 C17 C10 C20 C20 C10 C21 C10 C10 C10 C10 C10 C10 C10 C10 C10 C1		ITEM CR4 CR3 CR3 R14 R22 P129325 R267116 R210 R320 R45 R671287114 R285 R312 R210 R320 R45 R671287114 R285 R312 R314 R314 R314 R314 R314 R314 R314 R314	
E1 E3	Core, EM Core, EM		

SPECIAL TOOLS, MATERIALS, AND FABRICATED TEST CABLES AND FIXTURES

Description	Part Number	Reference		
Modulator/Demodulator Test Extender Cable		Figure 3-10A		
RF Coax Cable (2 each)		Figure 3-11A		
RF Extender Cable (3 each)		Figure 3-11B		
Audio Input/Keying Adapter		Figure 3-11C		
Kit, Tool, Electronic	TK-100/G	None		
Bench Repair Center	Pace PRC-350C	None		
Maintenance Kit, Printed Circuit	MK-984/A	None		
NOTE: Referenced figures are in TM 11-5820-919-40-1.				

TEST EQUIPMENT

Name	Designation	Quantity
Radio Set, Test Bed	AN/PRC-104	1
Audio Oscillator	AN/URM-127	1
VTVM	AN/USM-116	1
Dummy Load (50 ohm)	DA-553()/4	1
Signal Generator, RF	AN/USM-323	1
Oscilloscope, Storage	Hewlett Packard BP-1741A	1
Digital Multimeter	AN/USM-361	1
(DVM, ohmmeter function)		
Attenuator, Step	CN-1128/U	1
10-db steps, 0.5w, 50 ohm		
Watt Meter		
- Power Meter	Hewlett Packard HP-435A	1
 Thermocouple Power Sensor 	Hewlett Packard HP-8482A	. 1
Spectrum Analyzer	Hewlett Packard HP-141-T	1
 High Resolution IF Section 	Hewlett Packard HP-8552B	
- RF Section	Hewlett Packard HP-8553B	1
 Tracking Generator 	Hewlett Packard HP-8443A	. 1
- High Impedance Probe	Hewlett Packard HP-1121A	. 1
Distortion Analyzer	Hewlett Packard HP-334A	1
Power Supply, Current	Hewlett Packard HP-6215A	. 1
Limited		
Power Supply, DC	Hewlett Packard BP-6439B	1
Attenuator, Coaxial	Narda 765-20	1
20 db, 30w min., 50 ohm		
150-Ohm Resistor		1
500-Ohm Resistor		I
2000-Ohm Resistor		

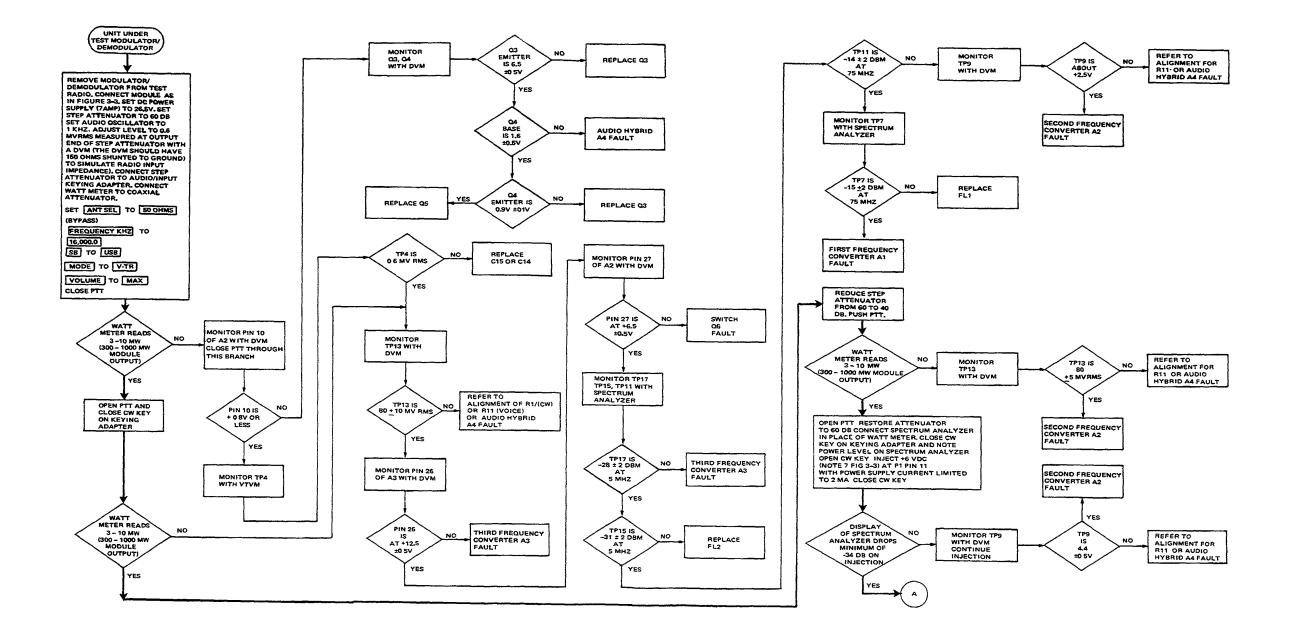
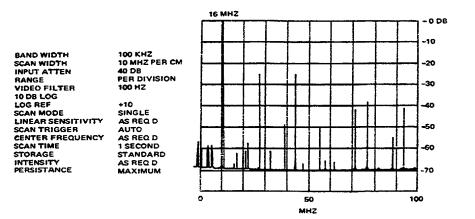
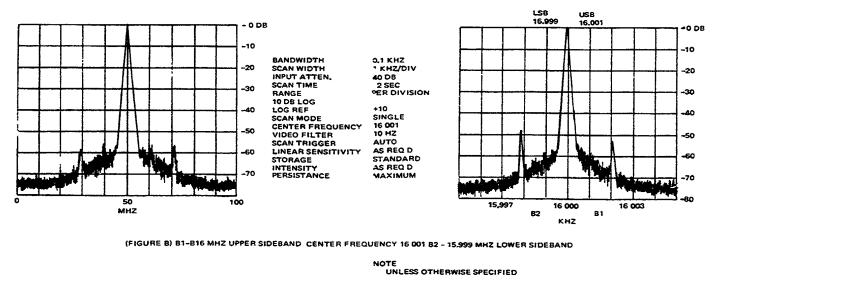




Figure 3-4. Modulator/Demodulator A1A1 Performance Test (Sheet 1 of 4)

ALL VOLTAGE MEASUREMENTS TAKEN WITH RESPECT TO CHASSIS GROUND

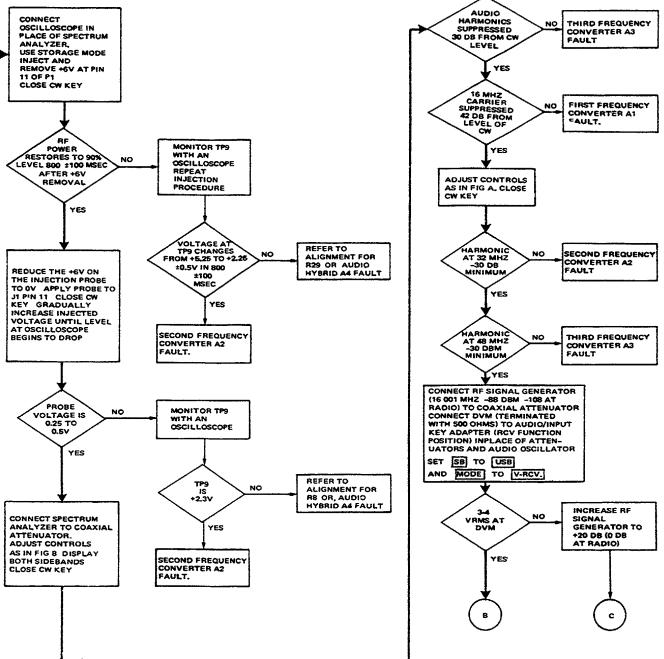


Figure 3-4. Modulator/Demodulator A1A1 Performance Test (Sheet 2 of 4)

A

-

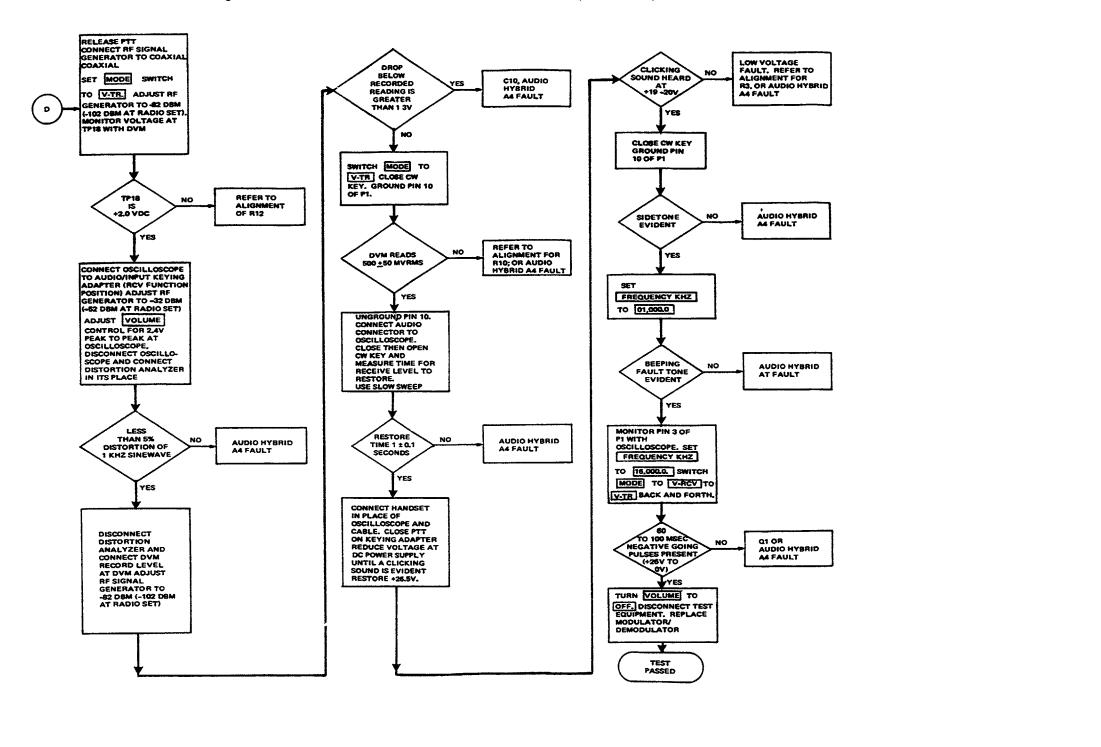



Figure 3-4. Modulator/Demodulator A1A1 Performance Test (Sheet 3 of 4)

MODULATOR/ DEMODULATOR A1A1 ALIGNMENT

The alignment procedure is to be used an either of these situations: (1) the performance test calls a potentiometer out of adjustment, or (2) one of the following is replaced:

- 1. First Converter, A1A1A1
- 2. Second Converter, A1A1A2
- 3. Third Converter, A1A1A3
- 4. Audio Control Hybrid, A1A1A4

The procedure consists of a preliminary setup and an adjustment procedure.

TRANSMIT OUTPUT LEVEL ALIGNMENT, R1. R8. R10. R11

1. Turn ALC offset adjust potentiometer R8 to maximum ccw.

2. Close the PTT switch.

3. Adjust R11 until power meter reads ± 28 dbm. Verify test point 13 reads 80 ± 10 mv ac.

4. Adjust the transmit 50 ohm fixed pad R13, R14 and R15 as necessary in order meet the requirements of step 3.

5. Open the PTT switch.

6. Close the CW KEY switch on the audio input/keying adapter.

7. Adjust 1-kHz tone level R1 to obtain 28 ± 0.5 dbm at the watt meter (minus 20 db for the attenuator.

8. Adjust ALC offset, R8, to obtain a 0.25-db reduction at the watt meter.

9. Adjust sidetone level adjust R10 to obtain 500 \pm 10 my rms at the vtvm.

1. Monitor A1J3 via the coaxial attenuator with the oscilloscope in storage mode.

2. Turn off radio set. Connect a 2K resistor in series with the positive output of the HP-6215A power supply and a Sharp steel tip injection probe, apply to J-11, measure the voltage at this point with the DVM and adjust the HP-6215A power supply for + 6VDC at J1-11. Remove probe And turn on the radio set. Inject +6V to P-1-11, close CW key.

ALC RELEASE TIME ALIGMENT, R29

3. Momentarily remove the -6v at pin 11 and observe the period required for the rf Power at A1J3 to return to 90 percent of full value. This is the LAC release time.

4. Adjust R29 for an ALC release time Of 750 ±100 milliseconds.

5. Open CW KEY switch on the audio Input/keying adapter.

RECEIVE LEVEL ALIGMENT, R12 DATA MODE AUDIO OUTPUT ALIGMENT, R9

1. Set MODE to V-RCV.

2. Connect the rf signal generator to The coaxial attenuator.

3. Adjust the rf signal generator to 16.0010 MHz and -83 dbm (-103 dbm at radio).

4. Short gate of Q3 of A1A1A2 (FET case is the gate) to ground with a jumper wire.

5. Adjust receive audio level adjust R12 to obtain -2.0 ±0.1 vdc at TP18. (Measure with DVM and probe.) Remove jumper wire.

PRELIMINARY SETUP

1. Remove the modulator/demodulator from the receiver/exciter and connect the module as in figure 3-3.

2. Connect the power meter to the coaxial attenuator. Set the do power supply (7 amp) to +26.5v. Set the step attenuator to 60 db.

3. Connect the fabricated audio input/ keying adapter to one of the radio audio input plugs. Connect the audio oscillator to the step attenuator. Monitor the output of the step attenuator with the DVM shunted with 150 ohms and adjust the level of the audio oscillator for 0.6 mv rms. This simulates the input impedance of the radio, which is 150 ohms in the voice mode (since the DVM is 1M ohms). Connect the step attenuator to the audio input/keying adapter.

4. Connect the vtvm to the audio output with 500 ohms termination.

5. Set the radio controls located on the control panel as follows:

- a. ANT SEL to 50 OBMS (bypass)
- b. FREQUENCY KBZ to 16.000.0
- c. MODE to V-TR
- d. VOLUME to MAXIMUM
- e. SB to USB
- 2. Close the PTT switch.

- 1. Set MODE to D-RCV.
- 2. Increase the rf signal generator to -72 dbm (-92 dbm at radio.).

3. Adjust data level adjust R9 to obtain 0.775 ±0.05 vrms (measure with DVM on ac volts).

LOW VOLTAGE ALARM ALIGMENT, R3

1. Disconnect the rf signal generator from the coaxial attenuator and connect the watt meter. Connect the handset in Place of the vtvm.

2. Close the PTT switch on the audio Input/keying adapter.

3. Reduce the input voltage to the Radio to +19.0 vdc.

4. Adjust low voltage threshold adjust. R3, to the point where a continuous clicking sound is heard in the handset.

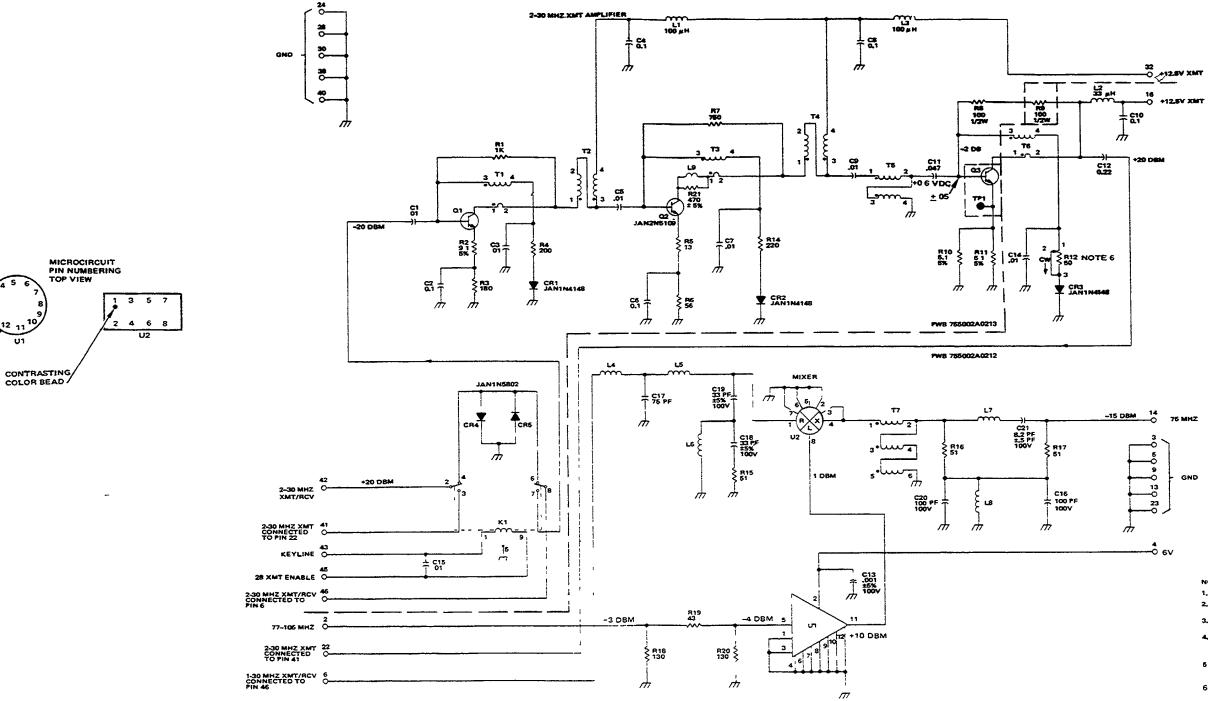
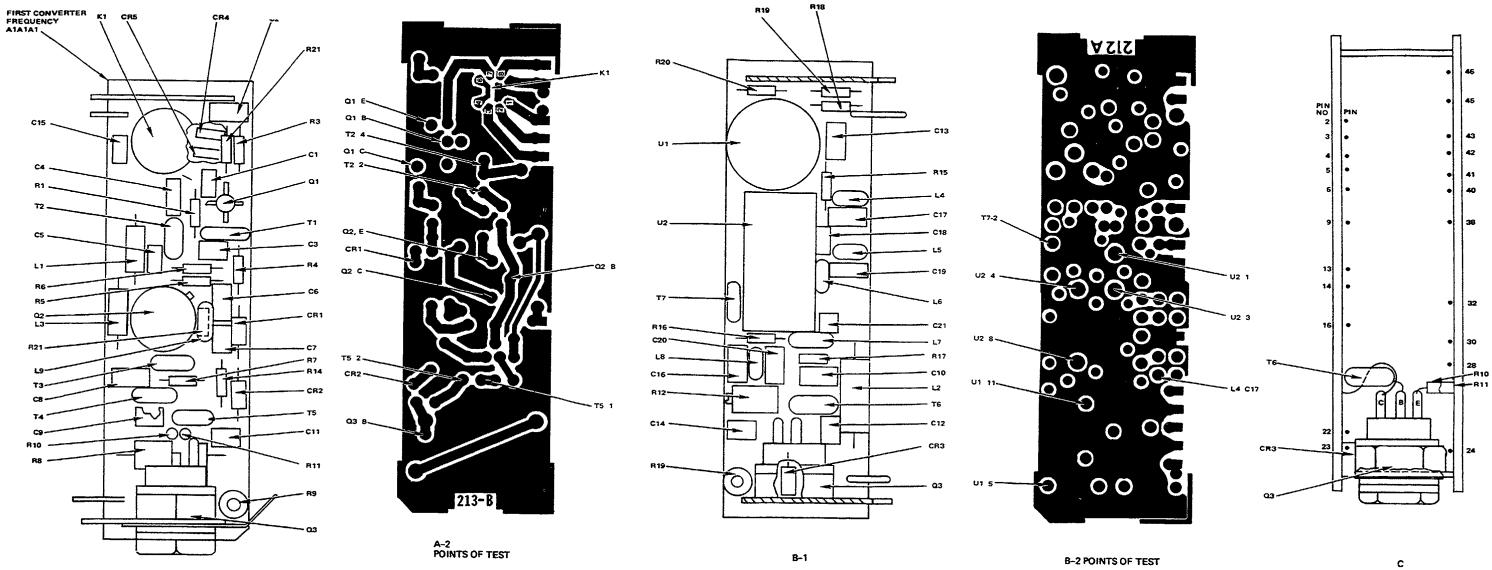

DISCONNECT THE TEST EQUIPMENT

TABLE 3-1.Selected Resistors for Mod/Demod R13, R14 & R15

Pad Attenuation	Re	sistor Values (OHMs	6)
DB	R13	R14	R15
3 db	300	18	300
4 db	220	24	220
5 db	180	30	180
6 db	150	36	150
7 db	130	43	130
8 db	110	51	110
9 db	110	62	110
10 db	91	68	91
11 db	91	82	91
12 db	82	91	82
13 db	82	110	82

Transmit fixed 50Ω pad adjustment. Refer to modulator/demodulator A1A1 alignment. (Prior to replacing R13, 14, 15, examine these resistors on modulator/demodulator, record individual values for reference.)

Military No.
RLR05C18R0GM
RLR05C24R0GM
RLR05C30R0GM
RLR05C36R0GM
RLR05C43R0GM
RLR05C51R0GM
RLR05C62R0GM
RLR05C68R0GM
RLR05C82R0GM
RLR05C91R0GM
RLR05C1100GM
RLR05C1300GM
RLR05C1500GM
RLR05C1800GM
RLR05C2200GM
RLR05C3000GM



UI

Figure 3-5. First Frequency Converter A1A1A1 Schematic

NOTES UNLESS OTHERWISE SPECIFIED

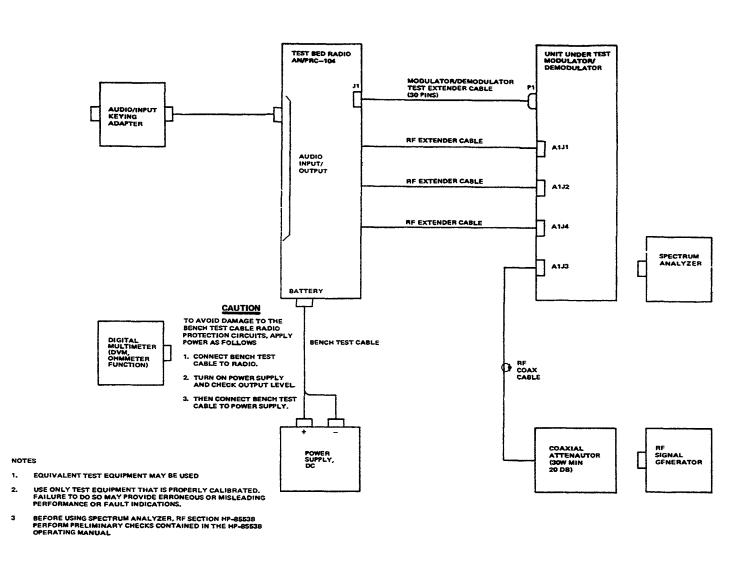
- 1. RESISTANCE VALUES ARE IN OMMS 1/8 WATT 12%.
- 2. CAPACITANCE VALUES ARE IN MICROFARADS ±10% 50 VOLTS'
- 3. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN FOR COMPLETE DESIGNATION PREFIX WITH A1A1A1
- 4. DBM VALUES WITH FREQUENCY CONVERTER ATATAT IN PLACE ON MODULATOR/DEMODULATOR MODULE IF TEST BED EXTENTION IS USED DBM VALUES MAY BE SMALLER 6 WITH <u>FEREDUENCY KH2</u>] AT IS CODO VOLUME AT MAS VALUES VOC AND DBMI IN TRANSMIT AT AUDIO CONNECTOR IS 1 KH2 SINE WAVE .6 MV RMS.
- 6 ADJUST R12 FOR +0 6 VDC AT BASE OF Q3 FOR CONVERTER-ONLY REALIGNMENT

A-1

26

ITEM	DESCRIPTION	ITEM	DES
	$\frac{A-1}{E}$	Doo	<u>B-1</u>
A1A1A		R20	Resistor
	Converter	R19	Resistor
124	(755002A0230)	R18	Resistor
K1	Relay, Electromagnetic	C13	Capacitor
CR5	Diode	R15	Resistor
CR4	Diode	L4	Inductor
C2	Capacitor	C17	Capacitor
R21	Resistor	C18	Capacitor
R3	Resistor	L5	Inductor
C1	Capacitor	C19	Capacitor
Q1	Transistor	L6	Inductor
T1	Inductor	C21	Capacitor
C3	Capacitor	L7	Inductor
R4	Resistor	R17	Resistor
C6	Capacitor	C10	Capacitor
CR1	Diode	L2	Coil, RF
C7	Capacitor	T6	Inductor
R7	Resistor	C12	Capacitor
R14	Resistor	CR3	Diode
CR2	Diode	Q3	Transistor
T5	Transformer, RF	R19	Resistor
C11	Capacitor	C14	Capacitor
R11	Resistor	R12	Resistor
R9	Resistor	C16	Capacitor
Q3	Transistor	L8	Inductor
R8	Resistor	C20	Capacitor
R10	Resistor	R16	Resistor
C9	Capacitor	T7	Transformer
T4	Transformer	U2	Mixer, RF
C8	Capacitor	U1	Amplifier, RF
T3	Inductor		
L9	Inductor		
R21	Resistor		<u>C</u>
L3	Coil, RF		
Q2	Transistor	R10	Resistor
R5	Resistor	R11	Resistor
R6	Resistor	Q3	Transistor
L1	Coil, RF	CR3	Diode
C5	Capacitor	T7	Inductor
T2	Transformer, RF		
R1	Resistor		
C4	Capacitor		
C15	Capacitor		
-	•		

Figure 3-6. First Frequency Converter A!A!A! Component Location (Sheet 2 of 2)


SCRIPTION

SPECIAL TOOLS, MATERIALS, AND FABRICATED TEST CABLES AND FIXTURES

Description	Part Number	Reference
RF Coax Cable (2 each)		Figure 3-11A
RF Extender Cable (3 each)		Figure 3-11B
Audio Input/Keying Adapters		Figure 3-11C
Modulator/Demodulator Test Extender Cable		Figure 3-10A
Frequency Converter Test Bed		Figure 3-12
Kit, Tool, Electronic	TK-100/G	None
Bench Repair Center	Pace PRC-350C	None
Maintenance Kit, Printed Circuit	MK-984/A	None

NOTE: Referenced figures are in TM 11-5820-919-40-1.

TEST EQUIPMENT			
Name	Designation	Quantity	
Radio Set, Test Bed	AN/PRC-104	1	
Signal Generator, RF	AN/USM-323	1	
Digital Multimeter (DVM, ohmmeter function)	AN/USM-341	1	
Spectrum Analyzer	Hewlett Packard HP-141-T	1	
- High Resolution IF Section	Hewlett Packard HP-8552B	1	
- RF Section	Hewlett Packard HP-8553B	1	
- Tracking Generator	Hewlett Packard HP-8443A	1	
- High Impedance Probe	Hewlett Packard HP-1121A	1	
Power Supply, DC	Hewlett Packard HP-6439B	1	
Attenuator, Coaxial 20 db, 30w min., 50 ohm	Narda 765-20	1	

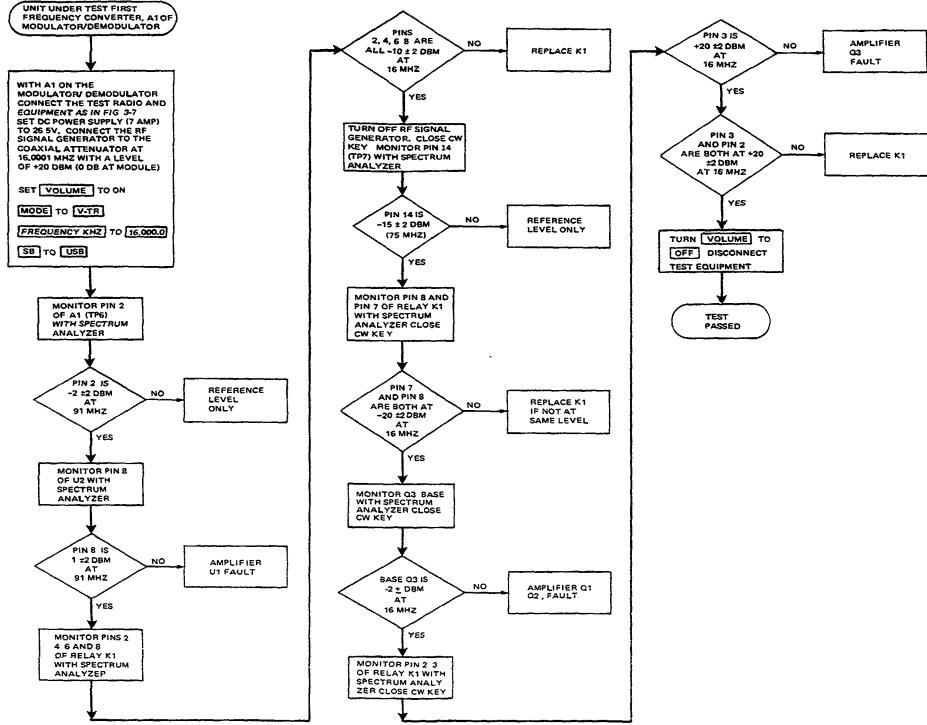
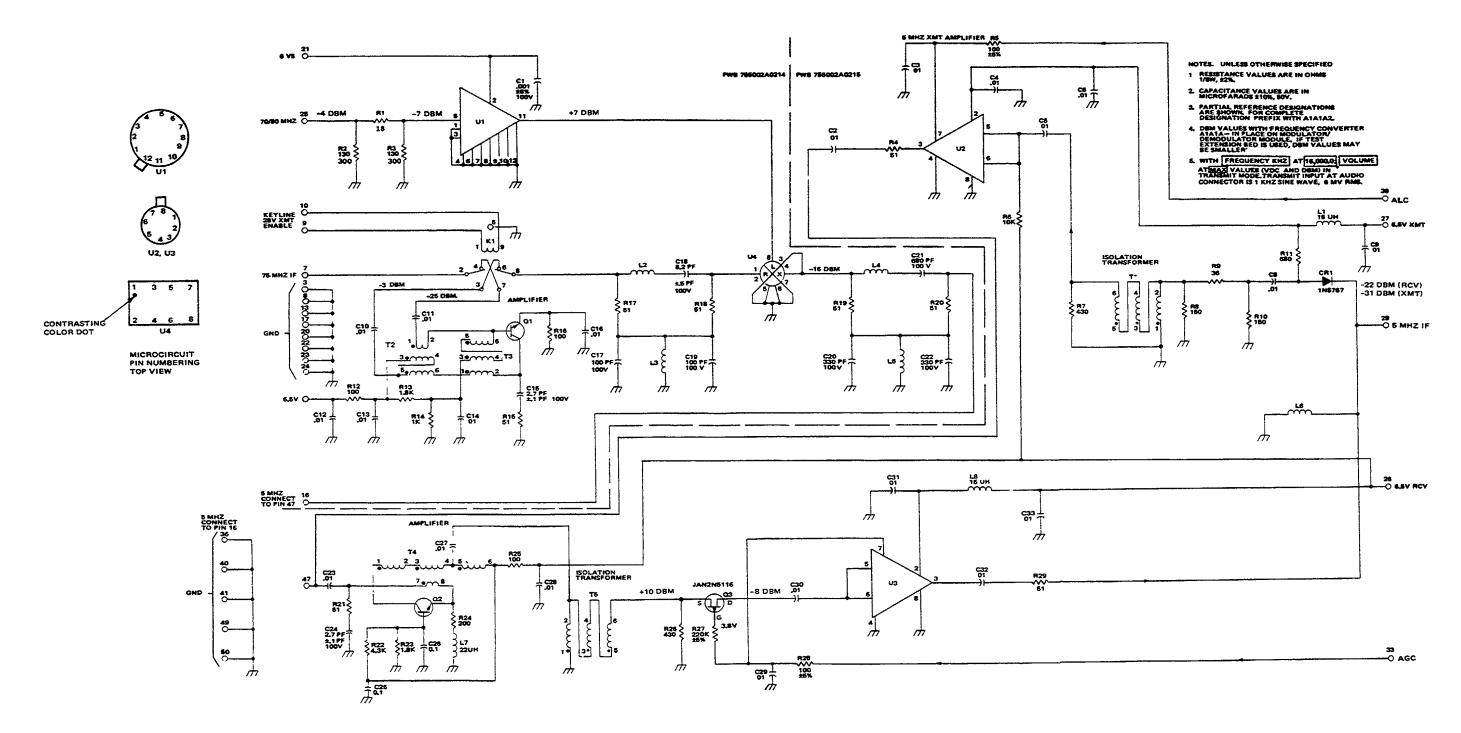
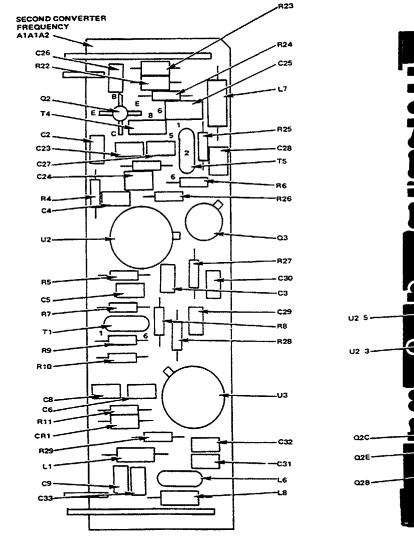
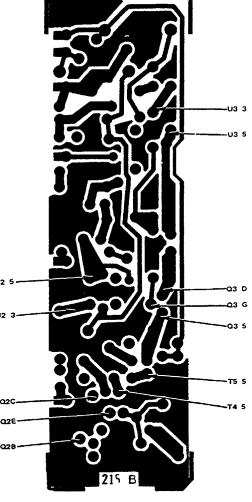
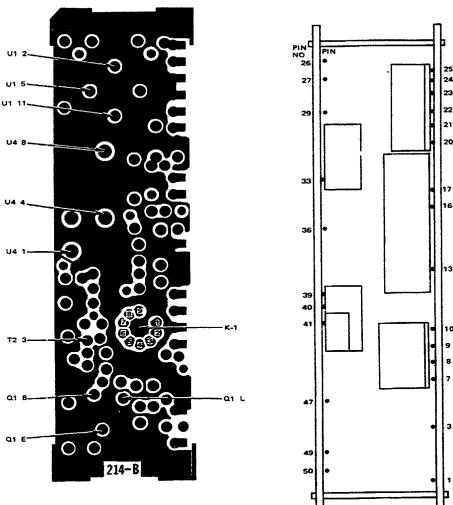


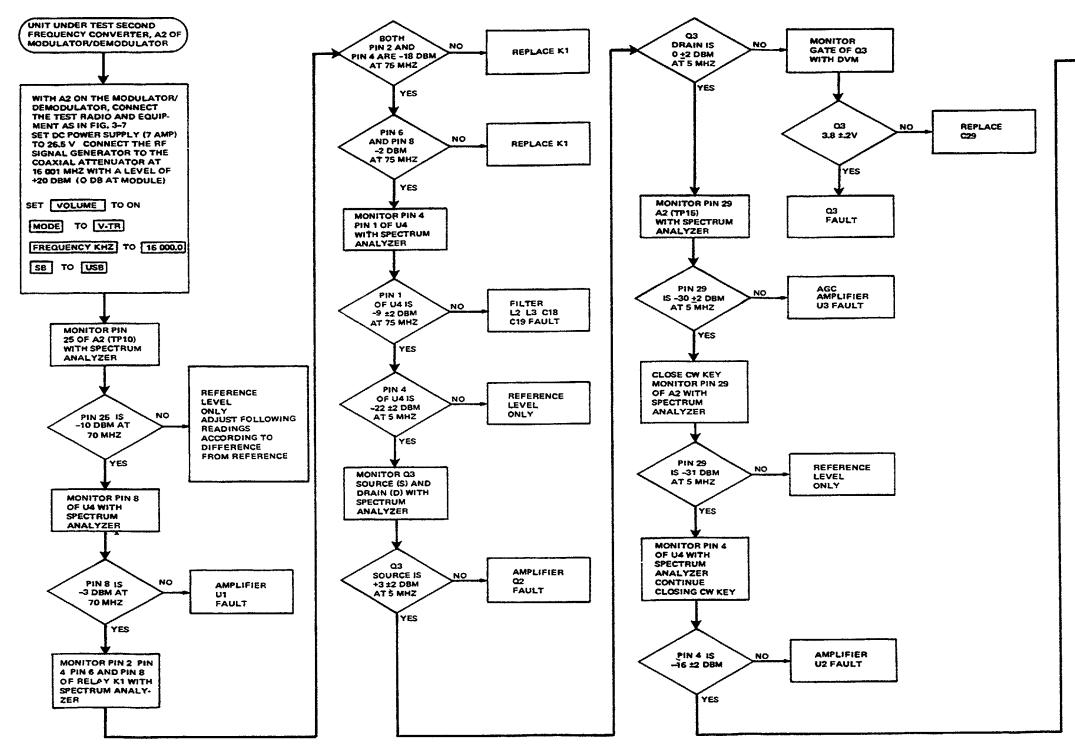
Figure 3-8. First Frequency Converter A1A1A1 Performance test

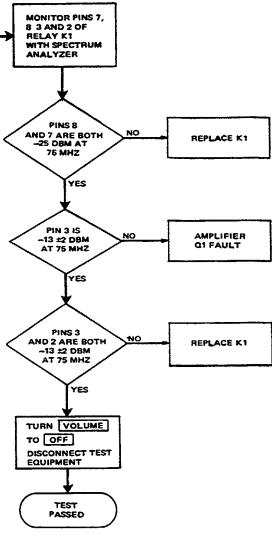
29/(30 blank)


Figure 3-9. Second Frequency Converter A1A1A2 Schematic

A-2 POINTS OF TEST




A -1

С

ITEM DESCRIPTION I	TEM	DESCRIPTION
<u>A-1</u>		
A1A1A2 Second Frequency C Converter F (755002A0237) C	Q2 R22 C26	Transistor Resistor Capacitor
R23ResistorR24ResistorC25CapacitorL7CoilR25ResistorC28CapacitorT5Transformer, RFR6ResistorQ3TransistorR27ResistorC30CapacitorC31CapacitorC32CapacitorC33CapacitorC34CapacitorC35CapacitorC36CapacitorC37CapacitorC38ResistorC39CapacitorC31CapacitorC32CapacitorC33CapacitorC31CapacitorC32CapacitorC33CapacitorC4CapacitorC4CapacitorC71Transformer, RFR4Resistor	Q1 C15 C12 R15 C14 R13 C19 L3 C17 L4 R20 L5 R1 R3 U1 C122 U4 R18 R17 C18 L2 C11 C13 R12 C10 T3 R12 C16	Capacitor <u>B-1</u> Transistor Capacitor Resistor Resistor Resistor Relay, Electromagnetic Capacitor Inductor Capacitor Inductor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Transformer, RF Capacitor Transformer Resistor Capacitor Transformer Resistor Capacitor Capacitor Transformer Resistor Resistor Capacitor Capacitor Transformer Resistor Resistor Capacitor Capacitor Transformer Resistor Resistor Capacitor Capacitor Transformer Resistor Capacitor Capacitor Capacitor Transformer Resistor Capacitor Capacitor Capacitor Capacitor Transformer Resistor Capacito

Figure 3-10. Second Frequency Converter A1A1A2 Component Location (Sheet 2 of 2)

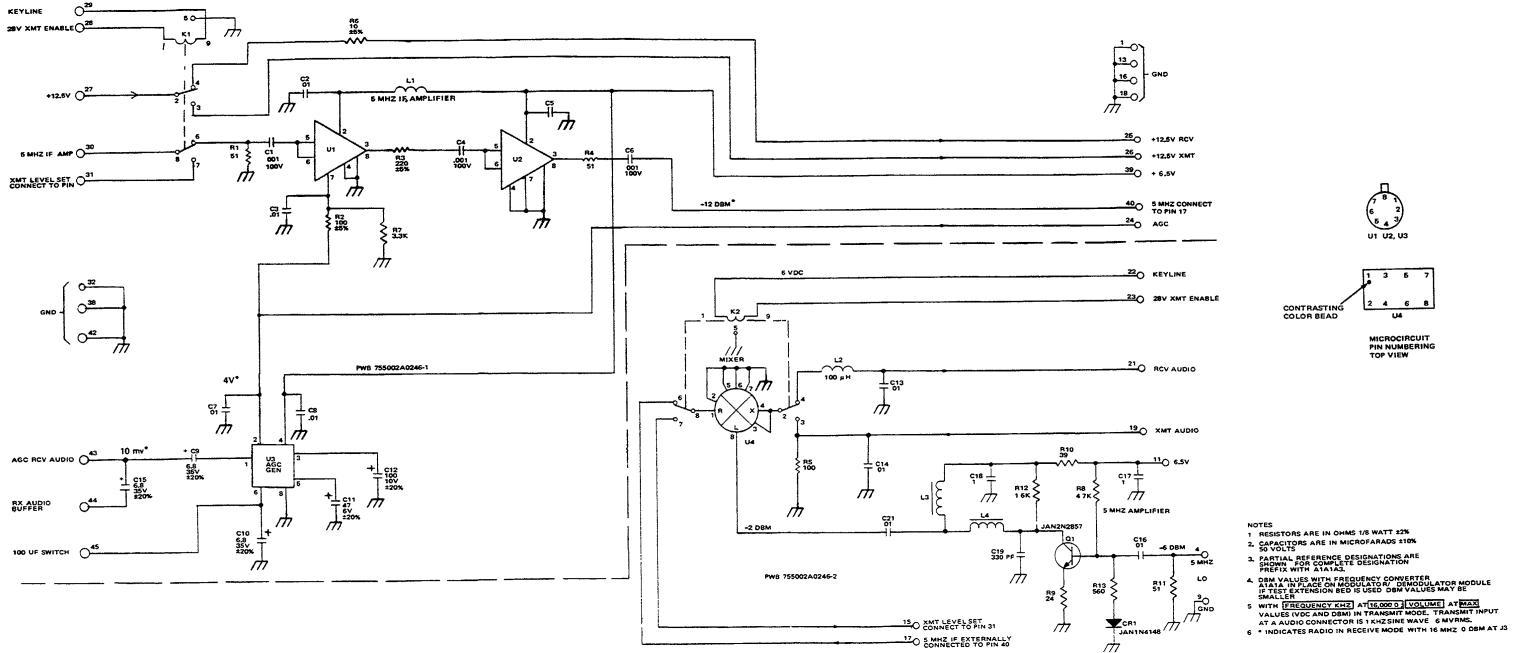
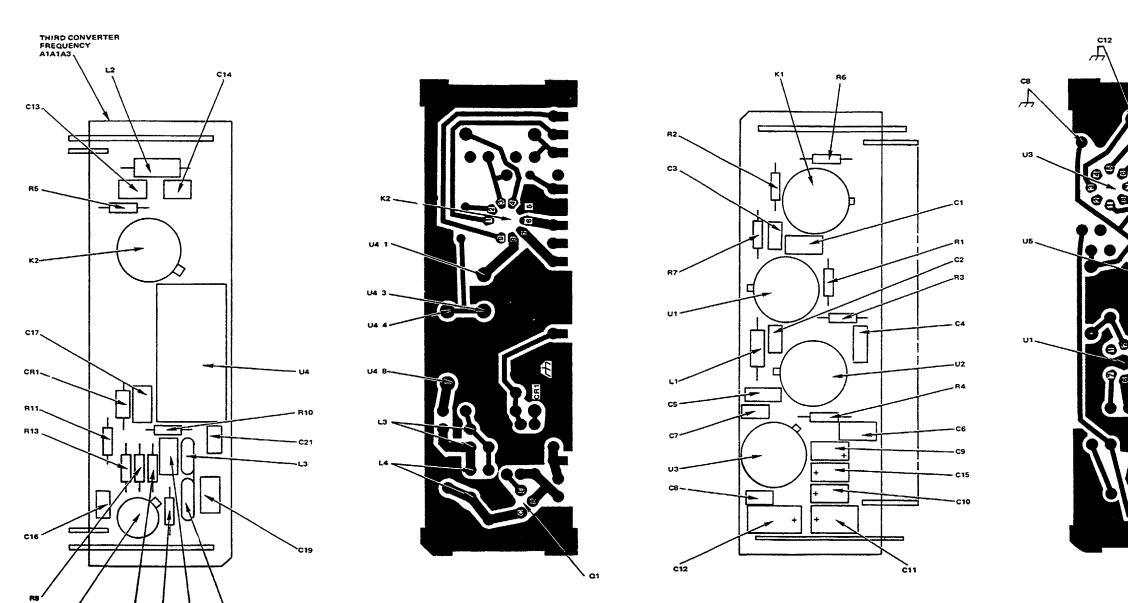
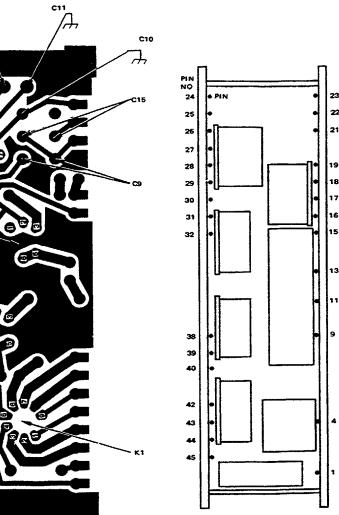



Figure 3-12. Third Frequency Converter A1A1A3 Schematic

A-1

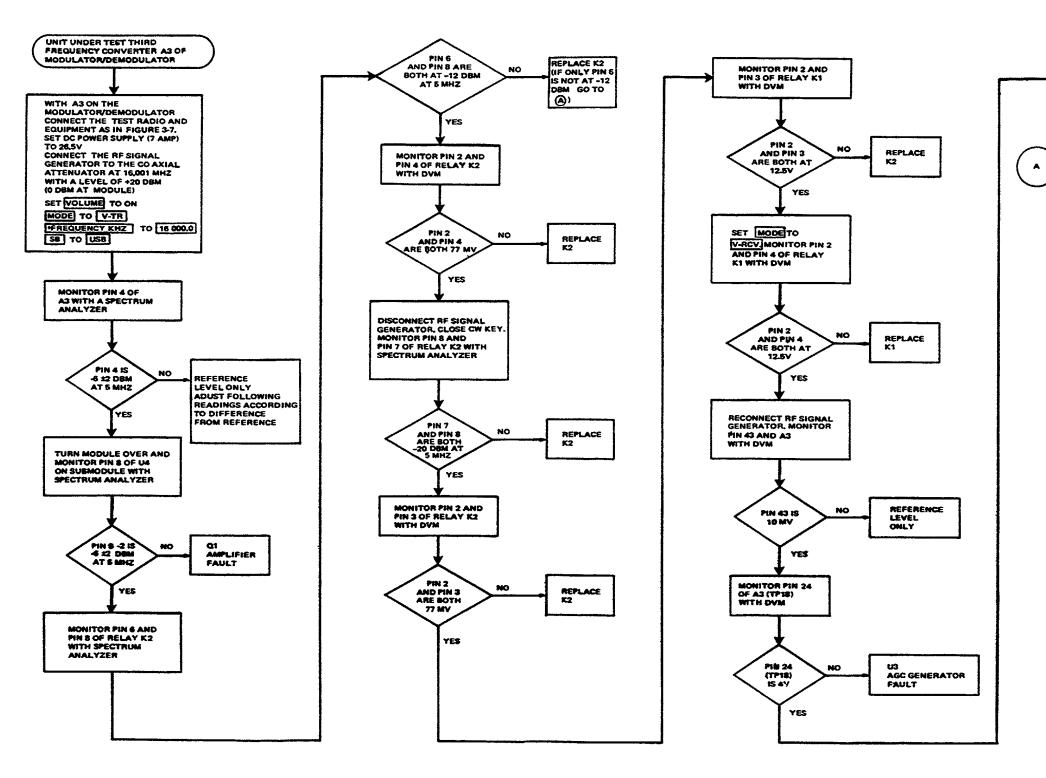

R12

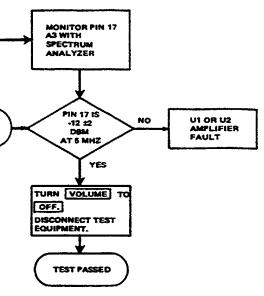
C18

A-2 POINTS OF TEST

8-1

36

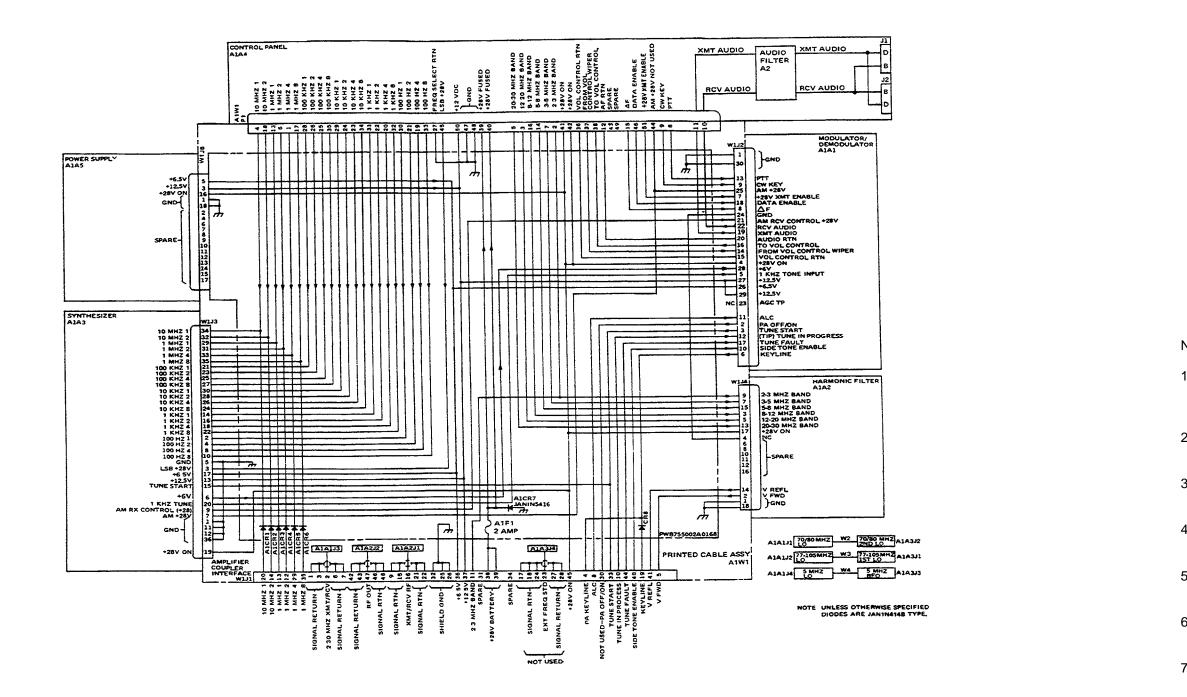


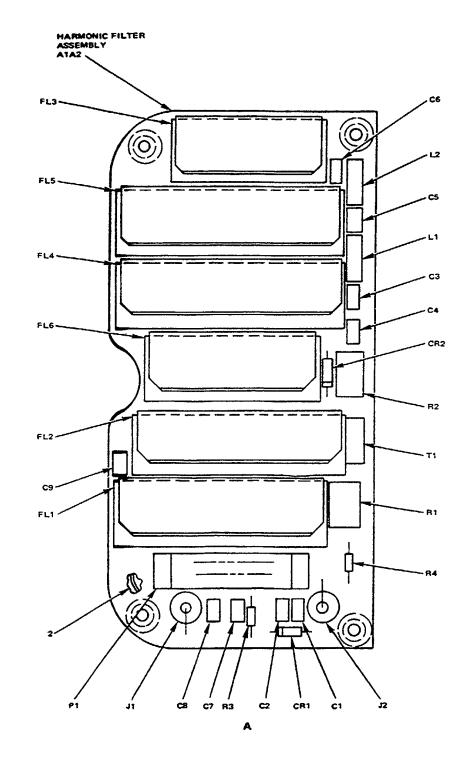

B-2 POINTS OF TEST

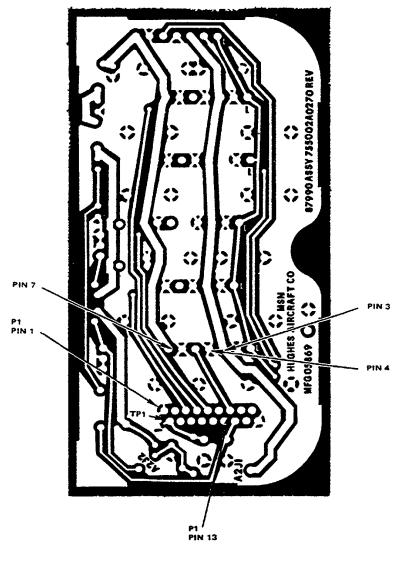
ITEM	Description	ITEM	DESCRIPTION
	<u>A-1</u>		<u>B-1</u>
A1A1A3 L2 C14 U4 R10 C21 L3 C19 L4 C18 R12 R9 Q1 R8 C16 R13 R11 CR1 CR1 C17 K2 R5 C13	3 Third Frequency Converter (755002A0343) Coil, RF Capacitor Mixer, RF Resistor Capacitor Inductor Capacitor Inductor Capacitor Resistor Resistor Resistor Transistor Resistor Capacitor Resistor Resistor Capacitor Resist	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ay, Electromagnetic sistor pacitor sistor pacitor sistor pacitor sistor pacitor

Figure 3-13. Third Frequency Converter A1A1A3 Component Location (Sheet 2 of 2)

37



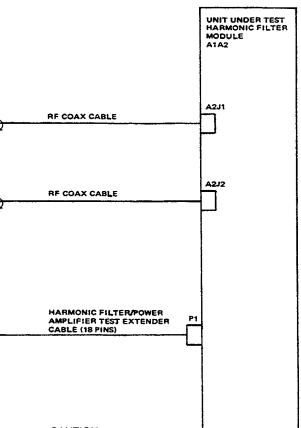

Figure 4-1. Harmonic Filter A1A2 Schematic.


NOTES: UNLESS OTHERWISE SPECIFIED

- 1. PARTIAL REF DESIGNATIONS ARE SHOWN FOR COMPLETE DESIGNATION PREFIX WITH A1A2
- 2. CAPACITANCE VALUES ARE IN PICOFARADS +5%, 500V
- 3. INDUCTOR RESONANT FREQ. ARE IN MEGAHERTZ (MHz).
- 4 ALL RELAYS EXCEPT FOR FL1-K ARE SHOWN DE-ENERGIZED.
- 5. INDICATES DEPENDENCY ON BENCH POWER SUPPLY VOLTAGE
- 6. VOLTAGES IN TRANSMIT MOOD WITH 50 OHM RADIO SET LOAD, RF OUTPUT 20W
- 7 FOR SIGNAL INPUT/OUTPUT ROUTING REFER TO FIGURE 2-1

ITEM DESCRIPTION

A1A2	Harmonic Filter Assembly
C6	Capacitor
L2	Inductor
C5	Capacitor
L1	Inductor
C3	Capacitor
C3 C4	Capacitor
CR2	Diode
R2	Resistor, Variable
T1	Inductor
R1	
R4	Resistor, Variable Resistor
J2	Connector, Coaxial, RF
J2 C1	
CR1	Capacitor Diode
CRI C2	Capacitor
R3	Resistor
C7	
C7 C8	Capacitor
U0 J1	Capacitor
P1	Connector, Coaxial, RF
P1	Connector, Receptacle, Electric
2	
2 FL1	Strap, Handle
	Filter, Submodule
C9	Capacitor
FL2	Filter, Submodule
FL6	Filter, Submodule
FL4	Filter, Submodule
FL5	Filter, Submodule
FL3	Filter, Submodule



NOTE - 3 DENOTES THAT POINT 3 ETC.

Description	Part Number	Reference			
Harmonic Filter/Power Amplifier	•••	Figure 3-10D			
Test Extender Cable					
RF Coax Cable (2 each)	•••	Figure 3-11A	SPECTRUM	_	TRACKING
Audio Input/Keying Adapter	•••	Figure 3-110	ANALYZER		GENERATO (PART OF SPECTRUM ANALYZEF
Kit, Tool, Electronic	TK-100/G	None			
Bench Repair Center	Pace PRC-350C	None	[]		TEST BED RA
Maintenance Kit, Printed Circuit	MEL-984/A	None	AUDIO/INPUT KEYING ADAPTER		
NOTE Defense of finance i d	M 11 5920 010 40*1				LAUDIO INPU
NOTE: Referenced figures are in 1	11-5620-919-40 1.		L		
NOTE: Referenced figures are in 1	TEST EQUIPMENT		COAXIAL	٦	
NOTE: Referenced figures are in 1		Quantity	COAXIAL ATTENUATOR (30W MIN, 20 DB)]	
	TEST EQUIPMENT	Quantity 1	ATTENUATOR (30W MIN,]	
Name	TEST EQUIPMENT Designation	Quantity 1 1	ATTENUATOR (30W MIN,]	BATTERY
Name Radio Set, Test Bed Digital Voltmeter	TEST EQUIPMENT Designation AN/PRC-104	Quantity 1 1 1	ATTENUATOR (30W MIN, 20 DB) DIGITAL MULTIMETER (DVM OHMMETER]	BNC
Name Radio Set, Test Bed Digital Voltmeter (DVM, ohmmeter function)	TEST EQUIPMENT Designation AN/PRC-104 AN/USM-341	Quantity 1 1 1 1 1	ATTENUATOR (30W MIN, 20 DB) DIGITAL MULTIMETER (DVM]	
Name Radio Set, Test Bed Digital Voltmeter (DVM, ohmmeter function) Spectrum Analyzer - High Resolution	TEST EQUIPMENT Designation AN/PRC-104 AN/USM-341 Hewlett Packard HP-141-T	Quantity 1 1 1 1 1 1 1	ATTENUATOR (30W MIN, 20 DB) DIGITAL MULTIMETER (DVM OHMMETER]	
Name Radio Set, Test Bed Digital Voltmeter (DVM, ohmmeter function) Spectrum Analyzer - High Resolution IF Section	TEST EQUIPMENT Designation AN/PRC-104 AN/USM-341 Hewlett Packard HP-141-T Hewlett Packard HP-8552B	Quantity 1 1 1 1 1 1 1 1 1	ATTENUATOR (30W MIN, 20 DB) DIGITAL MULTIMETER (DVM OHMMETER]	BENCH TEST CABLE
Name Radio Set, Test Bed Digital Voltmeter (DVM, ohmmeter function) Spectrum Analyzer - High Resolution IF Section - RF Section	TEST EQUIPMENT Designation AN/PRC-104 AN/USM-341 Hewlett Packard HP-141-T Hewlett Packard HP-8552B Hewlett Packard-8553B	Quantity 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATTENUATOR (30W MIN, 20 DB) DIGITAL MULTIMETER (DVM OHMMETER]	BENCH TEST CABLE

Figure 4-3. Harmonic Filter A1A2 Module Performance Test Setup.

<u>CAUTION</u> TO AVOID DAMAGE TO THE BENCH TEST CABLE RADIO PROTECTION CIRCUITS APPLY POWER AS FOLLOWS:

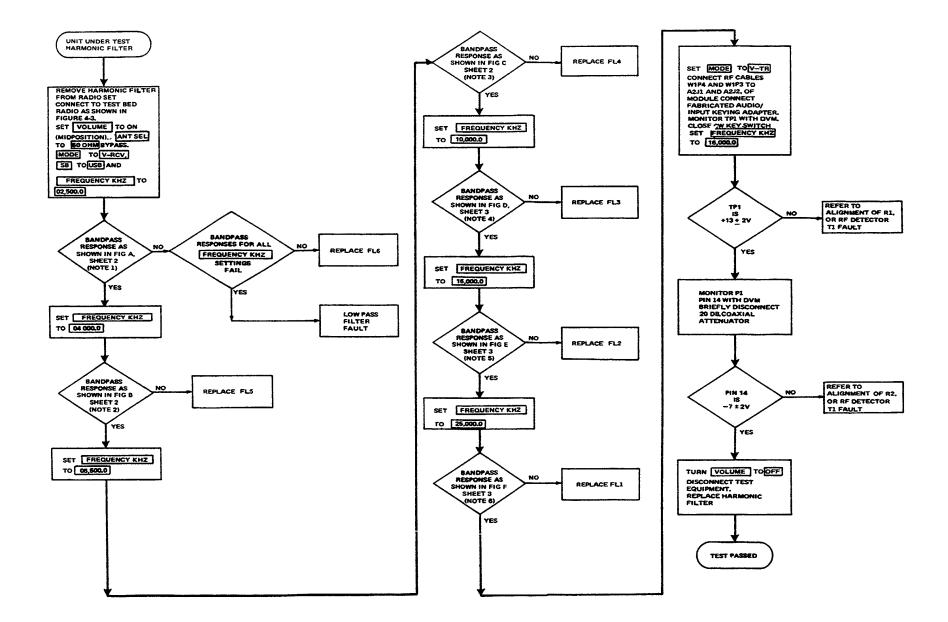
1. CONNECT BENCH TEST CABLE TO RADIO

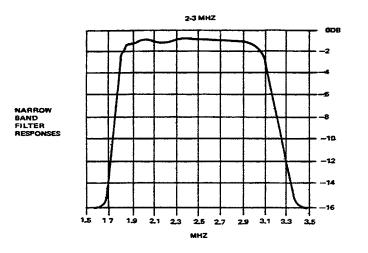
2. TURN ON POWER SUPPLY AND CHECK OUTPUT LEVEL

3 THEN CONNECT BENCH TEST CABLE TO Power SUPPLY

NOTES

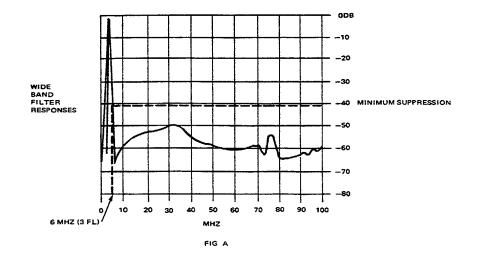
- 1. EQUIVALENT TEST EQUIPMENT MAY BE USED
- 2. USE ONLY TEST EQUIPMENT THAT IS PROPERLY CALIBRATED FAILURE TO DO SO MAY PROVIDE ERRONEOUS OR MISLEADING PERFORMANCE OR FAULT INDICATIONS
- 3 BEFORE USING SPECTRUM ANALYZER RF SECTION HP-85538 PERFORM PRELIMINARY CHECKS CONTAINED IN THE HP-H553B OPERATING MANUAL

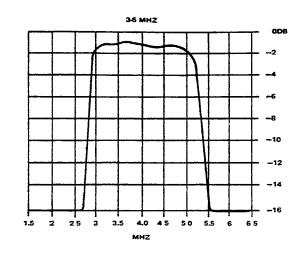

HARMONIC FILTER PERFORMANCE TEST


NOTE 1: The narrowband criterion is a maximum of 1.8 db insertion loss in the passband. A shorting bar, connected between the two fabricated rf cables, should be used to achieve a 0-db reference. The wideband criterion is -40 db suppression beyond 3 times the lower band frequency of the selected filter. To obtain narrow and Sideband spectral outputs as in the figures, set the controls on the spectrum analyzer as follows:

<u>Controls:</u>	Narrow	Wide
Scan Trigger - AUTO Scan Mode - INT. Video Filter - 10 kHz Log/CM Linear Sensitivity - 1 Log Reference - 0 Scan Time Range Input Attenuation Bandwidth Center Frequency	AUTO INT. OFF 2 db Log -1 0 5 ms 0-11 MHz 50 db 100 kHz 2.5 MHz	AUTO INT. 10 kHz 10 db Log -6 10 20 ms 0-110 MHz 20 db 300 KHz 50 MHz
Scan width	0.2 MHz (Per Division)	.05 KHz (0-100 MHz) (Inner Red)
Tracking Generator		
Function RF Level	Track Analyzer O dbm	Same Same

Each filter can legitimately be checked by attaching the RF signal generator to A2J1 and the power meter to A2J2; the of signal generator is set to upper, middle, and lower points on the passband, and the insertion loss (1.8 db maximum) is read on the power meter. A zero reference is established by connecting the rf signal generator to poser meter.


- NOTE 2: Scan width is 0.5 MHz, center frequency is 4,000 KHz
- NOTE 3: Scan width is 0.5 MHz, center frequency is 6,500 KHz
- NOTE 4: Scan width is 1 MHz, center frequency is 10,000 KHz, range 0-110
- NOTE 5: Scan width is 2 MHz, center frequency is 16,000 KHz, scan time 10 ms
- NOTE 6: Scan width is 5 MHz, center frequency is 25,000 KHz, scan time 20 ms
- NOTE 7: Unless otherwise specified, all voltage measurements taken with respect to chassis ground.



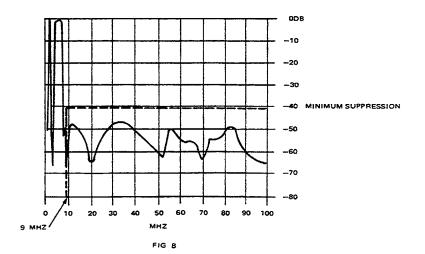
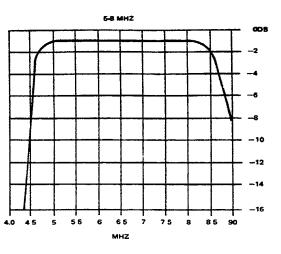
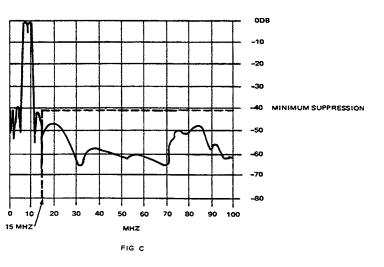
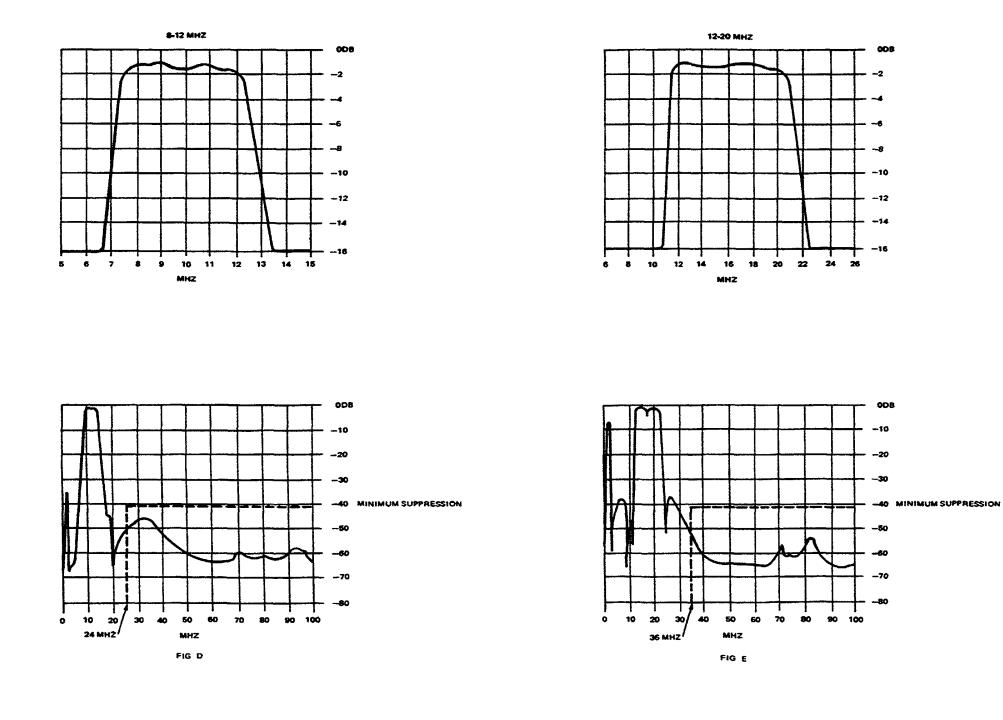





Figure 4-4. Harmonic Filter A1A2 Performance Test (Sheet 2 of 3)

-

-1

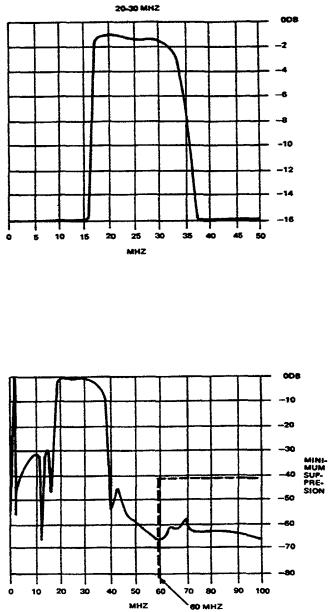


FIG F

Description Part Number Reference					TEST BED RAD	010		
Harmonic Filter/Power Amplifier Test Extender Cable	•••	Figure 3-10D of-40-1	[]				MONIC FILTER/POWER	_
RF Coax Cable (2 each)	•••	Figure 3-11A of -40-1	HANDSET	C			LIFIER TEST EXTENDER LE (18 PINS)	–(
RF Coax Cable (1 each)		Figure 3-11B of -40-1				RFC	OAX CABLE	

	TEST EQUIPMENT		
Name Designation Quantity			
Radio Set, Test Bed	AN/PRC-104	1	
VTVM	AN/USM-116	1	
Signal Generator, RF	AN/USM-323	1	
Digital Multimeter (DVK, ohmmeter function)	AN/USM-341	1	
Dummy Load (50 ohm)	DA-553()/4	1	
Watt Meter			
- Power Meter	Hewlett Packard HP-435A	1	
- Thermocouple Power Sensor	Hewlett Packard HP-8482A	1	
Power Supply, DC	Hewlett Packard HP-6439B	1	
Power Supply, Current Limited	Hewlett Packard HP-6215A	1	
Attenuator, Coaxial (20 db, 30w min., 50 ohm)	Narda 765-20	1	
Attenuator, Step	CN1128/U		

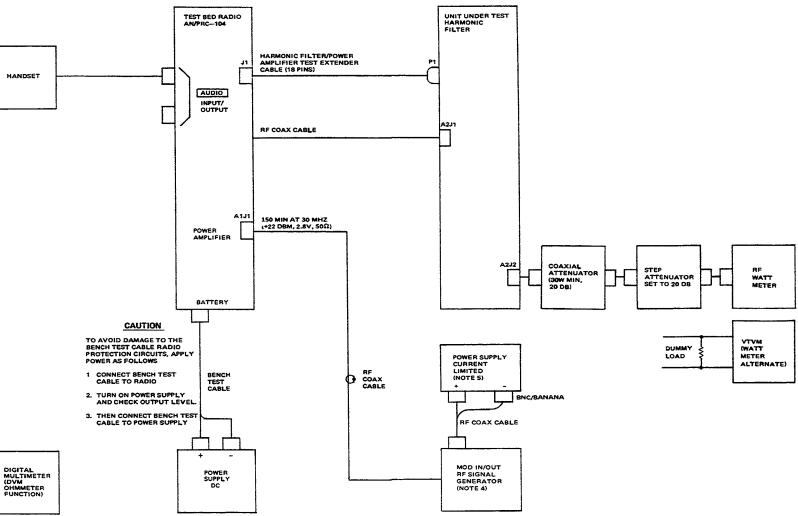


Figure 4-5. Harmonic Filter A1A2 Alignment Setup.

NOTES:

- 1. EQUIVALENT TEST EQUIPMENT MAY BE USED
- 2. USE ONLY TEST EQUIPMENT THAT IS PROPERLY CALIBRATED FAILURE TO DO SO MAY PROVIDE ERRONEOUS OR MISLEADING PERFORMANCE OR FAULT INDICATIONS
- 3. IF ADEQUATE WATTMETER IS NOT AVAILABLE SUBSTITUTE VTVM TERMINATED WITH DUMMY LOAD P = E2/R WHERE R = 50 OHMS
- 4. SET MODULATION MODE SWITCH TO AM, EXT, DC, AND TURN LEVEL SWITCH TO COW POSITION PRIOR TO CONNECTING D C CABLE TO MOD IN/OUT CONNECTOR
- 5. SET OUTPUT VOLTAGE TO +2 VOLTS D.C. CAUTION DO NOT EXCEED +5VDC SET CURRENT REGULATION TO MINIMUM REQUIRED TO PERFORM ALIGNMENT

HARMONIC FILTER A1A2 ALIGNMENT

The alignment procedure is to be used in either of these d situations: (1) the performance test calls a potentiometer out of adjustments or (2) the following is replaced: RF Detector T1, CRT, CR2, C1, C2, C3, and C4. The procedure consists of a preliminary setup and an adjustment procedure.

Preliminary Setup

1. Remove the harmonic filter from the receiver/exciter.

2. Remove the cover from the power amplifier module of the test bed radio set. Disconnect the rf radio coax A1J1 at the module and plug in the fabricated rf coax cable in its place.

3. Connect the test radio, module, cables and test equipment as shown in figure 4-5. Comply with notes 1-5 on. figure 4-5.

4. Select the rf signal generator frequency of 29.9999 MHz and an initial level output of 0 dbm at radio. Set dc power supply (7 amp) to +26.5v.

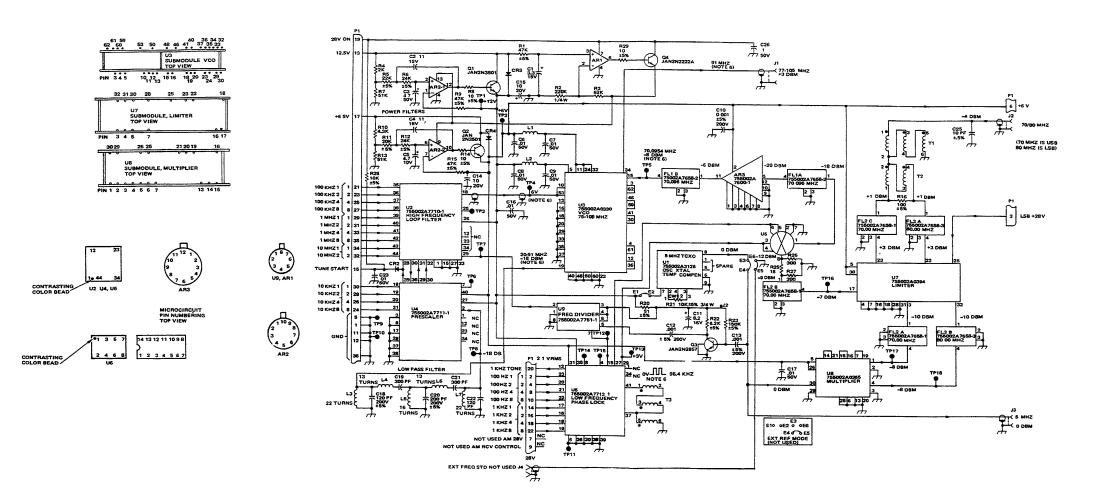
5. See the test ratio controls on the control panel and amplifier/coupler as follows:

- a. FREQUENCY KHZ to 29,999.9
- b. Mode to V-TR
- c. ANT SEL to 50 OEM (bypass)
- d. VOLUME to ON

ADJUSTMENT

1. Monitor VFWD, TP1, of the module using the test DVM and a sharp probe.

2. Close the PTT switch on the handset and adjust the rf signal generator output to +19 dbm, turn the modulation level control to obtain 20 watts output (2 milliwatts indicated on the wattmeter from the harmonic filter module.

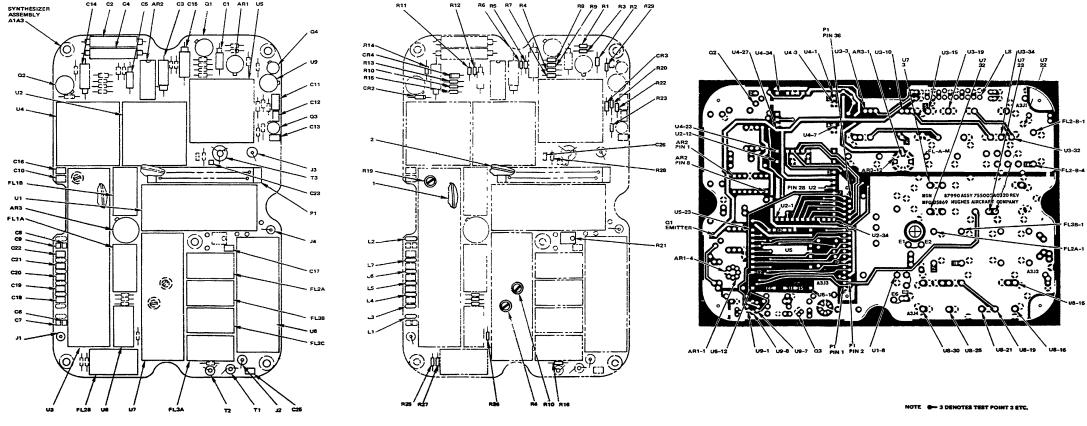

3. Adjust R1 to obtain +14.5 \pm 0.1 vdc at TP1 of the module with 20 watts module output

4. Change the DVM monitor point from TP1 to A1A2P1 pin 14, VREFL (reflected voltage).

5. Adjust R2 to obtain the minimum voltage at pin 14. It should be between zero and -3.0 vdc

6. Open the handset PTT switch.

7. Disconnect the +26.5 vdc input to the radio and remove the cables connected to the module.



- NOTES: UNLESS OTHERWISE SPECIFIED 1. CAPACITANCE VALUES ARE IN MICROFARADS 10% I 00 V
 - 2. RESISTANCE VALUES ARE IN OHMS 1/IIW
 - 3. ALL DIODES ARE JAN1 N4148

 - ALL DIODES ARE SANTING 148
 FOR SIGNAL INPUT/OUTPUT ROUTING REFER TO FIGURE 2-1
 PARTIAL REF DESIGNATION ARE SHOWN FOR COMPLETE DESIGNATION PREFIX WITH A1A3
 VALUES SHOWN WITH FREQUENCY KHZ SET TO 16005 4 (TEST POINT ACCEPTABLE RANGE 15+31VT087V)

Figure 5-1. Synthesizer A1A3 Schematic

47

8

.

Figure 5-2. Synthesizer A1A3 Component Location (Sheet 1 of 2)

ITEM	DESCRIPTION	ITEM DE	ESCRIPTION
A 1 A 2	A Sumthasizer Assembly		Filter Bondhooo
A1A3	Synthesizer Assembly	FL1B	Filter, Bandpass
C14	Capacitor	C10	Capacitor
C2	Capacitor	C16	Capacitor
C4	Capacitor	U4	Microcircuit
C5	Capacitor	U2	Microcircuit
AR2	Microcircuit	Q2	Transistor
C3	Capacitor	D 44	Destates
C15	Capacitor	R11	Resistor
Q1	Transistor	R12	Resistor
C1	Capacitor	R6	Resistor
AR1	Microcircuit	R5	Resistor
U5	Microcircuit	R7	Resistor
Q4	Transistor	R4	Resistor
U9	Microcircuit	R8	Resistor
C11	Capacitor	R9	Resistor
C12	Capacitor	R1	Resistor
Q3	Transistor	R3	Resistor
C13	Capacitor	R2	Resistor
J3	Connector, Coaxial RF	R29	Resistor
Т3	Transformer, RF	CR3	Diode
C23	Capacitor	R20	Resistor
P1	Connector, Receptacle	R22	Resistor
J4	Connector, Coaxial RF	R23	Resistor
C17	Capacitor	C26	Capacitor
FL2A	Filter, Bandpass	R28	Resistor
FL3B	Filter, Bandpass	R21	Resistor, Variable
U8	Frequency Multiplier	R16	Resistor
	Assembly	U7R10	Resistor, Variable
FL2C	Filter, Bandpass	U7R4	Resistor, Variable
C25	Capacitor	R26	Resistor
J2	Connector, Coaxial RF	R27	Resistor
T1	Transformer RF	R25	Resistor
T2	Transformer RF	L1	Inductor
FL3A	Filter, Bandpass	L3	Inductor
U7	Limiter, Amplitude	L4	Inductor
U6	Mixer, Radio	L5	Inductor
FL2B	Filter, 8andpass	L6	Inductor
U3	Oscillator, Volume,	L7	Inductor
	Control	L2	Inductor
J1	Connector, Coaxial RF	1	Cable Assembly, RF
C7	Capacitor	U3R19	Resistor, Variable
C6	Capacitor	2	Strap, Handle
C18	Capacitor	CR2	Diode
C19	Capacitor	R15	Resistor
C20	Capacitor	R10	Resistor
C21	Capacitor	R13	Resistor
C22	Capacitor	CR4	Diode
C9	Capacitor	R14	Resistor
C8	Capacitor		
FL1A	Filter, Bandpass		
AR3	Amplifier, RF		
U1	Oscillator, Crystal,		
	Temp		

Temp.

B

SPECIAL TOOLS, MATERIALS, AND FABRICATED TEST CABLES AND FIXTURES	S
---	---

Description	Part Number	Reference
RF Coax Cable (2 each]		Figure 3-11A
RF Extender Cable (4 each)		Figure 3-11E
Synthesizer Teat Extender Cable		Figure 3-100
KIT Tool, Electronic	Tg-100/G	None
Bench Repair Center	Pace PRC-350C	None
Maintenance Kit, Printed Circuit	MR-984/A	None
NOTE: Referenced figures are in TM	11-5820-919-40-1,	
TES	T EQUIPMENT	
Name	Designation	Quantity
Radio Set, Test Bed	AN/PRC-104	1
Frequency Counter	AN/CP-843P/D	1
VTVM	AN/USM-116	1
Oscilloscope, Storage	Hewlett Packard HP-1741A	1
Digital Multimeter	AN/USM-341	1
(DVM, ohmmeter function)		
Dummy Load (50 ohm)	DA-553()/4	1
Watt Meter		
- Power Meter	Hewlett Packard HP-435A	1
- Thermocouple Power Sensor	Bewlett Packard BP-8482A	1
Spectrum Analyzer	Bewlett Packard BP-141-T	1
- High Resolution IF Section	Bewlett Packard BP-8552B	1
- RF Section	Hewlett Packard BP-8558B	1
- Tracking Generator	Hewlett Packard HP-8443A	1
- High Impedance Probe	Hewlett Packard BP-1121A	1
Power Supply, DC	Hewlett Packard HP-6439B	1

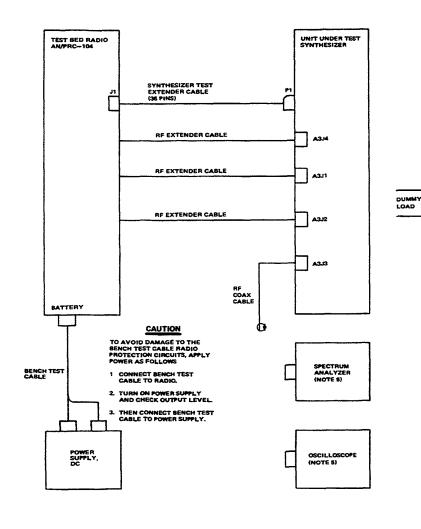
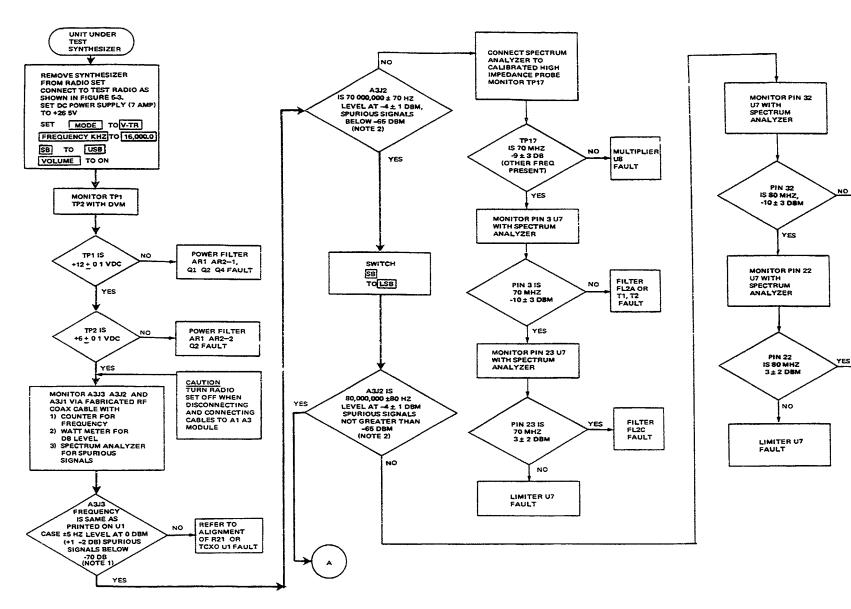


Figure 5-3. Synthesizer A1A3 Performance Test and Alignment Setup

50

TM 11-5820-919-40-2


	NOTES: 1 2 3 4 5	EQUIVALENT TEST EQUIPMENT MAY BE USED USE ONLY TEST EQUIPMENT THAT L PROPERLY CALIBRATED FAILURE TO DO SO MAY PROVIDE ERRONEOUS OR MISLEADING PERFORMANCE OR FAULT INDICATIONS. IF ADEQUATE WATTMETER IS NOT AVAILABLE SUBSTITUTE TERMINATED WITH DUMMY LOAD P=E ² /R WHERE R=50 OHMS. BEFORE USING SPECTRUM< ANALYZER OF SECTION HP-8553B PERFORM PRELIMINARY CHECKS CONTAINED IN THE HP-8553B OPERATING MANUAL. NOT USED IN ALIGNMENT
AY	VTVM (WATT Meter Alternat	E)
	AF WATT METER (NOTE 5)	
	FREQUENC	Y
	DIGITAL MULTIMETEI (DVM OHMMETER FUNCTION) (NOTE 5)	R

OHMMETER FUNCTION) (NOTE 5)

SYNTHESIZER PERFORMANCE TEST

NOTE 1: Spurious signal applies between 4.995 and 5.005 MHz. Set spectrum analyzer at:

Log Reference Level Linear Sensitivity	10 db 0
Bandwidth	1 kHz
Scan Width	10 kHz/div
Scan Time	2 sec/div.
Video Falter	10 Hz
Center Frequency	5 MHz
10 db Log	
Input Attenuation	30 db
Range	0-110 MHz
Storage	STD
Scan Mode	SINGLE
NOTE 2: Spurious signal applies between 40 and 90 MHz. S	Set spectrum analyzer at:
Log Reference Level	0
Linear Sensitivity	0
Bandwidth	300 kHz
Scan Width	10 MHz/div.
Scan Tome	10 ms/div.
Scan Tome Video Falter	10 ms/div. 10 kHz
Video Falter	
Video Falter 10 db Log	10 kHz 20 db 70 MHz, USB
Video Falter 10 db Log Input Attenuation	10 kHz 20 db

- NOTE 3: A3J1 output IS frequency kHz plus 75,000 kHz. Spurious applies between 60 and 110 MHz. If output power IS low, adjust R19 of VCO (U3). If unable to raise power, continue with troubleshooting flowchart.
- NOTE 4: Spurious signal applies between 60 and 110 MHz. TP5 frequency is 70,090,000 Hz + XY, where X is 1 kHz frequency kHz digit and Y is 100 Hz frequency Hz digit. Set spectrum analyzer as in Note 2, except that the center frequency is 91 MHz.
- NOTE 5: When 1 kHz digit of frequency kHz is 0, TP15 voltage is 3v. When this same digit is 9, TP15 is 9v.
- NOTE 6: Unless otherwise specified, all voltage measurements taken with respect to chassis ground.
- NOTE 7: If the phase locking action of the synthesizer is functioning correctly, TP4 voltage would be 6v. Since it IS not locking, U2 should be pruned at one end or the other of the 3 to 9v VCO tune voltage.
- NOTE 8: Low frequency adjust transformer T3 must be replaced and returned as specified on paragraph 5-9 whenever low frequency loop filter hybrid (U5) is replaced.

TM-07748A-45/3

Figure 5-4. Synthesizer A1A3 Performance Test (Sheet 1 of 2)

FILTER

FL38 FAULT

FILTER FL3A OR

T1, T2 FAULT

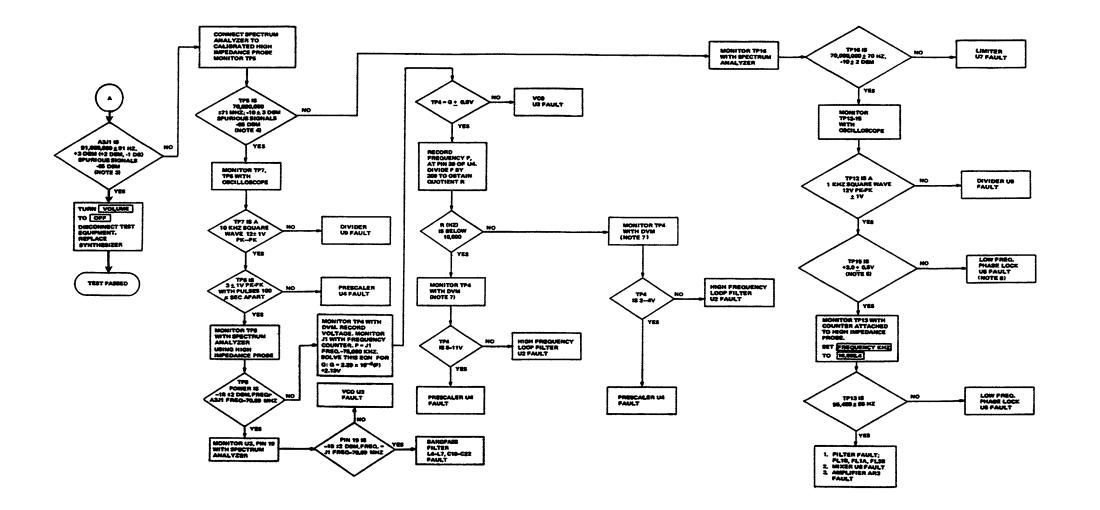


Figure 5-4. Synthesizer A1A3 Performance Test (Sheet 2 of 2)

SYNTHESIZER A1A3 ALIGNMENT

The alignment procedure is to be used whenever TCXO U1, VCO U3, or 1Imlter U7 is replaced or whenever the first LO, second LO, or TCXO output frequency or power is out of alignment. The procedure consists of preliminary setup and adjustment.

PRELIMINARY SETUP

1. Remove the synthesizer from the receiver /exciter and connect the module as in figure 5-2.

2. Set dc power supply (7 amp) to +26.5v.

3. Connect the tracking generator (used as a counter) to A3J3 via rf coax cable.

- 4. Set VOLUME switch on control panel to on.
- Set SB switch on control panel to USB. 5.
- 6. Set FREQUENCY KHZ switches on control panel to 29,990.0.

ADJUSTMENT

1. Monitor TP15 filth DVM. If required, remove turns from T3 winding 1-2 (red wire) until DVM reads +3.1 \pm 0.4v.

2. Adjust R21 so that A3J3 is at the frequency stenciled on TCXO U1 case ± 0.5 Hz.

3. Disconnect rf extender cable from A3J2. Disconnect rf coax cable. Connect the watt meter to A3J2 via rf coax cable. 4. Adjust R4 of limiter U7 until wattmeter reads -4.0 ±0.1 dbm.

- 5. Set SB switch on control panel to LSB.
- 6. Adjust R10 of limiter U7 until wattmeter reads -4.0 ±0.1 dbm.

7. Disconnect of extender cable from A3J1. Disconnect rf coax cable from A3J2 and connect to A3J1. Reconnect rf extender cable (step 3) to A3J2.

- 8. Adjust R19 of VCO U3 until wattmeter reads +3.0 ±0.1 dbm.
- Disconnect the test equipment. 9.

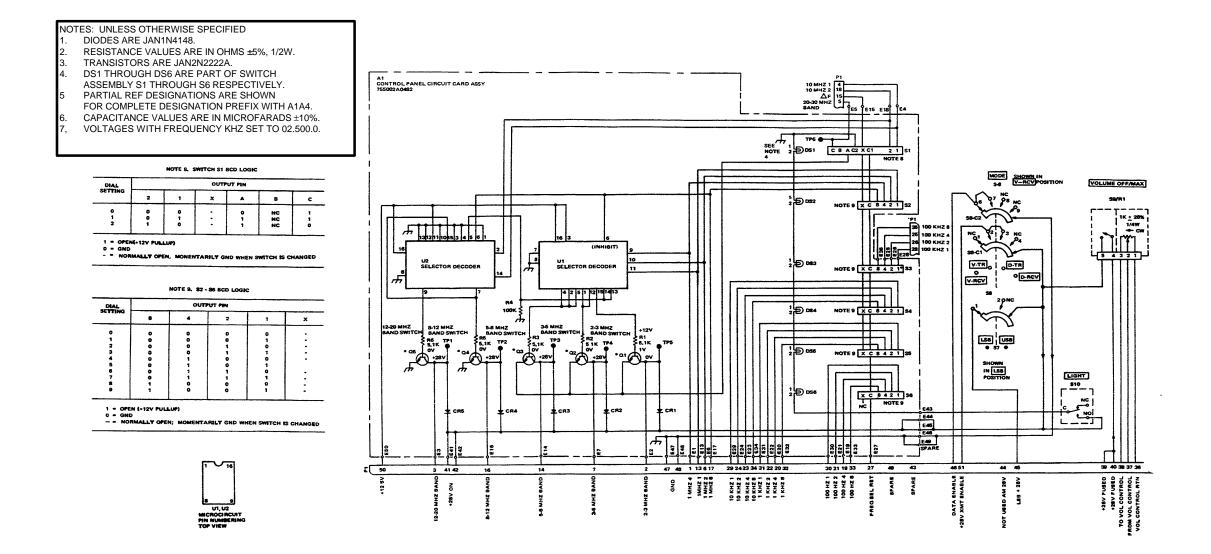


Figure 6-1. Control Panel A1A4 Schematic (Sheet 1 of 2)

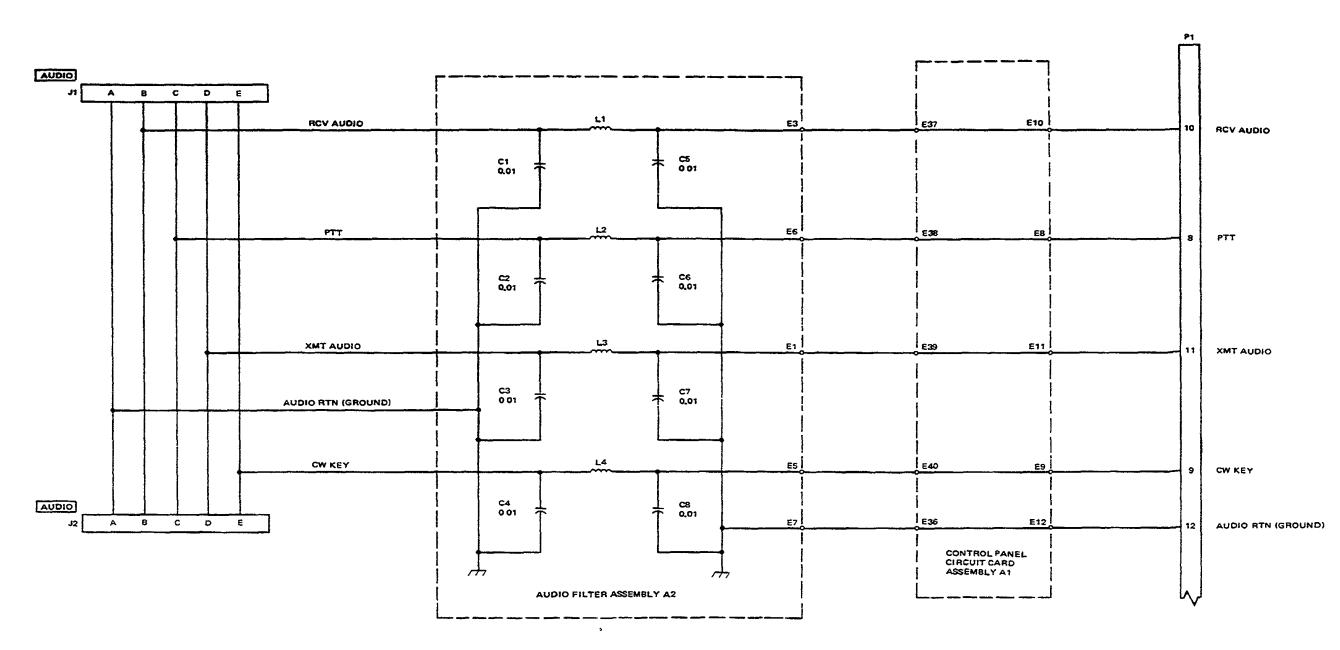


Figure 6-1. Control Panel A1A4 Schematic (Sheet 2 of 2)

- ITEM DESCRIPTION
- Panel 1.
- Connector Ring (2 places) 2.
- Deleted 3.
- 4. Nut
- Allen Screw (2 places) 5.
- SB Switch Knob 6.
- Retainer (threaded) 7.
- Allen Screw N 8.
- Light switch Knob 9.
- Mode Switch Knob 10.
- Allen Screw (2 places) 11.
- 12. Nut
- 13. Deleted
- Volume Knob 14.
- Allen Screw (2 places) 15.
- Screw, Captive (6 places) 16.
- 17. Nut
- Deleted 18.
- 19. Gasket
- 20. Gasket
- 21. Gasket
- 22. Gasket
- 23. Switch, Volume
- Switch, Mode 24.
- 25. Switch, Light
- 26. Switch, Rotary SB
- 27. 100 Hz
- 28. 1 KHz
- 10 KHz 29.
- 30. 100 KHz
- 1 MHz 31.
- 32.
- Switch, Rotary, 10 MHz Connector, Multipin A1A4J1 33.
- Allen Screw (12 places) 34.
- Circuit Board Assembly (Control Panel) A1A4A1 35.
- Audio Filter Assembly A1A4A2 36.
- Connectors A1A4A2J1 A1A4A2J2 37.
- 38. Connector Washer (2 places)
- 39. Gasket
- Lockwasher (12 places) 40.



Figure 6-2. Control Panel A1A4 Component Location (Sheet 1 of 2)

ITEM DESCRIPTION

<u>A2</u>

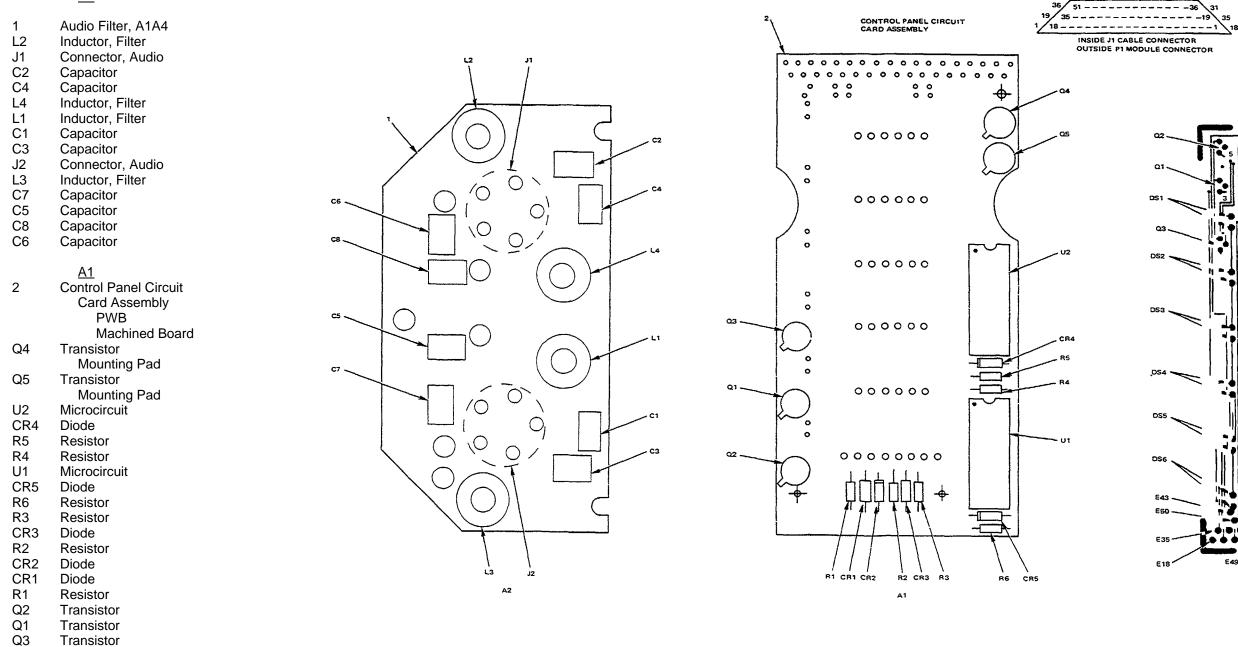
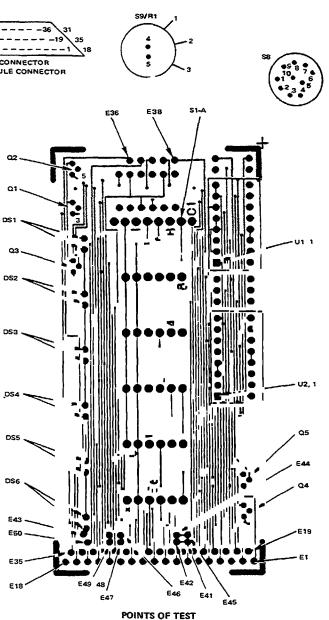
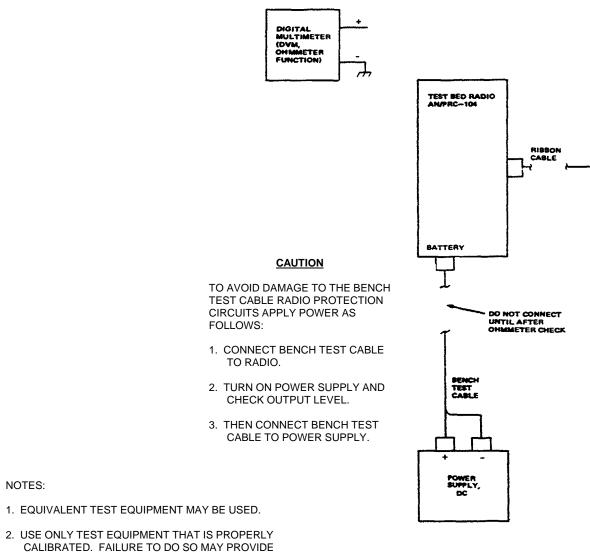



Figure 6-2. Control Panel A1A4 Component Location (Sheet 2 of 2)


NOTE - 3 DENOTES TEST POINT 3 ETC.

SPECIAL TOOLS, MATERIALS, AND FABRICATED TEST CABLES AND FIXTURES

Description	Part Number	Reference
Kit, Tool, Electronic	TK-100/G	None
Bench Repair Center	Pace PRC-350C	None
Maintenance Kit, Printed Circuit	MK-984/A	None

TEST EQUIPMENT

Name	Designation	Quantity	
Radio Set, Test Bed	AN/PRC-104	1	
Digital Multimeter (DVM, ohmmeter function)	AN/USM-341	1	
Power Supply, DC	Hewlett Packard HP-6439B	1	

ERRONEOUS OR MISLEADING PERFORMANCE OF FAULT INDICATIONS.

NOTES:

58

TM 11-5820-919-40-2

UNIT UNDER TEST CONTROL PANEL

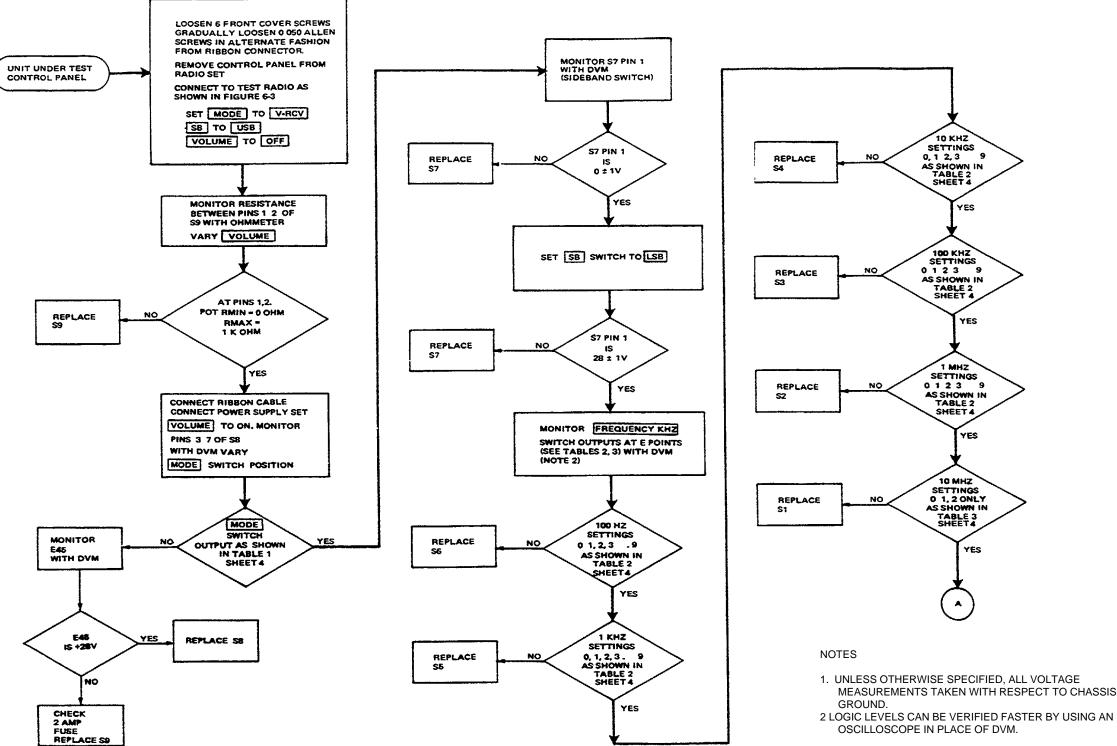
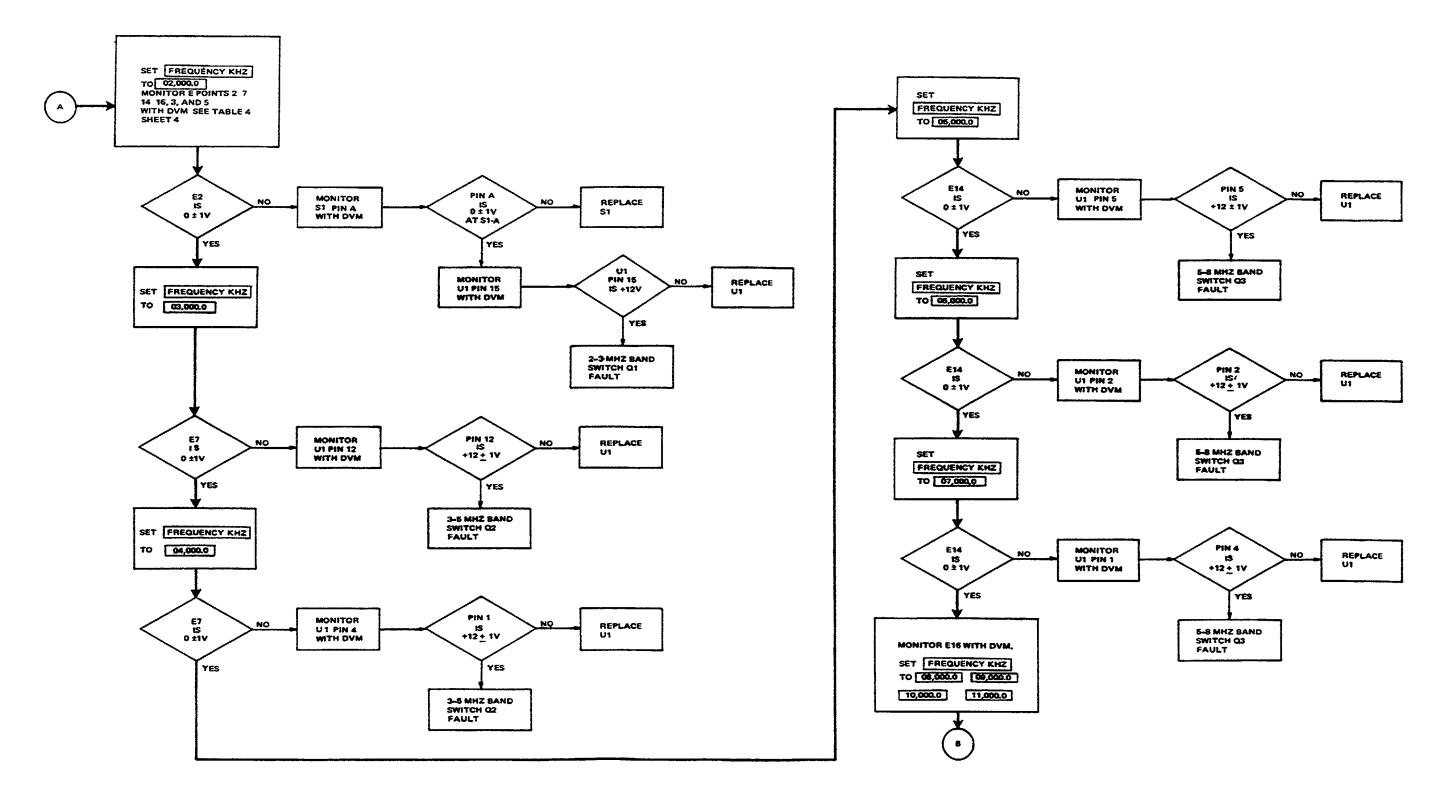



Figure 6-4. Control Panel A1A4 Performance Test (Sheet 1 of 4)

MEASUREMENTS TAKEN WITH RESPECT TO CHASSIS

Figure 6-4. Control Panel A1A4 Performance Test (Sheet 2 of 4)

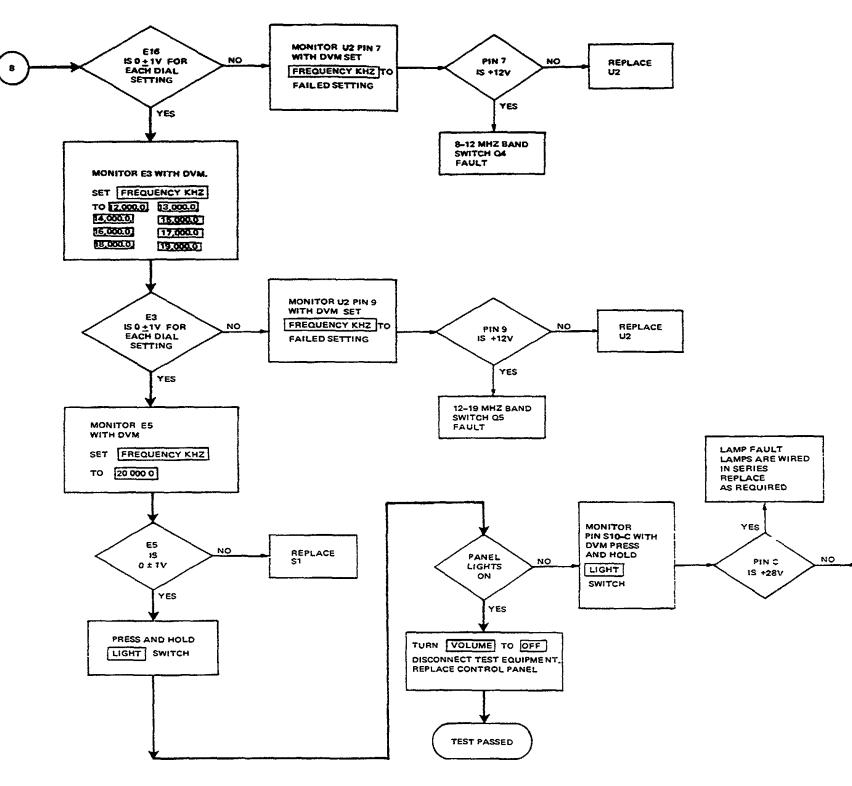


Figure 6-4. Control Panel A1A4 Performance Test (Sheet 3 of 4) 61

Figure 6-4. Control Panel A1A4 Performance Test (Sheet 4 of 4)

TABLE 1. MODE SWITCH OUTPUTS

20 MHz Switch Sl Dial Setting	E Points 4 18
0	0 0
1	+12 0
2	0 +12

Circuit	V – RCV	V - TR	D - TR	D - RCV
+28v XMT EN	0 ±1v	+27 ±1v	+27 ±1v	0 ±1v
DATA EN	0 ±1v	0 ±lv	+6.5v	+6 . 5v
	+28v XMT EN	+28v XMT EN 0 ±1v	+28v XMT EN $0 \pm 1v$ +27 $\pm 1v$	+28v XMT EN $0 \pm 1v$ +27 $\pm 1v$ +27 $\pm 1v$

TABLE 2. FREQUENCY SELECT LOGIC

		EP	oints		
100 Hz Switch (S6)	33	19	21	30	
1 KHz Switch (S5)	32	20	22	31	
10 KHz Switch (S4)	34	23	24	29	
100 KHz Switch (S3)	35	25	26	28	
1 MHz Switch (S2)	17	1	6	13	
Dial Setting		Volta	ages ±lv		
0	0	0	0	0	
1	0	0	0	+12	
2	0	0	+12	0	
3	0	0	+12	+12	
4	0	+12	0	0	
5	0	+12	0	+12	
6	0	+12	+12	0	
7	0	+12	+12	+12	
8	+12	0	0	0	
9	+12	0	0	+12	

									HA	RMO	DNIC	C FI	(LTI	ER H	BANI) SV	IIT	CH I	.0G]	C ()UTI	PUT					
F	'req. in MHz	2	3	4	56	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
PIN	CKT			Τ																							r
2	2-3 MHz Band	x																									
7	3-5 MHz Band		x	x																							
14	5-8 MHz Band				x x	x																					
16	8-12 MHz Band						x	x	X	X																	
3	12-20 MHz Band										x	X	X	x	X	x	x	X									
5	20-30 MHz Band																		X	X	X	X	x	X	X	x	x

62

TABLE 3. 10 MHZ FREQUENCY SELECT LOGIC

TABLE 4. BAND SWITCH DECODER OUTPUT

$$X = Ground$$
, $\Box = +28 \pm 1v$

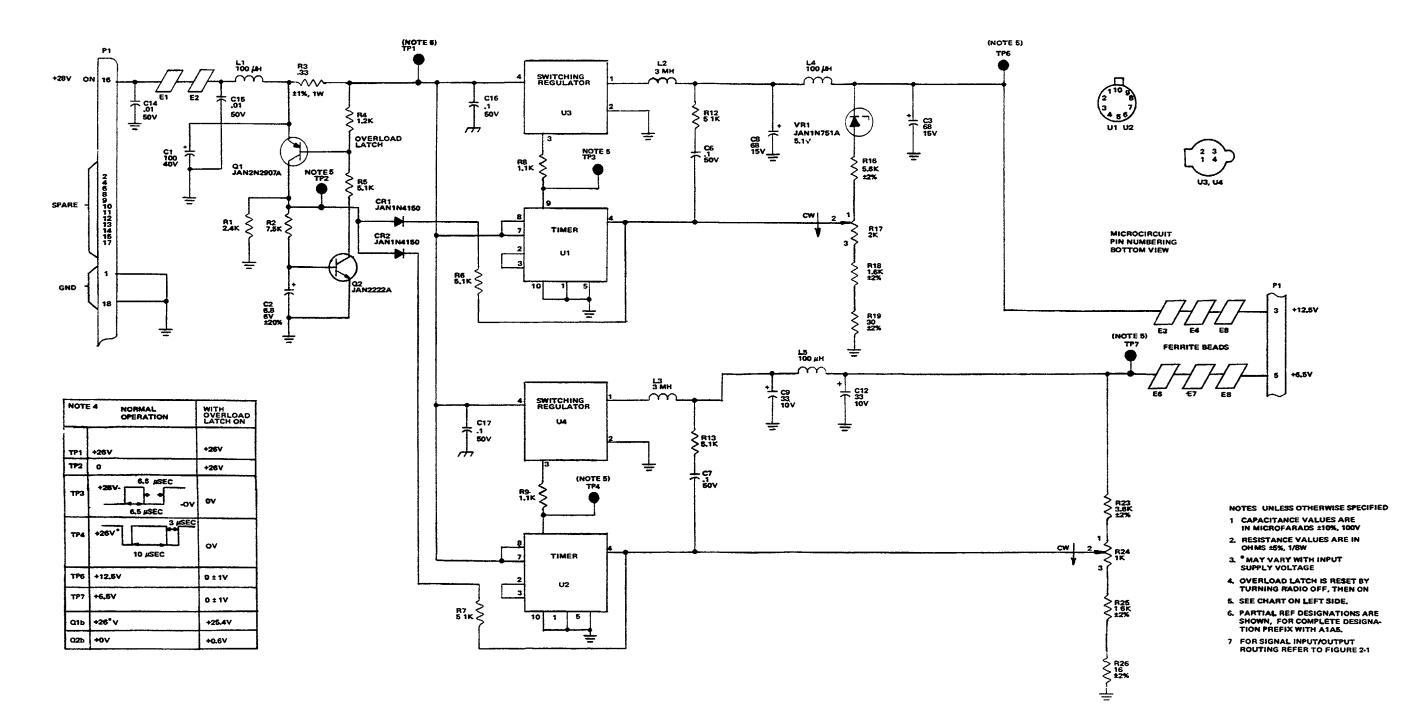
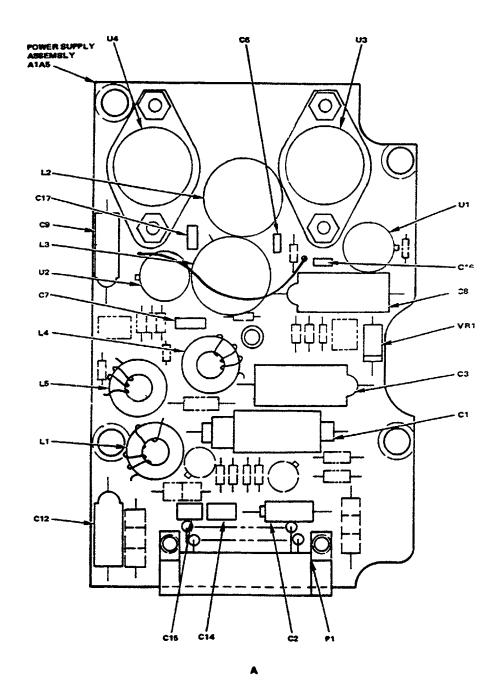



Figure 7-1. Power Supply A1A5 Schematic

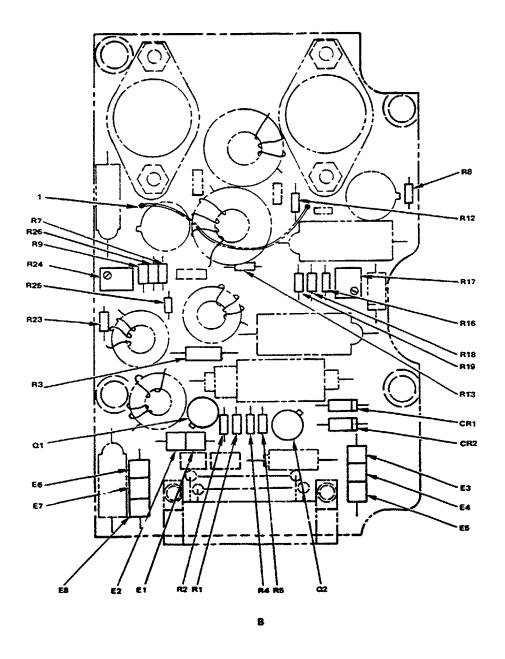
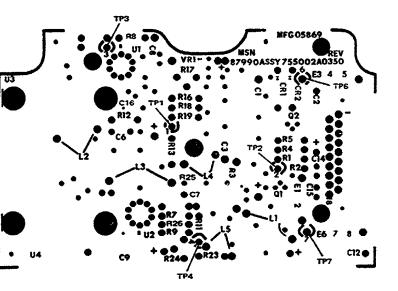



Figure 7-2. Power Supply A1A5 Component Location (Sheet 1 of 2)

64

COMPONENT SIDE (TOP) VIEW NOTE (0) 3 DENOTES TEST POINT 3 ETC

NOTE OTHER POWER SUPPLY CONFIGURATIONS MAY EXIST

ITEM	DESCRIPTION	ITEM	DESCRIPTION
	<u>A</u>	E1	Core, EM
		E2	Core, EM
A1A5	Power Supply Assembly	E8	Core, EM
U4	Microcircuit	E7	Core, EM
C6	Capacitor	E6	Core, EM
U3	Microcircuit	Q1	Transistor
U1	Microcircuit	R3	Resistor
C16	Capacitor	R23	Resistor
C8	Capacitor	R25	Resistor
VR1	Diode	R24	Resistor, Variable
C3	Capacitor	R9	Resistor
C1	Capacitor	R26	Resistor
P1	Connector, PCB	R7	Resistor
C2	Capacitor	1	Strap, Handle
C14	Capacitor		
C15	Capacitor		DISASSEM
C12	Capacitor		
L1	Inductor	Apply mod	derate heat to the five hex
L5	Inductor	loosen loo	tite prior to loosening scre
L4	Inductor		
C7	Capacitor		
U2	Microcircuit		
L3	Inductor		
C9	Capacitor		
C17	Capacitor		
L2	Inductor		

<u>B</u>

R8	Resistor
R12	Resistor
R17	Resistor, Variable
R16	Resistor
R18	Resistor
R19	Resistor
R13	Resistor
CR1	Diode
CR2	Diode
E3	Core, EM
E4	Core, EM
E5	Core, EM
Q2	Transistor Mounting Pad
R5	Resistor
R4	Resistor
R1	Resistor
R2	Resistor

MBLY NOTE

ex alien-head cover plate screws to crews.

Figure 7-2. Power Supply A1A5 Component Location (Sheet 2 of 2)

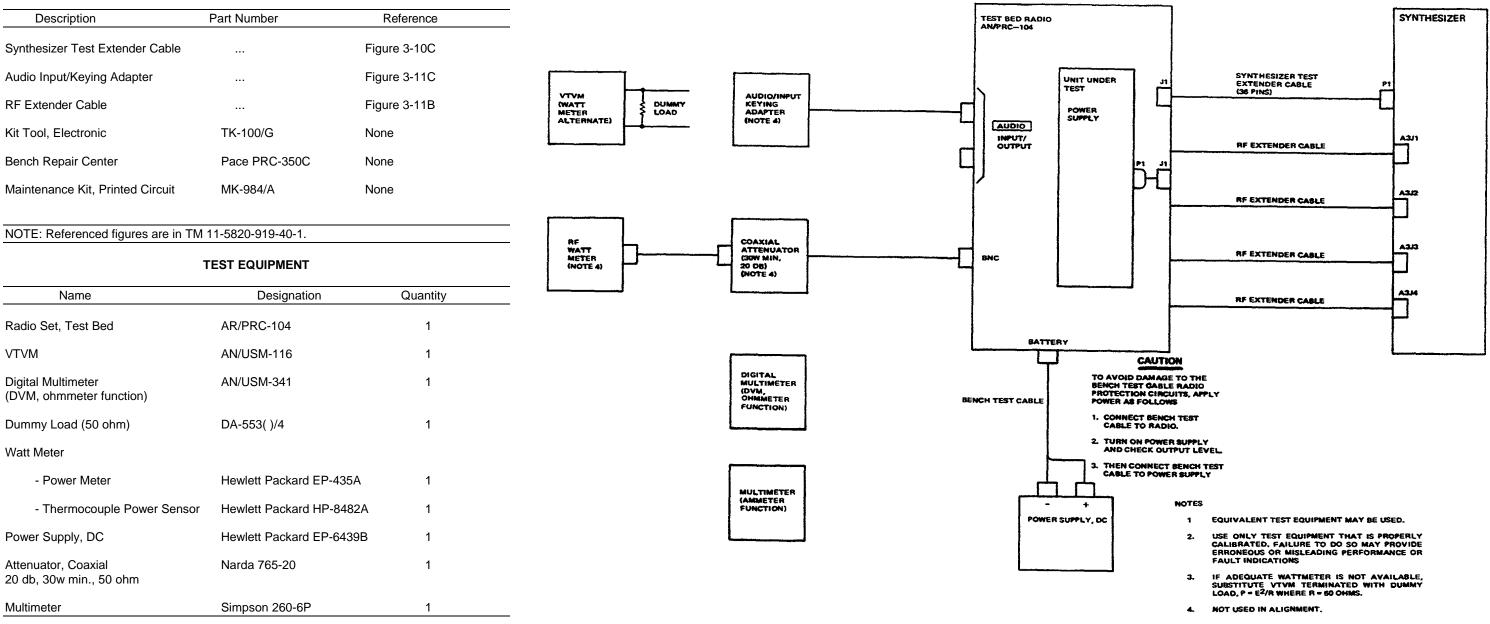


Figure 7-3. Power Supply A1A5 Performance Test and Alignment Setup

POWER SUPPLY PERFORMANCE TEST

- NOTE 1: If volume differs by a small amount, refer to alignment of R17.
- NOTE 2: If voltage differs by a small amount, refer to alignment of R24..
- NOTE 3: Unless otherwise specified, all voltage measurements taken with respect to chassis ground.

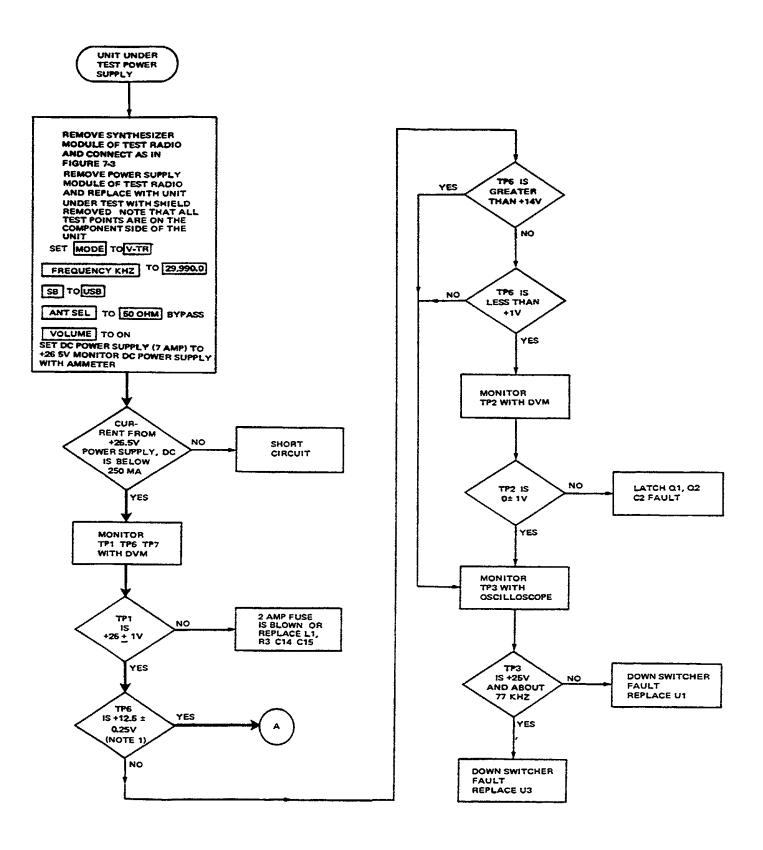


Figure 7-4. Power Supply A1A5 Performance Test (Sheet 1 of 2)

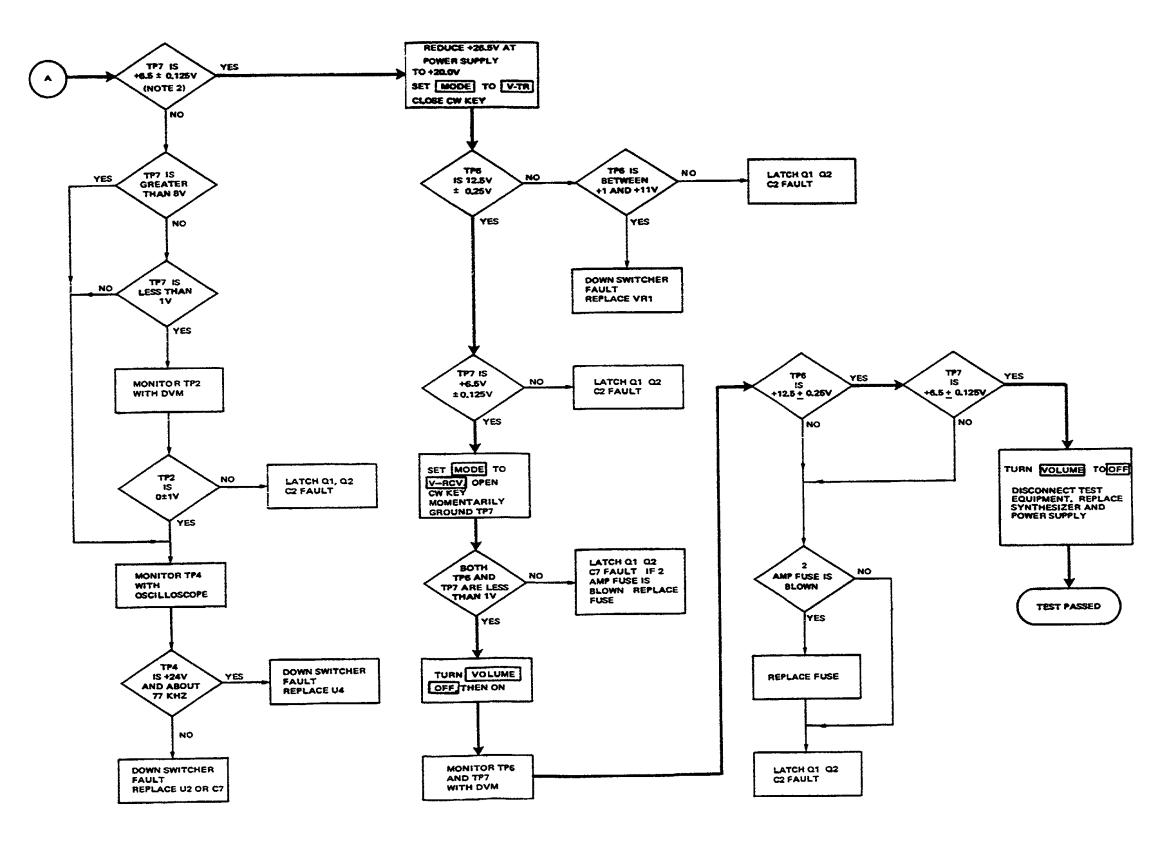


Figure 7-4. Power Supply A1A5 Performance Test (Sheet 2 of 2)

POWER SUPPLY A1A5 ALIGNMENT

The alignment procedure is to be used in either of these situations: (1) the performance test calls a potentiometer out of adjustment, or (2) one of the following is replaced:

- 1. Timers U1. U2
- 2. Switching Regulators U3, U4
- 3. Diode VR1
- 4. Capacitors C6, C7

The procedure consists of a preliminary setup and an adjustment procedure.

PRELIMINARY SETUP

1. Remove the synthesizer and the power supply from the receiver/exciter.

2. Plug the power supply (unit to be aligned) into the test bed radio.

3. Except for the keying adapter sad watt meter, connect the test radio, cables, adapters and test equipment as shown in figure 7-3. Set the do power supply (7 amp) to +26.5v.

4. Set the following test radio controls as follows:

- a. FREQUENCY KHz to 29,990.0
- b. SB to USB
- c. ANT/SEL to 50 OHM (bypass)
- d. MODE to V-TR
- e. VOLUME to on

ADJUSTMENT

1. Monitor the voltage at TP7 of the module and adjust R24 to obtain +6.50v.

2. Monitor the voltage at TP6 of the module and adjust R17 to obtain +12.50v.

3. Turn the radio off and disconnect the test equipment.

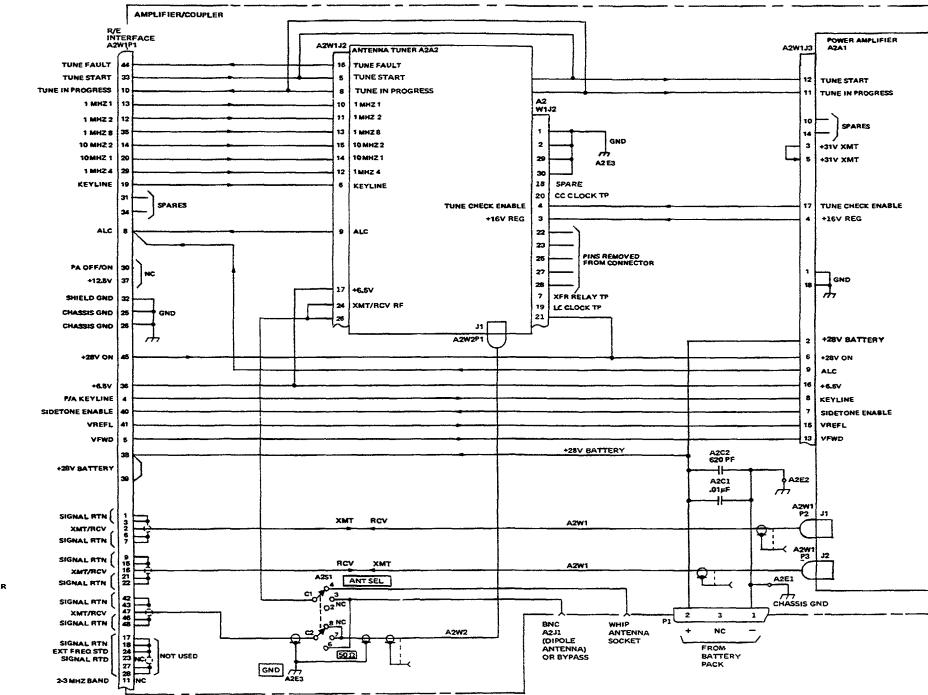
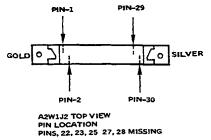
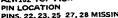
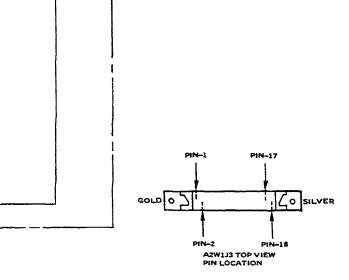





Figure 8-1. Amplifier/Coupler A2 Schematic

71

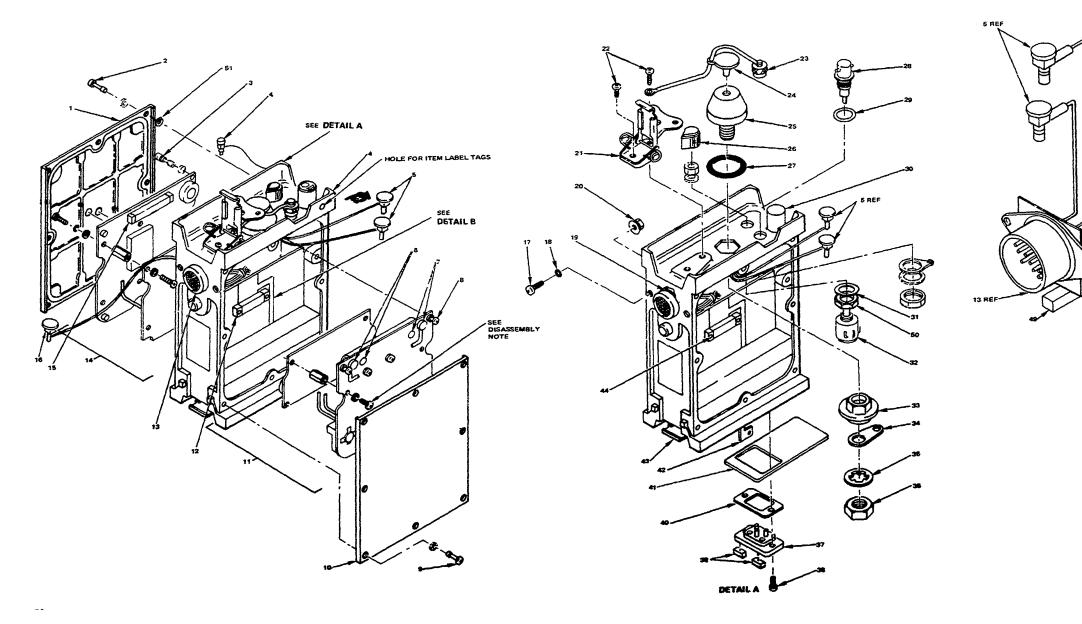
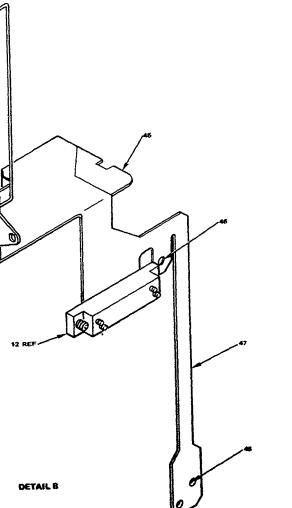



Figure 8-2. Amplifier/Coupler A2 Component Location (Sheet 1 of 2)

72

TM 11-5820-919-40-2

)

ITEM	DESCRIPTION	ITEM	DESCRIPTION
1.	Cover Assembly	38.	Screw (2 places)
2.	Screw, Captive (8 places)	39.	Capacitor (2 places)
3.	Screw, Captive (4 places)	40.	Gasket
4.	Amplifier/Coupler	41.	Gasket
4.		42.	Terminal
F	Housing A2	42. 43.	Latch
5.	RF Cables A1J1 (W1P1),		
	A1J2 (W1P3)	44.	Mounting Screw (2 places)
6.	Marker	45.	Ribbon Cable Support
7.	Marker	46.	Terminal
8.	Screw, Captive (4 places)	47.	Ribbon Cable Assembly
9.	Screw, Captive (8 places)		A2111
10.	Cover Assembly	48.	Terminal
11.	Power Amplifier	49.	Multipin Connector,
	Module A2A1		A2W1J2
12.	Multipin Connection	50.	Hex Nut
	A2W1J3	51.	.020- C Spring Clip
13.	Connector Receptacle A2W1P1		(16 places)
14.	Antenna Tuner Module Assembly A2A2		DISASSEMBLY NOTE
15.	Multipin Connector A2A2P1	Heat screw r	prior to removal to loosen loctite.
16.	RF Cable A2J1(W2P1)	riedi solew p	
17.	Screw (2 places)		
18.			
	Self-Sealing 0-ring, Part of Screws (2 places)		
19.	Packing, Preform		
20.	Nut (2 places)		
21.	Latch		
22.	Screw, Allen (2 places)		
23.	Connector Cover		
24.	Antenna Cover		
25.	Antenna Mount, upper		
26	Knob, Antenna Select		
27.	Packing, Preform		
28.	Connector, BNC A2J1		
29.	Packing, Preform		
30.	Post, Ground A2E3		
31.	Gasket		
32.	Switch, Antenna Select A2S1		
33.	Antenna Mount, Lower		
34.	Terminal Lug A2E4		
35.	Lockwasher		
36.	Nut		
37.	Connector, Battery A2P1		

Figure 8-2. Amplifier/Coupler A2 Component Location (Sheet 2 of 2)

TM 11-5820-919-40-2

Description	Part Number	Reference
Audio Input/Keying Adapter		Figure 3-11C
Whip Adapter		Figure 3-11D
Kit, Tool, Electronic	TK-100/G	None
Bench Repair Center	Pace PRC-350C	None
Maintenance Kit, Printed Circuit	MK-984/A	None

NOTE: Referenced figures are in TM 11-5820-919-40-1

TEST EQUIPMENT

Name	Designation	Quantity
Radio Set, Test Bed	AN/PRC-104	1
VTVM	AN/USM-116	1
Dummy Load (50 ohm)	DA-553()/4	1
Attenuator, Step 10-db steps, 0.5w, 50 ohm	CN-1128/U	1
Watt Meter - Power Meter - Thermocouple Power Sensor	Hewlett Packard HP-435A Hewlett Packard HP-8482A	1 1
Power Supply, DC	Hewlett Packard HP-6439B	1
Attenuator, Coaxial 20 db, 30w min., 50 ohm	Narda 765-20	1

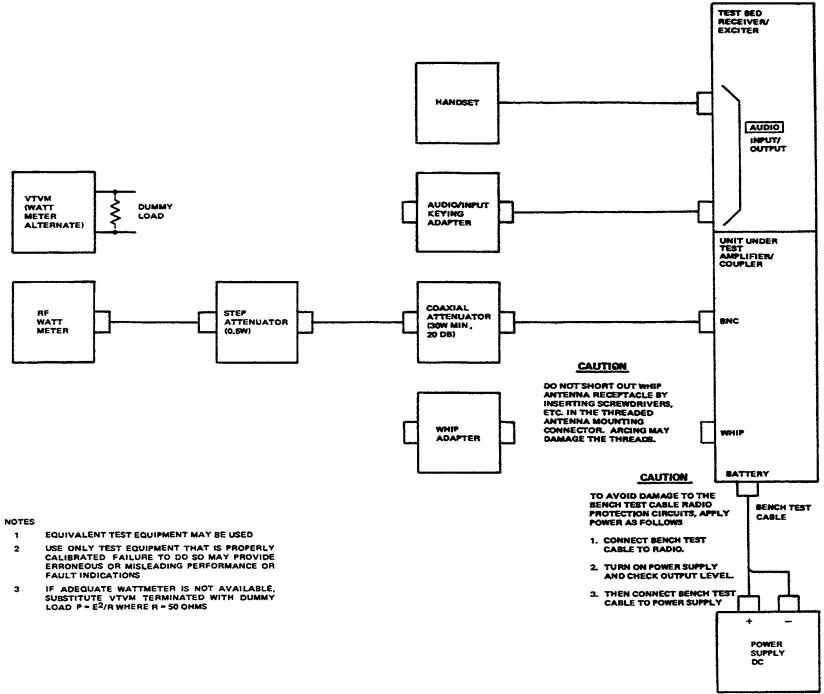


Figure 8-3. Amplifier/Coupler A2 Performance Test Setup

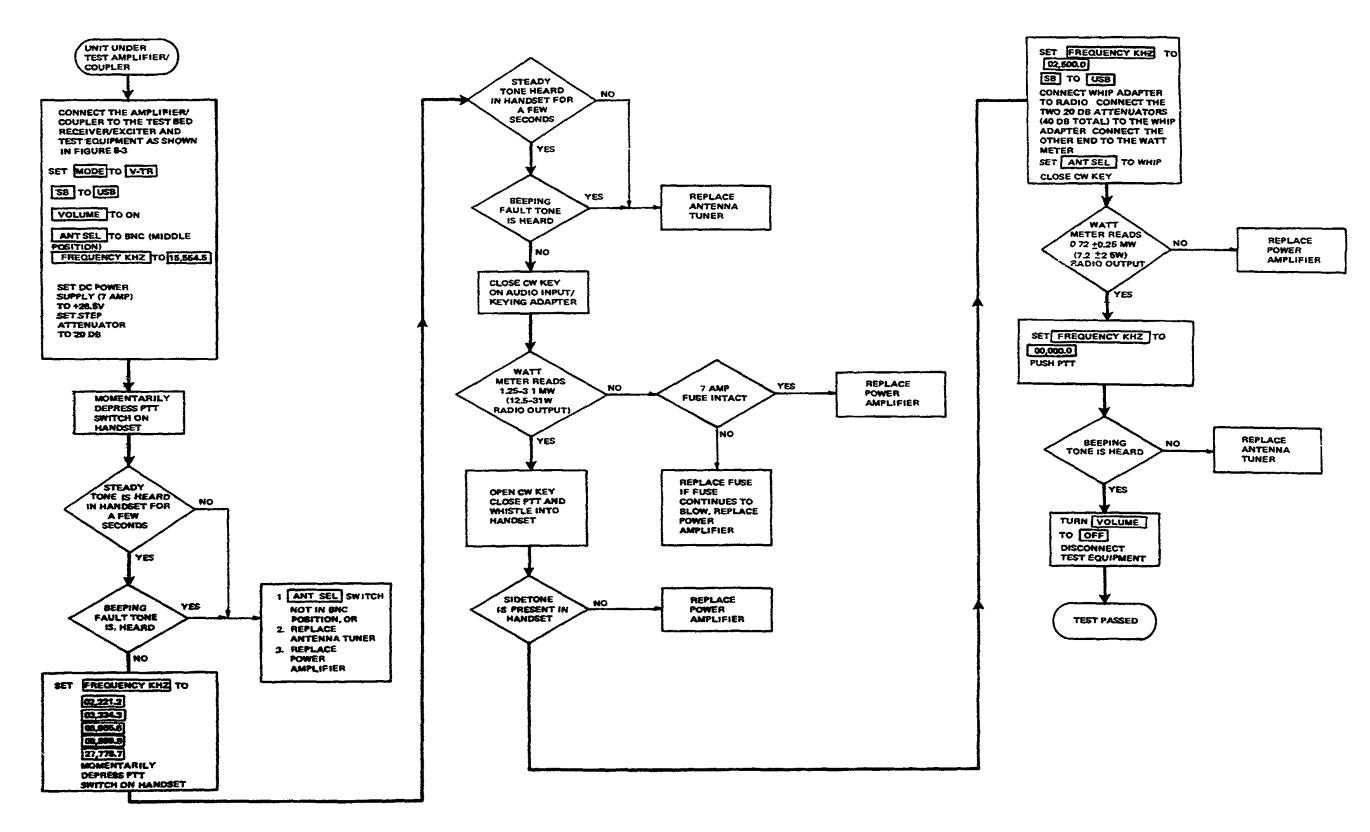


Figure 8-4. Amplifier/Coupler A2 Performance Test

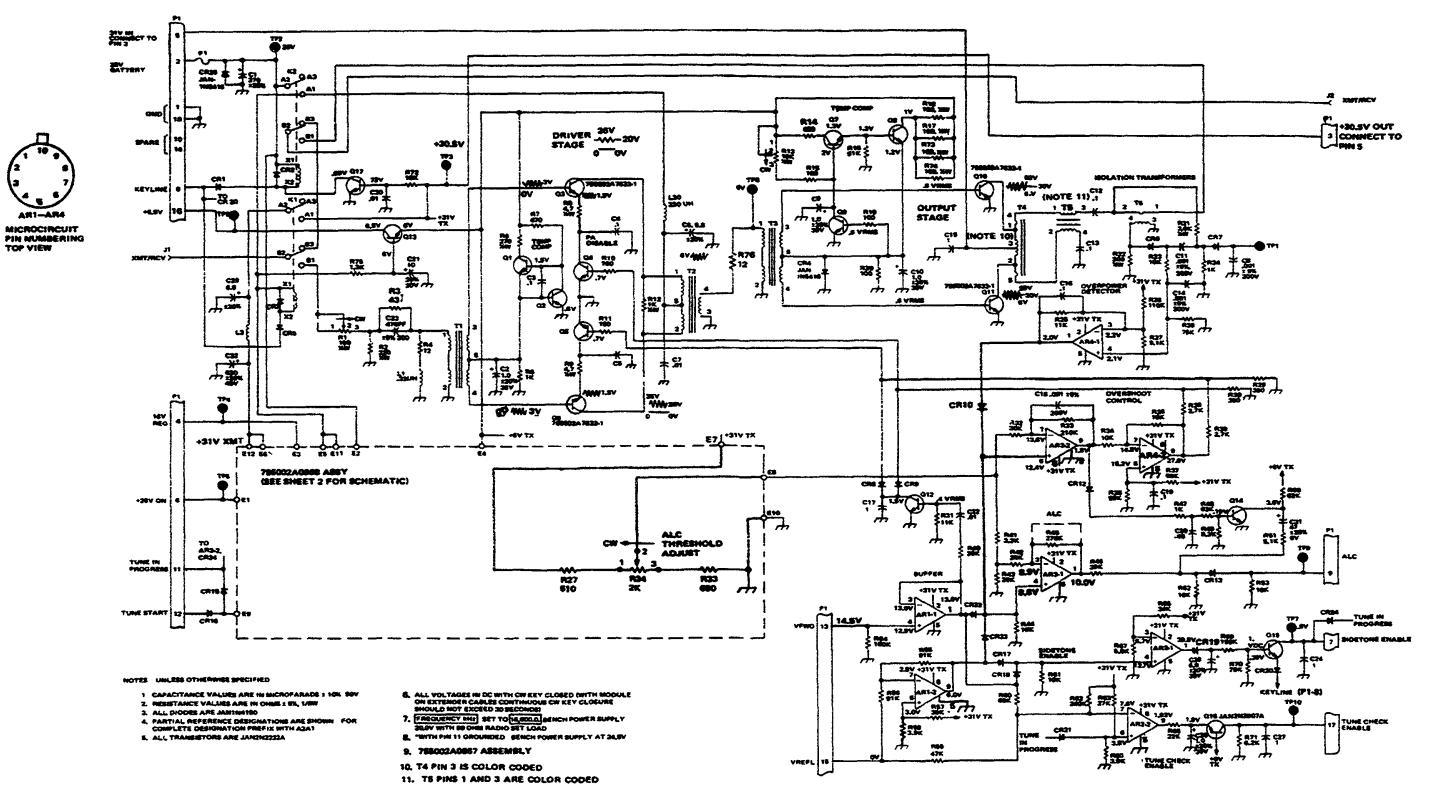


Figure 9-1. Power Amplifier A2A1 Schematic (Sheet 1 of 2)

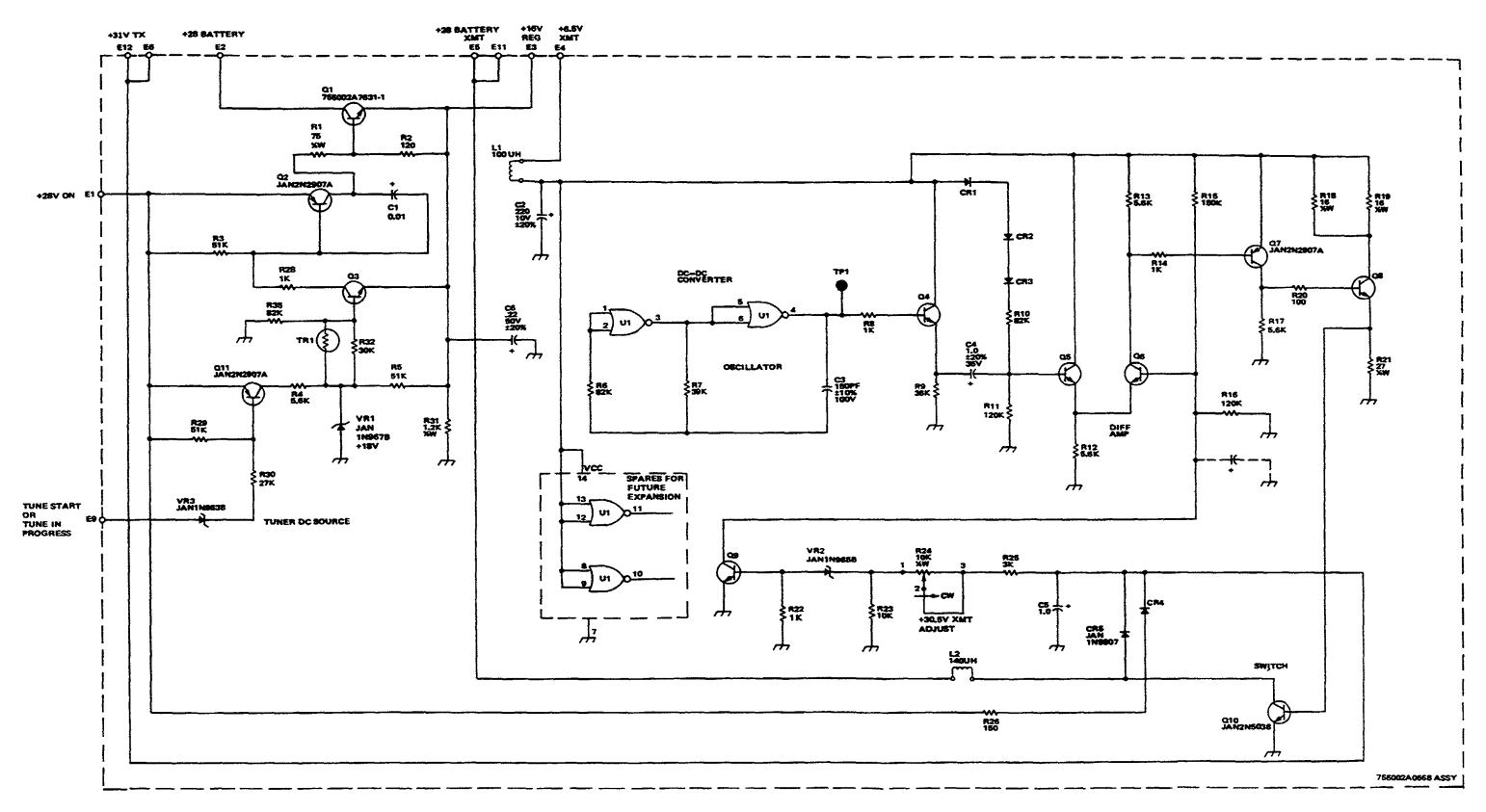
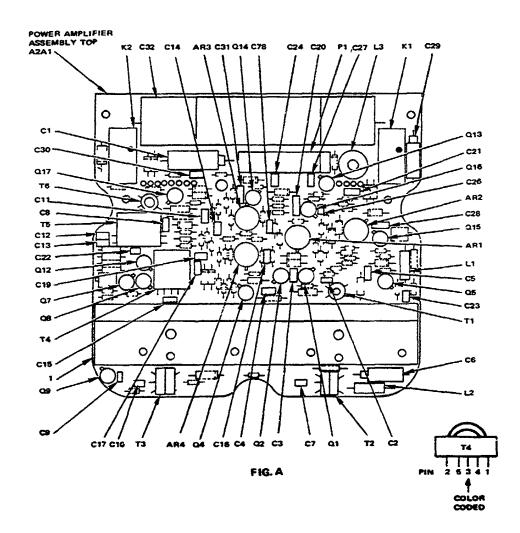



Figure 9-1. Power Amplifier A2A1 Schematic (Sheet 2 of 2)

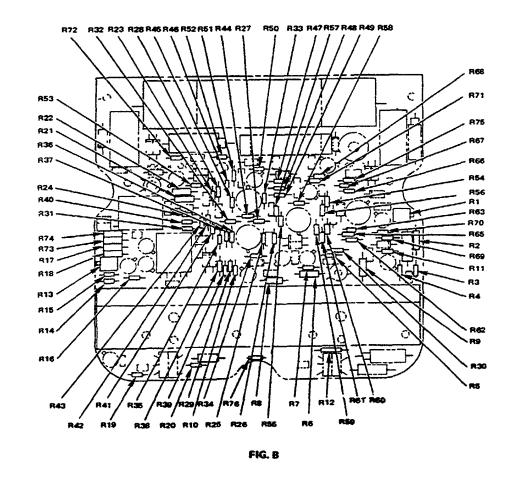


Figure 9-2. Power Amplifier A2A1 Component Location (Sheet 1 of 3)

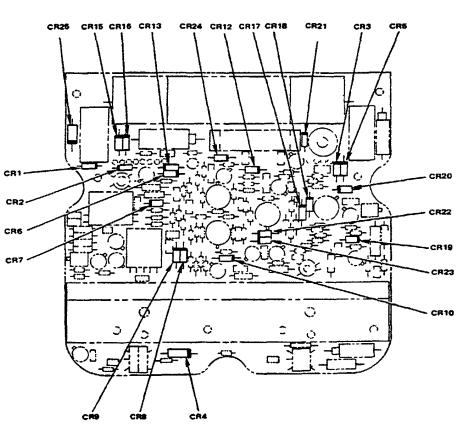


FIG. C

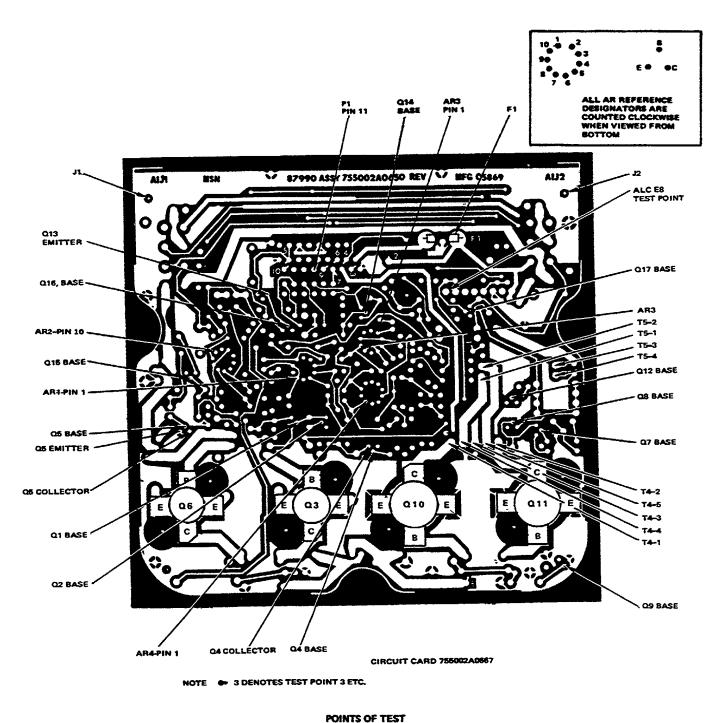
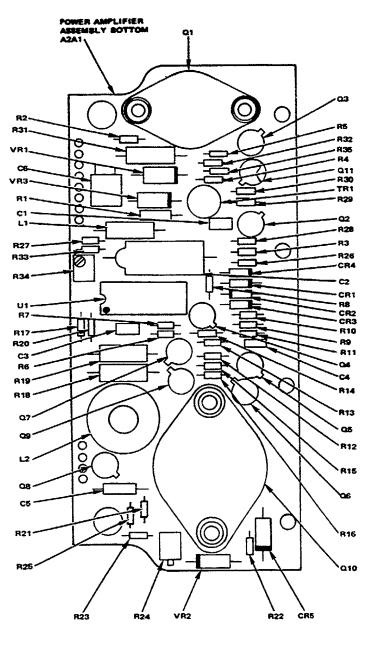
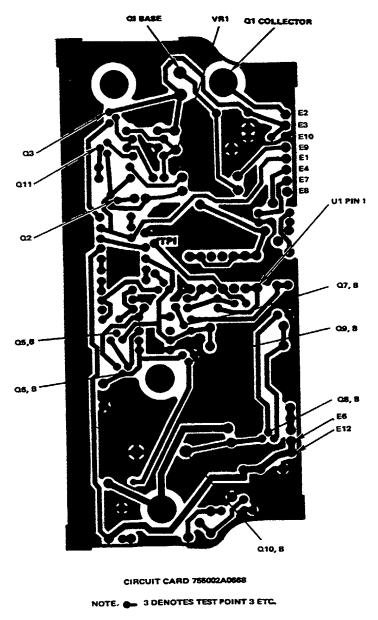




Figure 9-2. Power Amplifier A2A1 Component Location (Sheet 2 of 3)

POINTS OF TEST

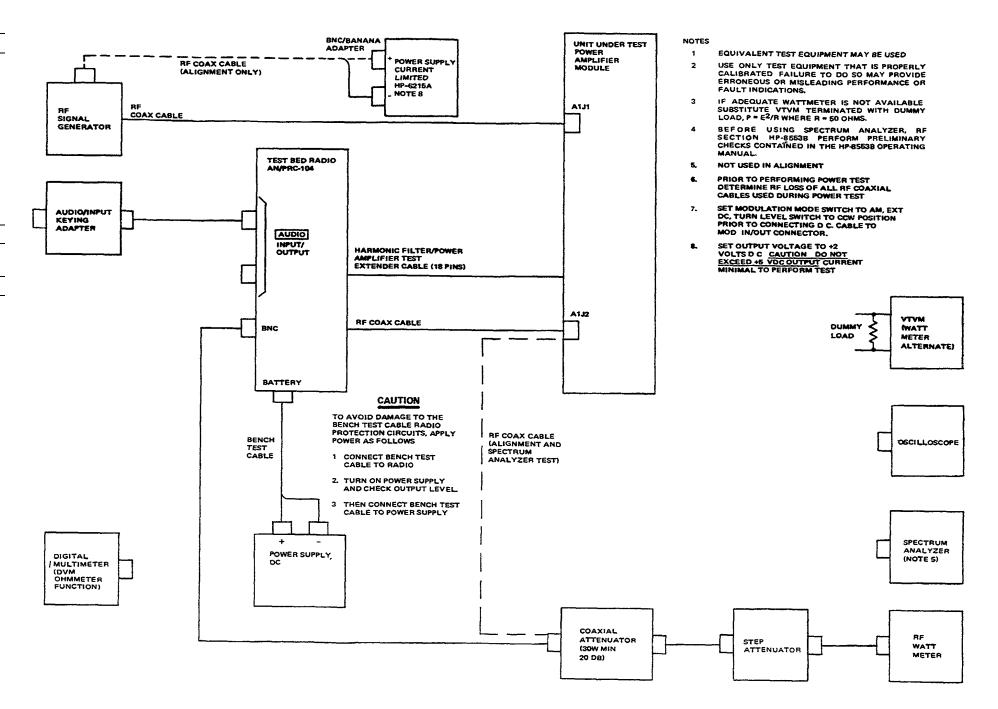
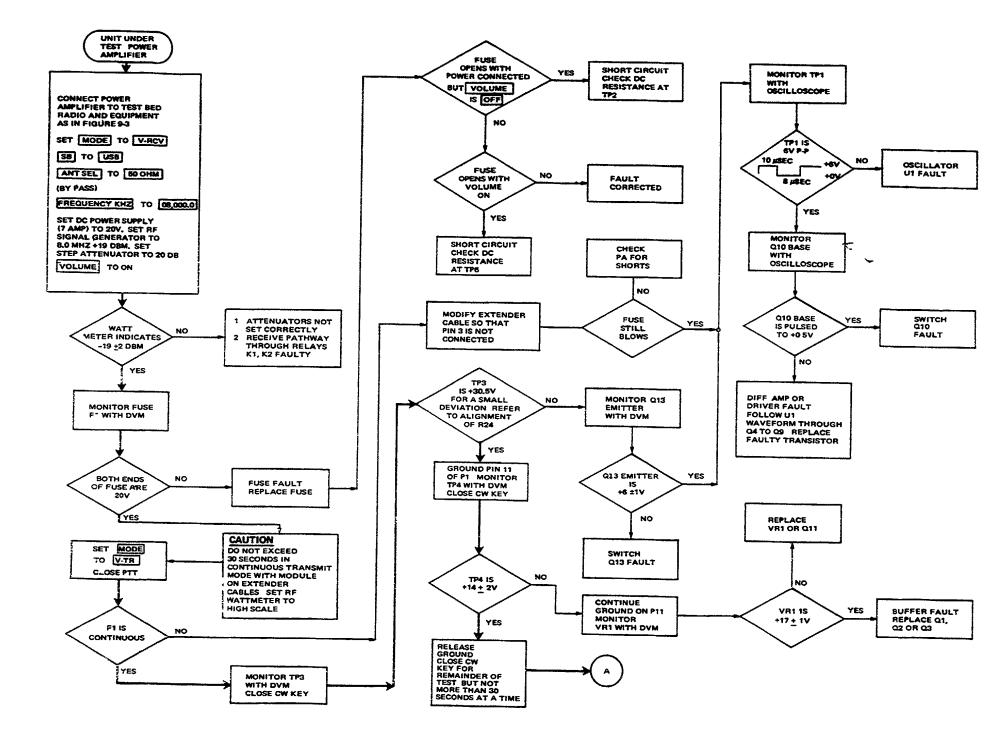
ITEM	DESCRIPTION	ITEM	DESCRIPTION	ITEM	DESCRIPTION	ITEM	DESCRIPTION	ITEM	DESCRIPTION	ITEM	DESCRIPTION
	<u>A (</u> Top board)	T4	Transformer	R65	Resistor		<u>C</u>		<u>D</u> (Bottom Board)	R21	Resistor
		Q8	Transistor	R2	Resistor					C5	Capacitor
A2A1	Power Amplifier Assembly	Q7	Transistor	R69	Resistor	CR25	Diode	A2A1	Power Amplifier Assembly	Q8	Transistor
K2	Relay	C19	Capacitor	R11	Resistor	CR15	Diode	Q1	Transistor Insulator	L2	Inductor
C32	Capacitor	Q12	Transistor	R3	Resistor	CR16	Diode	Q3	Transistor	Q9	Transistor
C14	Capacitor	C22	Capacitor	R4	Resistor	CR13	Diode	R5	Resistor	Q7	Transistor
AR3	Microcircuit	C13	Capacitor	R62	Resistor	CR24	Diode	R32	Resistor	R18	Resistor
C31	Capacitor	C12	Capacitor	R9	Resistor	CR12	Diode	R35	Resistor	R19	Resistor
Q14	Transistor	T5	Transformer	R30	Resistor	CR17	Diode	R4	Resistor	R6	Resistor
C78	Capacitor	C8	Capacitor	R5	Resistor	CR18	Diode	Q11	Transistor	C3	Capacitor
C24	Capacitor	C11	Capacitor	R60	Resistor	CR21	Diode	R30	Resistor	R20	Resistor
C20	Capacitor	T6	Transformer	R61	Resistor	CR3	Diode	TR1	Resistor	R17	Resistor
P1	Connector	Q17	Transistor	R59	Resistor	CR5	Diode	R29	Resistor	R7	Resistor
C27	Capacitor	C30	Capacitor	R12	Resistor	CB20	Diode	Q2	Transistor	U1	Microcircuit
L3	Inductor	C1	Capacitor	R6	Resistor	CR22	Diode	R28	Resistor	R34	Resistor
K1	Relay			R7	Resistor	CR19	Diode	R3	Resistor	R33	Resistor
C29	Capacitor		<u>B</u>	R55	Resistor	CR23	Diode	R26	Resistor	R27	Resistor
Q13	Transistor			R8	Resistor	CR10	Diode	CR4	Diode	L1	Coil
C21	Capacitor	R72	Resistor	R26	Resistor	CB4	Diode	C2	Capacitor	C1	Capacitor
Q16	Transistor	R32	Resistor	R76	Resistor	CR8	Diode	CB1	Diode	R1	Resistor
C26	Capacitor	R23	Resistor	R25	Resistor	CR9	Diode	R8	Resistor	VR3	Diode
AR2	Microcircuit	R28	Resistor	R34	Resistor	CR7	Diode	CR2	Diode	C6	Capacitor
C28	Capacitor	R45	Resistor	R10	Resistor	CR6	Diode	CR3	Diode	VR1	Diode
Q15	Transistor	R46	Resistor	R29	Resistor	CR2	Diode	R10	Resistor	R31	Resistor
AR1	Microcircuit	R52	Resistor	R20	Resistor	CR1	Diode	R9	Resistor	R2	Resistor
L1	Coil	R51	Resistor	R39	Resistor			R11	Resistor		
C5	Capacitor	R44	Resistor	R38	Resistor			Q4	Transistor		
Q5	Transistor	R27	Resistor	R35	Resistor			C4	Capacitor		
C23	Capacitor	R50	Resistor	R19	Resistor			R14	Resistor		
T1	Transformer	R33	Resistor	R41	Resistor			R13	Resistor		
C6	Capacitor	R47	Resistor	R42	Resistor			Q5	Transistor		
L2	Coil	R57	Resistor	R43	Resistor			R12	Resistor		
C2	Capacitor	R48	Resistor	R16	Resistor			R15	Resistor		
T2	Transformer	R49	Resistor	R14	Resistor			Q6	Transistor		
Q1	Transistor	R58	Resistor	R15	Resistor			R16	Resistor		
C7	Capacitor	R68	Resistor	B13	Resistor			Q10	Transistor		
C3	Capacitor	R71	Resistor	R18	Resistor			CR5	Diode		
Q2	Transistor	R75	Resistor	R17	Resistor			R22	Resistor		
C4	Capacitor	R67	Resistor	R73	Resistor			VR2	Diode		
C16	Capacitor	R66	Resistor	R74	Resistor			R24	Resistor		
Q4	Transistor	R54	Resistor	R31	Resistor			B23	Resistor		
AR4	Microcircuit	R56	Resistor	R40	Resistor			R25	Resistor		
T3	Transformer	R1	Resistor	R24	Resistor						
C10	Capacitor	R63	Resistor	R37	Resistor						
C17	Capacitor	R70	Resistor	R36	Resistor						
C9	Capacitor			R21	Resistor						
Q9	Transistor			R22	Resistor						
1	Heat Sick			R53	Resistor						
C15	Capacitor										

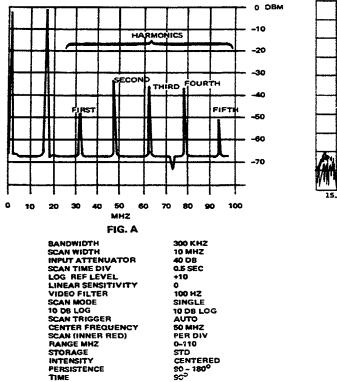
Figure 9-2. Power Amplifier A2A1 Component Location (Sheet 3 of 3)

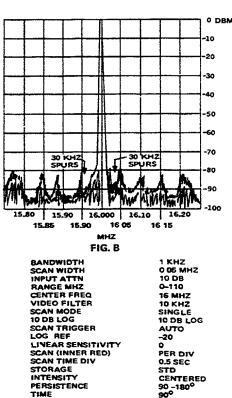
TM 11-5820-919-40-2

Description	Part Number	Reference			
Harmonic Filter/Power Amplifier Test Extender Cable		Figure 3-10D			
Audio Input/Keying Adapter		Figure 3-11C			
RF Coax Cable		Figure 3-11A			
Kit, Tool, Electronic	TR-100/G	None			
Bench Repair Center	Pace PRC-350C	None			
Maintenance Kit, Printed Circuit	MK-984/A	None			
NOTE: Referenced figures are in TM 11-5820-919-40-1.					

	TEST EQUIPMENT	
Name	Designation	Quantity
Radio Set, Test Bed	AN/PRC-104	1
VTVM	AN/USM-116	1
Signal Generator, RF	AN/USM-323	1
Oscilloscope	Hewlett Packard PP-1741A	1
Digital Multimeter (DVM, ohmmeter function)	AN/USM-341	1
Attenuator, Step 10-db steps, 0.5w, 50 ohm	CN-1128/U	1
Dummy Load (50 ohm)	DA-553()/4	1
Watt Meter		
- Power Meter	Hewlett Packard HP-435A	1
- Thermocouple Power Sensor	Hewlett Packard HP-8482A	1
Spectrum Analyzer	Hewlett Packard HP-141-T	1
- High Resolution IF Section	Hewlett Packard HP-8552B	1
- RF Section	Hewlett Packard HP-8553B	1
- Tracking Generator	Hewlett Packard HP-8443A	1
- High Impedance Probe	Hewlett Packard HP-1121A	1
Power Supply, DC	Hewlett Packard HP-6439B	1
Attenuator, Coaxial 20 db, 30w min., 50 ohm	Narda 765-20	1


Figure 9-3. Power Amplifier A2A1 Performance Test and Alignment Setup


POWER AMPLIFIER PERFORMANCE TEST

- NOTE 1: TP8 voltage should be between 2.8 and 9.8v peak to peak when FREQUENCY is between 2 and 16 MHz. TP8 voltage should be between 10.6 and 36.4v peak to peak when frequency is between 17 and 30 MHz.
- NOTE 2: A negative voltage (-7.5v) may be injected at Pin 5 of Pl to test AR2-2, Q16 without using rf drive.
- NOTE 3: Unless otherwise specified, all voltage measurements taken with respect to chassis ground.
- NOTE 4: All points of test for this troubleshooting branch on 755002A0668 board.

TIME

Figure 9-4. Power Amplifier A2A1 Performance Test (Sheet 1 of 3)

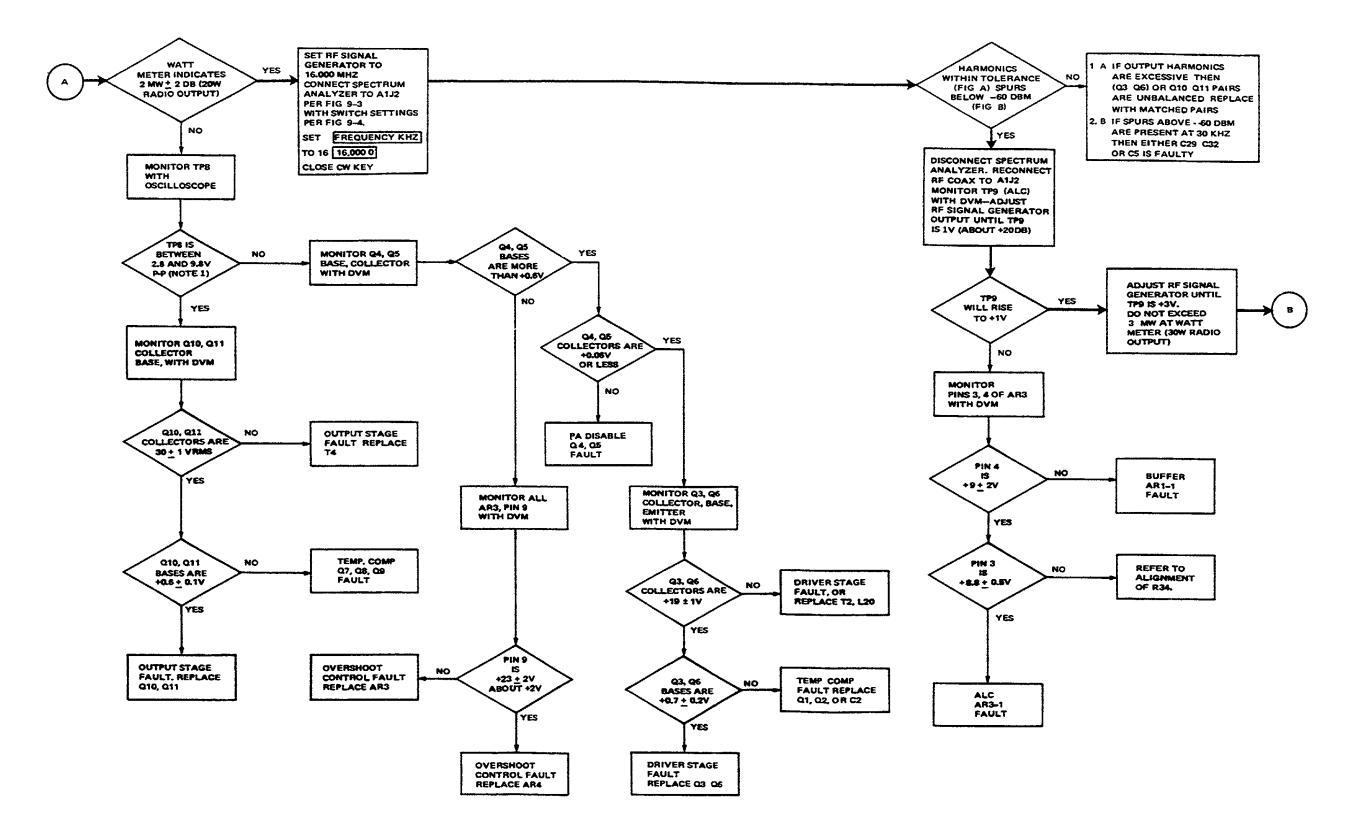


Figure 9-4. Power Amplifier A2A1 Performance Test (Sheet 2 of 3)

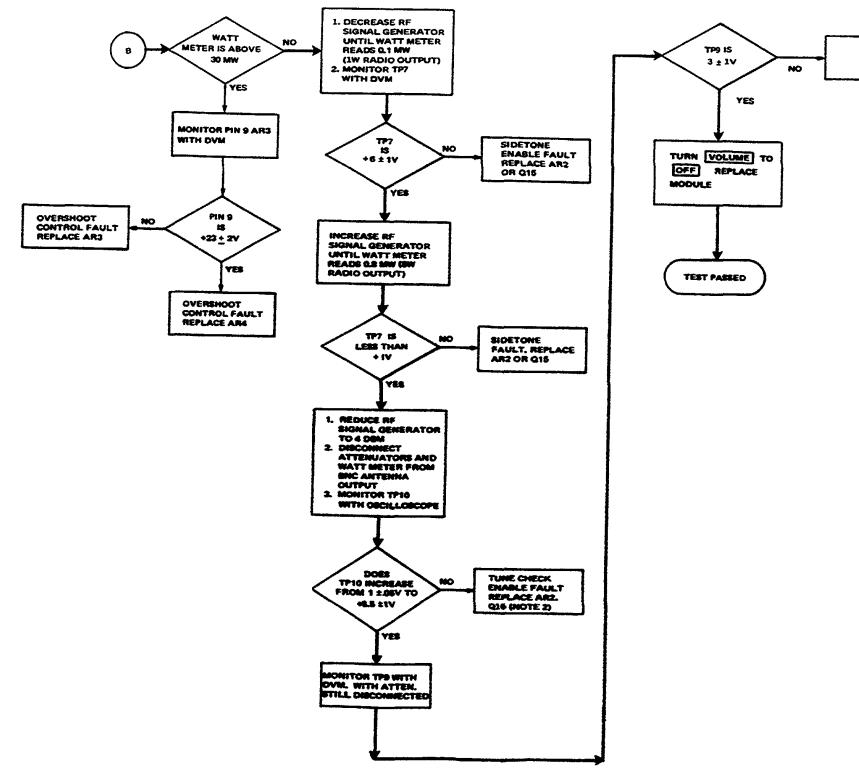


Figure 9-4. Power Amplifier A2A1 Performance Test (Sheet 3 of 3)

BUFFER AR1-2 FAULT

POWER AMPLIFIER A2A1 ALIGNMENT

The alignment procedure is to be used in either of these situations: (1) the performance test calls a potentiometer out of adjustment, or (2) one of the following is replaced:

- 1. **Overshoot Control AR3, AR4**
- 2. ALC, AR3
- 3. Buffers ART, AR2
- 4. Power Transistors Q3, Q6, Q10, Q11
- 5. Transformers T1, T2, T3, T4, T5
- 6. DC-DC Converter

The procedure consists of a preliminary setup and an adjustment procedure.

PRELIMINARY SETUP

1. Remove the power amplifier from the amplifier/coupler. Connect the test setup as shown in figure 9-3, however, to not connect the of coax cable at this time. The of coax cable connected at A1J2 will be connected directly to the coaxial attenuator.

2. Set dc power supply (7 amp) to +24.5 vdc. Set step attenuator to 10 db.

3. Set ANT SEL to 50 ohm (bypass), VOLUME to on. FREQUENCY KHZ to 29, 999.1, SB to USB, MODE TO V-TR.

ADJUSTMENTS

ADJUST

1. Monitor TP-3 with DVM, close PTT. On bottom board adjust R24 for +30.5 + 0.5 vdc. Open PTT.

2. On the 18 pin extender cable remove the jumper lead between the two test points. Insert a dc ammeter in place of the jumper and select a range of at least 100ma. Ensure that positive lead is inserted into test point closest to the connector on the PA module. Close PTT only long enough to adjust R13 (top board) for a reading of 90ma.

3. Adjust the rf signal generator to 29.9999 MBz at +22 dbm (150 mw). Refer to Note 7 on figure 9-3. Connect the rf coax cable to A1J1 and the rf signal generator. Adjust R1, GAIN ADJUST (topboard), for a reading of 27 mw on the power meter.

4. With DVM, monitor E8. Close PTT, adjust R34 (bottom board) for a reading of +13.5 + 0.5 vdc.

5. Open PTT, disconnect test equipment.

R1 = GAIN ADJUST R13 = BIAS ADJUST R24 = +30.5 VDC ADJUST R34 = ALC REFERENCE

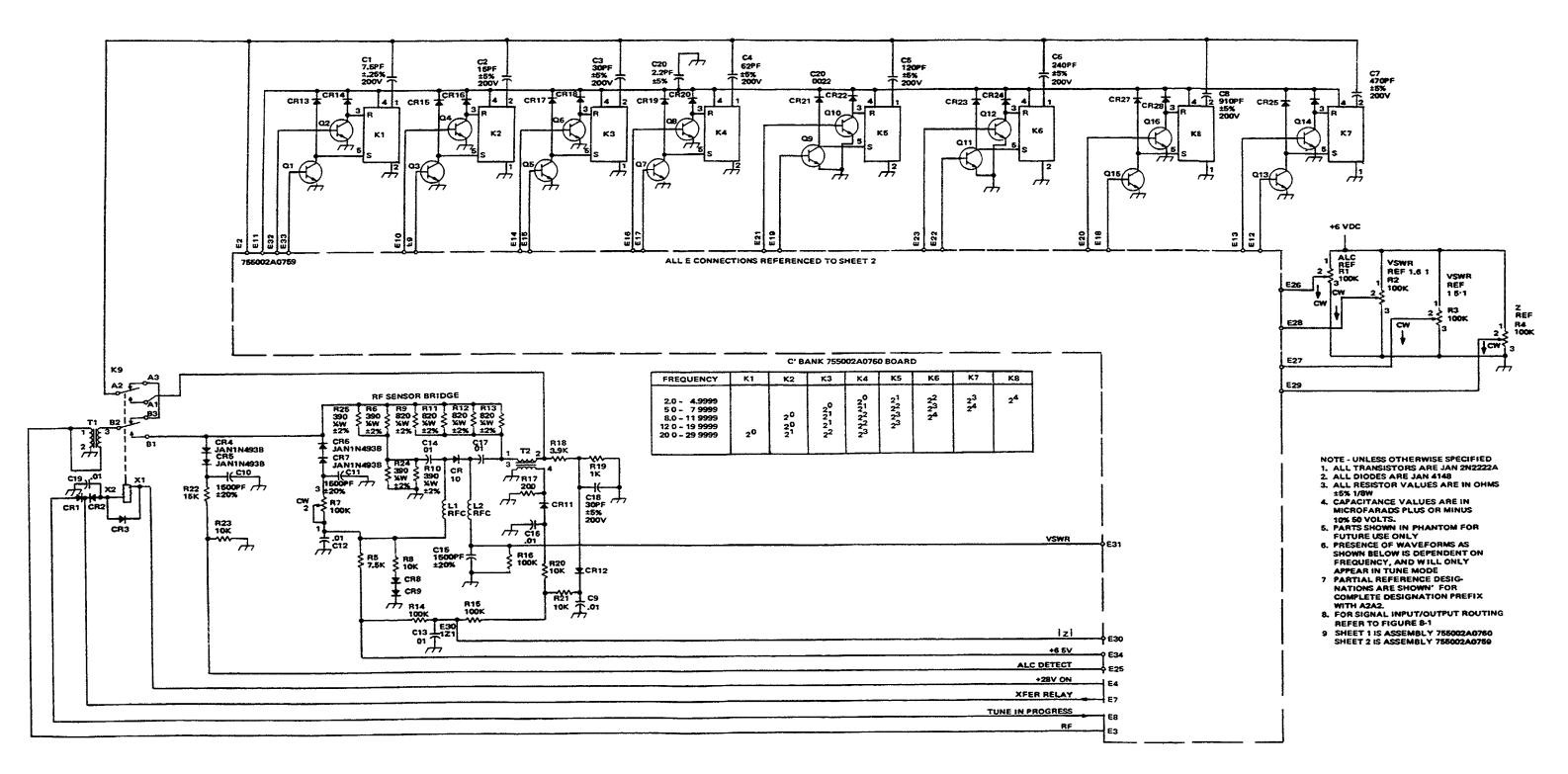


Figure 10-1 Antenna Tuner A2A2 Schematic (Sheet 1 of 2)

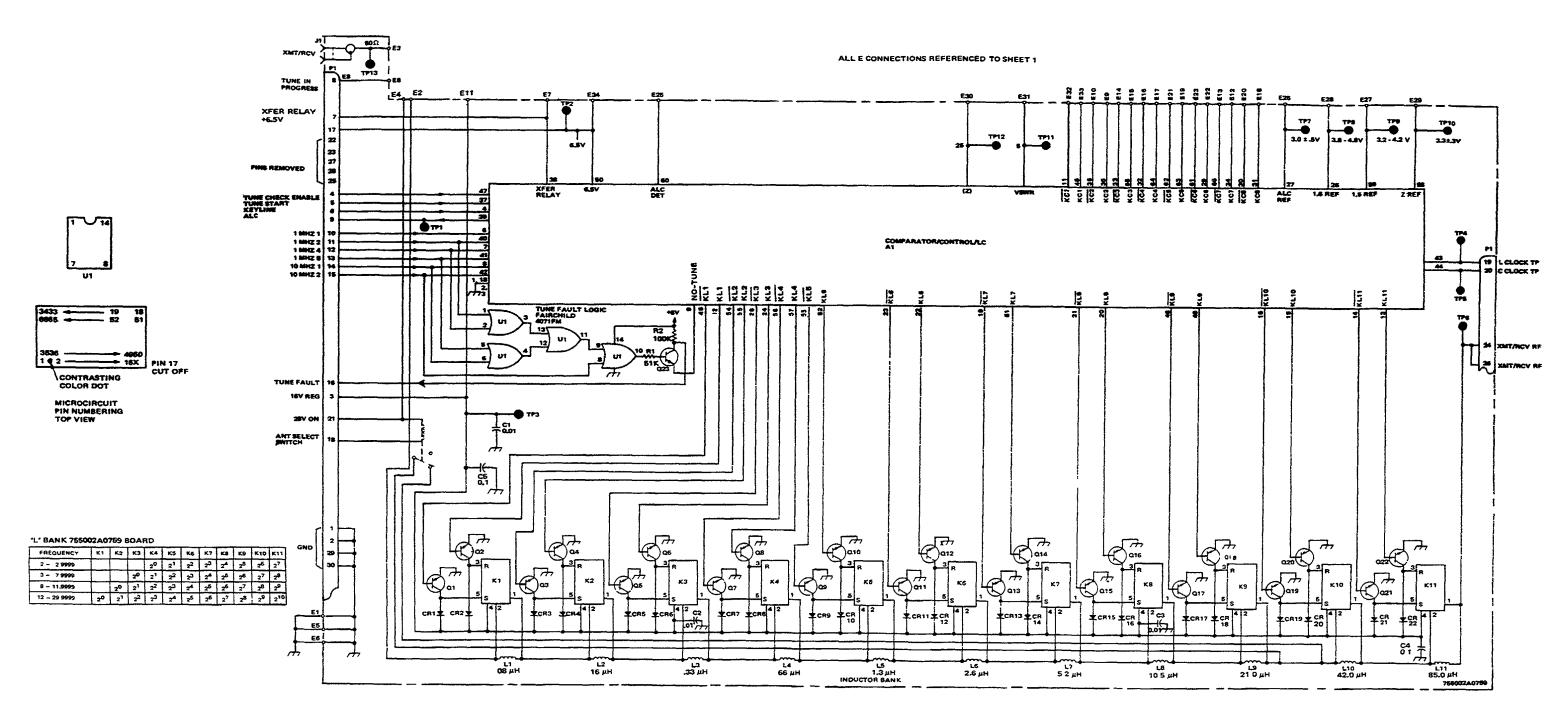
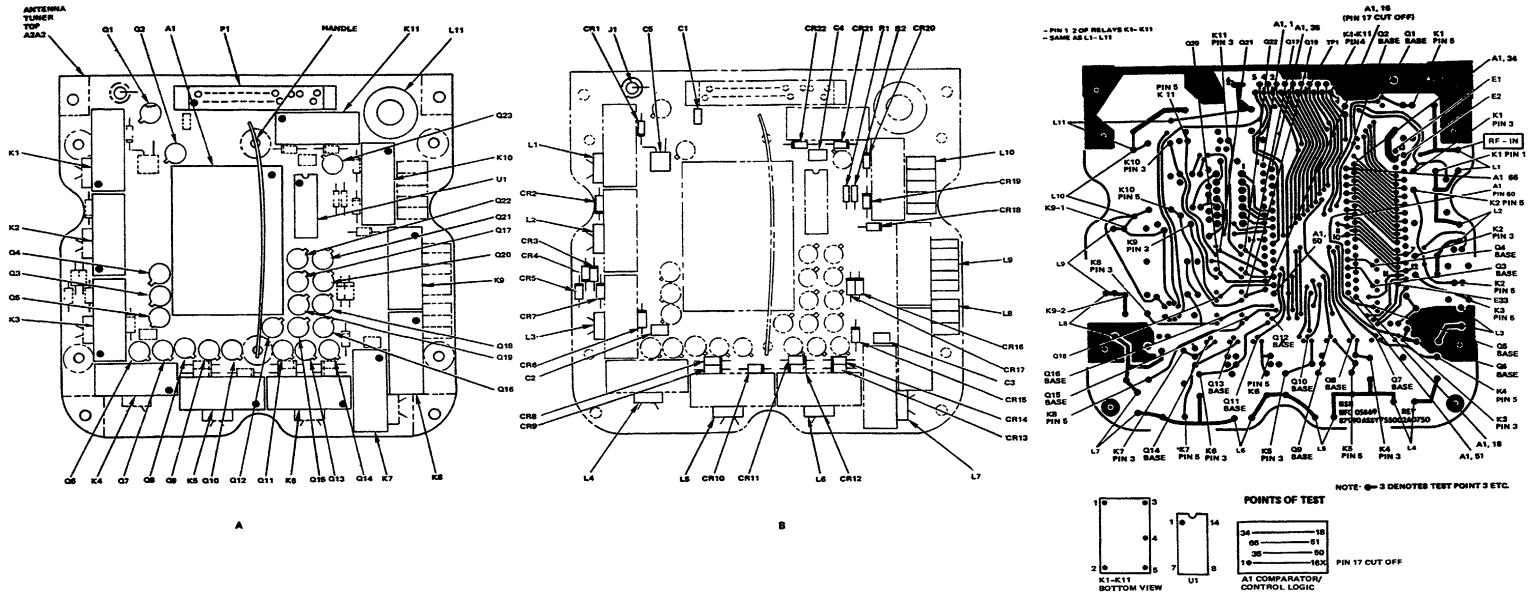
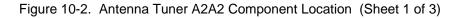
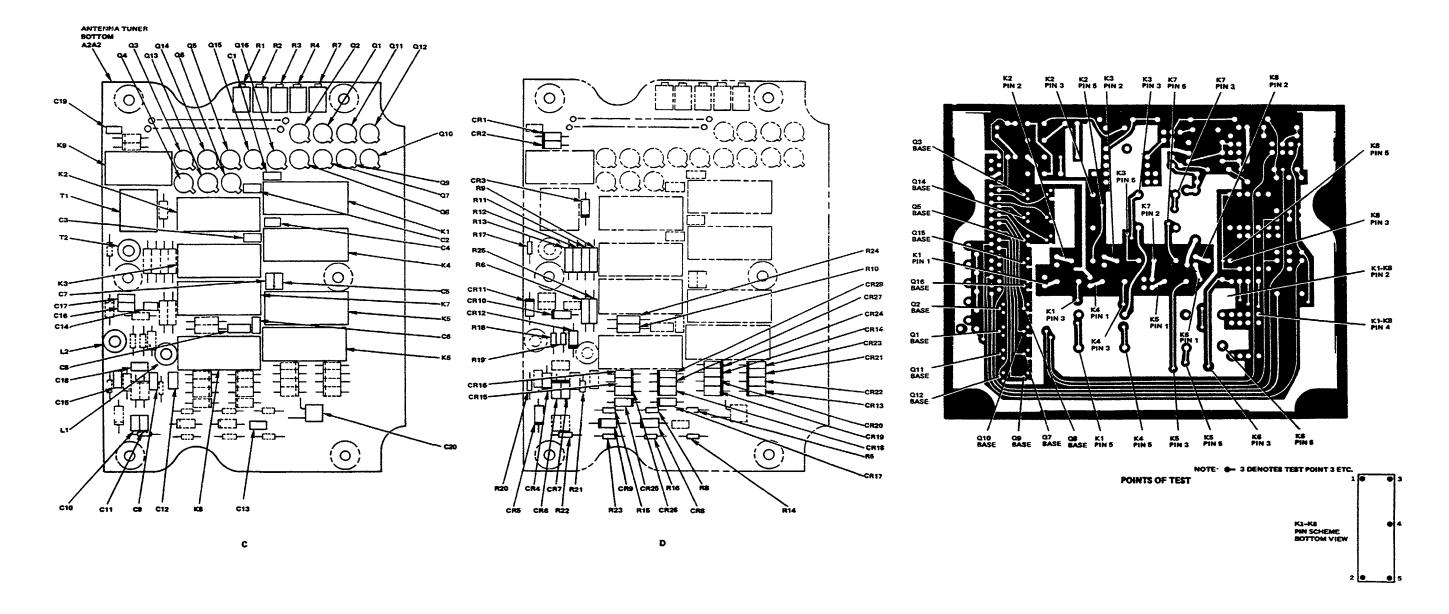





Figure 10-1 Antenna Tuner A2A2 Schematic (Sheet 2 of 2)

A1 COMPARATOR

¢

4

Figure 10-2. Antenna Tuner A2A2 Component Location (Sheet 2 of 3)

ITEM	DESCRIPTION	ITEM	DESCRIPTION	ITEM	DESCRIPTION
	A	CR21	Diode	R3	Resistor
	_	R1	Resistor	R4	Resistor
A2A2	Antenna Tuner Assembly TOP	R2	Resistor	R7	Resistor
Q1	Transistor	CR20	Diode	Q2	Transistor
Q2	Transistor	L10	Coil	Q1	Transistor
A1	Microcircuit	CR19	Diode	Q11	Transistor
P1	Connector	CR18	Diode	Q12	Transistor
	Handle	L9	Coil	Q10	Transistor
K11	Relay	L8	Coil	Q9	Transistor
L11	Coil	CR16	Diode	Q7	Transistor
Q23	Transistor	CR17	Diode	Q8	Transistor
K10	Relay	C3	Capacitor	K1	Relay
U1	Microcircuit	CR15	Diode	C2	Capacitor
Q22	Transistor	CR14	Diode	C4	Capacitor
Q21	Transistor	CR13	Diode	K4	Relay
Q17	Transistor	L7	Coil	C5	Capacitor
Q20	Transistor	CR12	Diode	R7	Relay
R9	Relay	L6	Coil	K5	Relay
Q18	Transistor	CR11	Diode	C6	Capacitor
Q19	Transistor	CR10	Diode	K6	Relay
Q16	Transistor	L5	Coil	C20	Capacitor
K8	Relay	L4	Coil	C13	Capacitor
R7	Relay	CR9	Diode	K8	Relay
Q14	Transistor	CR8	Diode	C12	Capacitor
Q13	Transistor	C2	Capacitor	C9	Capacitor
Q15	Transistor	CR6	Diode	C11	Capacitor
K6	Relay	L3	Coil	C10	Capacitor
Q11	Transistor	CR7	Diode	L1	Inductor
Q12	Transistor	CR5	Diode	C15	Capacitor
Q10	Transistor	CR4	Diode	C18	Capacitor
R5	Relay	CR3	Diode	C8	Capacitor
Q9	Transistor	L2	Coil	L2	Inductor
Q8	Transistor	CR2	Diode	C14	Capacitor
Q7	Transistor	L1	Coil	C16	Capacitor
K4	Relay		•	C17	Capacitor
Q6	Transistor		<u>C</u>	C7	Capacitor
K3	Relay	1010		K3	Relay
Q5	Transistor	A2A2	Antenna Tuner Assembly BOTTOM	T2	Inductor
Q3	Transistor	Q4	Transistor	C3	Capacitor
Q4	Transistor	Q3	Transistor	T1	Transformer
K2	Relay	Q13	Transistor	K2	Relay
K1	Relay	Q14	Transistor	K9	Relay
	5	Q6	Transistor	C19	Capacitor
	<u>B</u>	Q5	Transistor		P
	Diada	Q15	Transistor		<u>D</u>
CB1	Diode	C1	Capacitor	D04	Popietor
J1	Connector	Q16	Transistor	R24	Resistor
C5	Capacitor	R1 R2	Resistor	R10	Resistor
C1	Capacitor	κz	Resistor	CR28 CR27	Diode Diode
CR22 C4	Diode			CR27 CR24	Diode
64	Capacitor			UN24	DIUGE

Figure 10-2. Antenna Tuner A2A2 Component Location (Sheet 3 of 3)

ITEM

DESCRIPTION

Description	Part Number	Reference
Antenna Tuner Test Extender Cable		Figure 3-10B
Audio Input/Keying Adapter		Figure 3-11C
Kit, Tool, Electronic	TR-100/G	None
Bench Repair Center	Pace PRC-350C	None
Maintenance Kit, Printed Circuit	MK-984/A	None

TEST EQUIPMENT

Name	Designation	Quantity
Radio Set, Test Bed	AN/PRC-104	1
VTVM	AN/USM-116	1
Signal Generator, RF	AN/USM-323	1
Oscilloscope, Storage	Hewlett Packard HP-1741A	1
Digital Multimeter (DVM, ohmmeter function)	AN/USM-341	1
Attenuator, Step 10-db steps, 0.5w, 50 ohm	CN-1128/U	1
Dummy Load (50 ohm)	DA-553()/4	1
Watt Meter		
- Power Meter	Hewlett Packard HP-435A	1
- Thermocouple Power	Hewlett Packard HP-8482A	1
Sensor Power Supply, Current Limited	Hewlett Packard HP-6215A	1
Power Supply, DC	Hewlett Packard HP-6439B	1
Attenuator, Coaxial 20 db, 30w min., 50 ohm	Narda 765-20	1

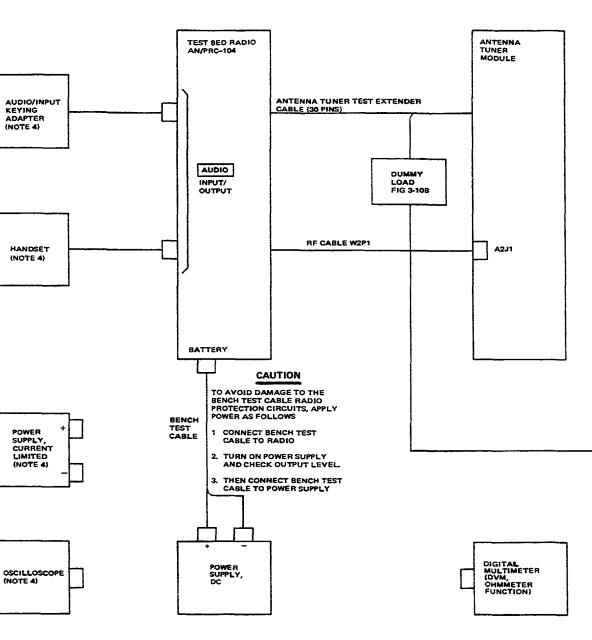
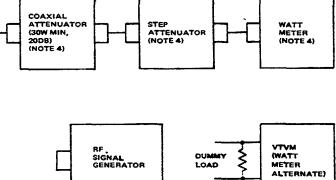



Figure 10-3. Antenna Tuner A2A2 Performance test Setup

NOTES

Γ

- EQUIVALENT TEST EQUIPMENT MAY BE USED 1
- USE ONLY TEST EQUIPMENT THAT IS PROPERLY CALIBRATED FAILURE TO DO SO MAY PROVIDE ERRONEOUS OR MISLEADING PERFORMANCE OR FAULT INDICATIONS 2
- IF ADEQUATE WATTMETER IS NOT AVAILABLE SUBSTITUTE VTVM TERMINATED WITH DUMMY LOAD, $P = E^2/R$ where R = 50 OHMS 3
- NOT USED IN ALIGNMENT USED IN TROUBLESHOOTING PROCEDURE, SUBSTITUTE HP1741A IN PLACE OF WATTMETER 4

DUMMY LOAD

Ş

ANTENNA TUNER PERFORMANCE TEST

- NOTE 1: Changing the MODE switch from V-TR to V-RCV to V-TR causes a tune start signal to be routed from the modulator/demodulator. This will cause all capacitive and inductive elements to be removed from the rf pathway. When PIT or CW key is closed. the inductors and capacitors are added.
- NOTE 2: A voltage difference of 1.5 vac or greater across the coil indicates that the relay is open. The coil is then in the rf pathway. After a time start, and before PTT is closed, all coil relays should be closed.
- NOTE 3: If a coil is replaced, be sure that its inductance is exactly (11 percent) one-half of next larger coil.
- NOTE 4: Unless otherwise specified, all voltage measurements taken with respect to ground.
- NOTE 5: Hybrid binary count faults can be investigated in the following way:
 - 1. Monitor TP10 with DVM and record voltage measurement.
 - 2. Set TP10 to 0v (this disables comparator) by adjusting R4.
 - 3. Monitor bases of S and R driver transistors for RL1 thru E111 and came pare waveforms to those of a functional module (see that the "L" count is performed properly).
 - 4. Set TP10 to +6v by adjusting R4.
 - 5. Monitor TP8 and TP9 with DVM and record voltage measurement.
 - 6. Set TP8 and TP9 to +0v (this disables comparator) by adjusting R2 and R3, respectively.
 - 7. Monitor bases of S and R driver transistors for KC1 thru KC8 and compare waveforms to those of a functional module (see that the "C" count is performed properly).
 - 8. Reset TP8, TP9, TP10 to the values recorded in steps 1 and 5.
- NOTE 6: Component failures due to untraceable faults require special handling at a factory or depot location using a test fixture and a vector impedance meter. If performance is not satisfactory, and a tune-fault coca not occur, then refer module to fifth echelon repair level.

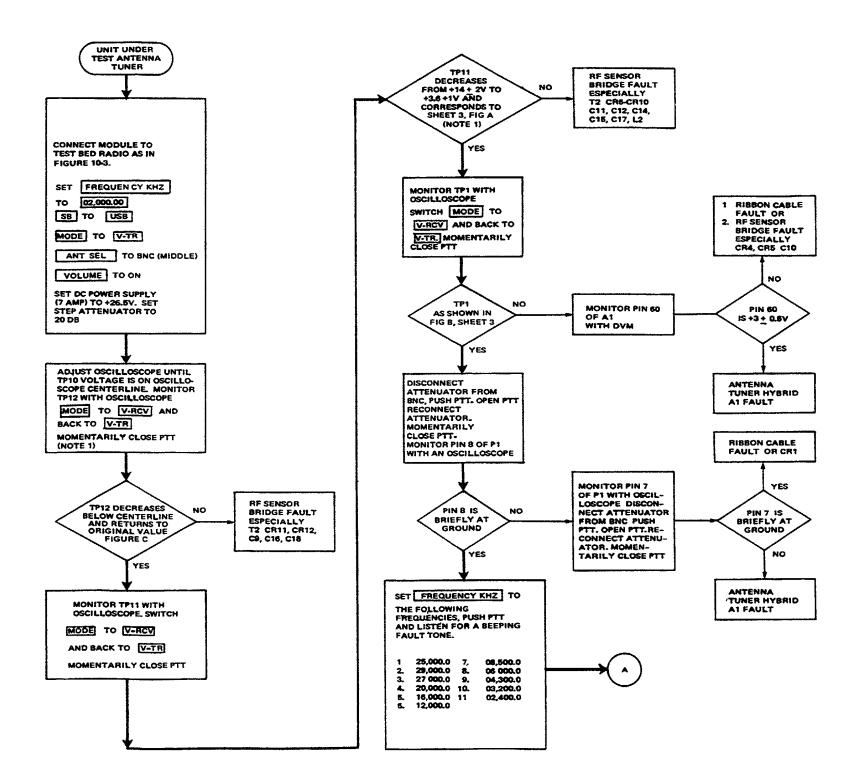


Figure 10-4. Antenna Tuner A2A2 Performance Test (Sheet 1 of 3)

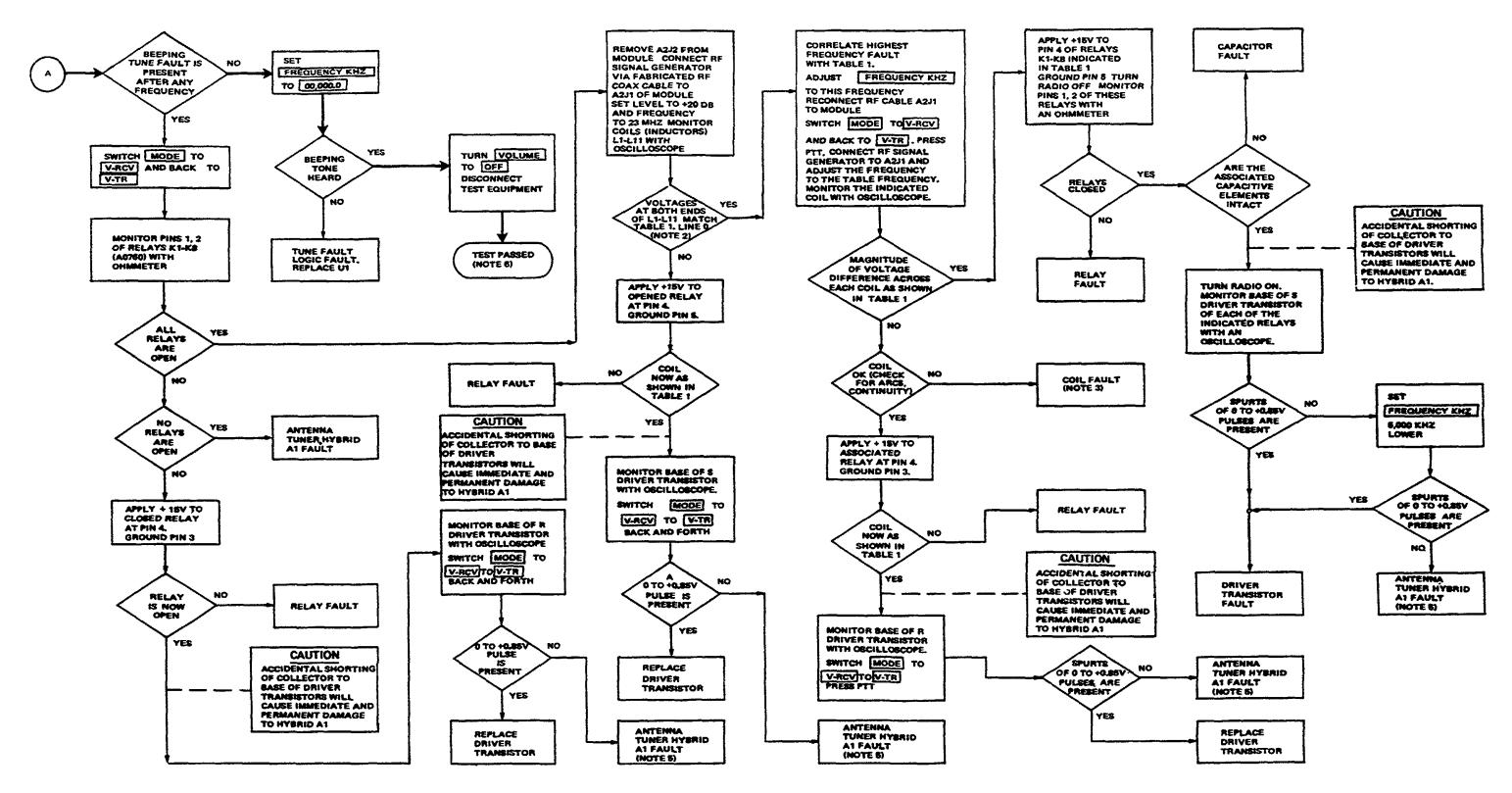


Figure 10-4. Antenna Tuner A2A2 Performance Test (Sheet 2 of 3)

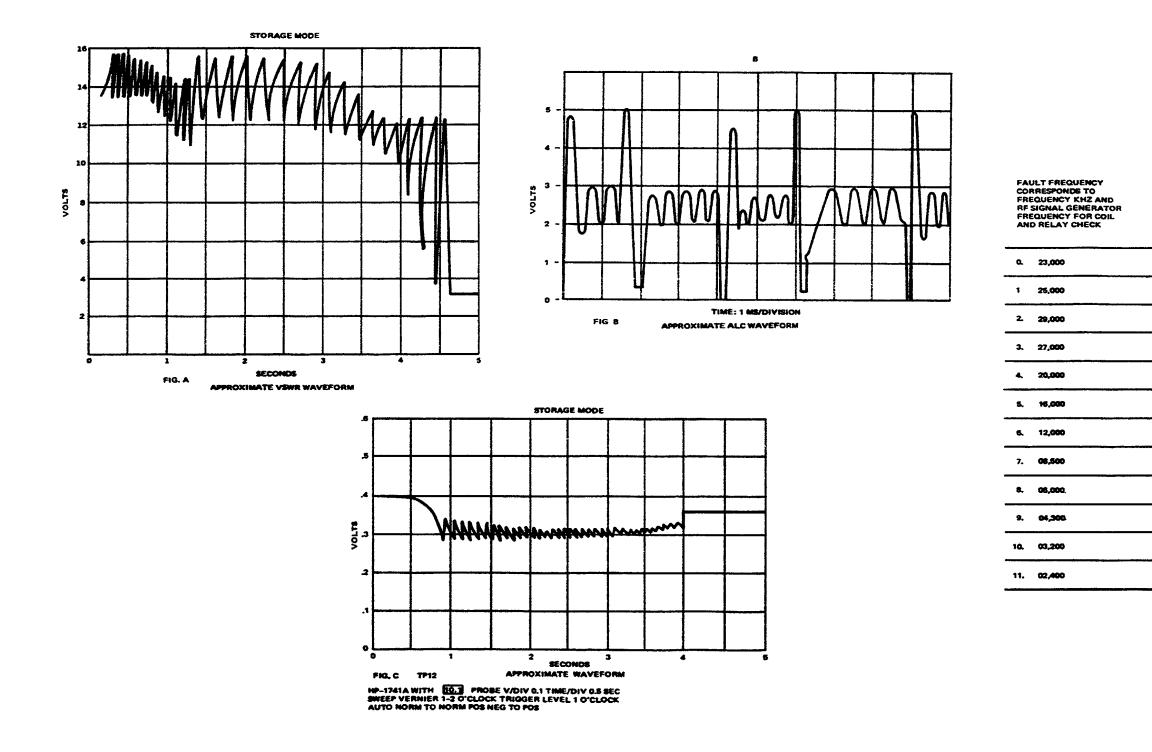


Figure 10-4. Antenna Tuner A2A2 Performance Test (Sheet 3 of 3)

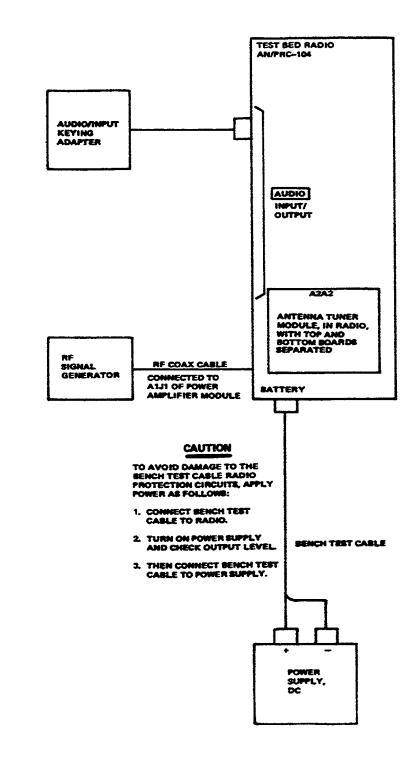
TABLE 1

INDUCTORS (COILS) LI-L11 ARE IN PARALLEL WITH RELAYS K1-K11. TO DETERMINE WHETHER A GIVEN RELAY IS OPEN OR CLOBED, THE IMPEDENCE OF THE INDUCTOR (COIL) IS MEASURED AT A HIGH FREQUENCY BY CHECKING THE VOLTAGE DIFFERENCE ACROSS THE INDUCTORS (COILS). THESE ARE SOME TYPICAL PEAK-TO-PEAK COIL VOLTAGES, WHERE ANS IS COIL IN VOLTS/ COIL OUT VOLTS (WITH RESPECT TO GROUND). A VOLTAGE DIFFERENCE OF 1.5V OR GREATER INDICATES AN OPEN RELAY. RELAY.

*INDICATES CRITICAL RELAY FOR EACH FREQUENCY. IF CRITICAL RELAY IS CLOSED, TRY OTHER FREQUENCIES TO SEE IF WILL OPEN. IF IT WILL NOT OPEN AT ALL IT IS FAULTY.

ļ		्राम्बद्धाः	PAULT	Τ.	_														
	L1	12	ង	ы	1.5	LS	L7	ᄖ	ப	L10	L11	K1	K2	K3	×4	KB	KG	K7	KB
	3/3	3/3.5	3.6/3.8	3.8/.4	4/4,5	4.5/4.9	4.5/5	5/5.5	5.5/6	6/6	6/6.2	0	0	٥	0	٥	0	0	٥
	10/8*	8/8	8/6*	5/5.5								x	×	×					
	10/9.5	9.8/7*	7/7									×	×	×					
		10/10	10/4.5	0.5/4.5								×	×	x					
			6/6	e/15*	18/15									×	×	×			
A REPORT OF A R				7/6	e/23*	27/23								x	x	×			
A design of the second s					5/5	8/35*	36/36							×	x	×			
And a second second						3.8/3.5	3.5/40	40/40							×	×	x		
							2.5/2.5	2.6/18	18/18						×	×	x		
								14/14	14/60	40/6 0						×	×	×	
									27/27	27/80	50/50					×	x	×	
										30/30	30/80 ⁴					x	×	x	Π

X - CHECK THESE RELAYS BY APPLYING +15V TO PIN 4 AND GROUND PIN 5.


O - OPEN RELAY

CAPACITIVE RELAYS TO CHECK FOR EACH FREQUENCY

Description	Reference
100-Ohm Load	Figure 3-11E
130-Ohm Load	Figure 3-11F
RF Coax Cable	Figure 3-11A
Audio Input/Keying Adapter	Figure 3-11C
NONE: Referenced figures are in TM 11-5820-919-	40-1.

TEST EQUIPMENT

Name	Designation	Quantity	
Ratio Set, Test Bed	AN/PRC-104	1	
Signal Generator, RF	AN/USM-323	1	
Digital Multimeter (DVM ohmmeter function)	AN/USM-341	1	
Power Supply, DC	Hewlett-Packard HP-6439B	1	

TM 11-5820-919-40-2

DIGITAL NULTIMETER (DVM, OHMMETER FUNCTION)

ANTENNA TUNER A2A2 ALIGNMENT

The alignment procedure is to be used in either of these situations: (1) the performance test calls a potentiometer out of adjustment, or (2) one of the following is replaced:

- 1. Comparator/Control Hybrid A1
- 2. RF Sensor Bridge

The procedure consists of a preliminary setup and adjustment procedure. The adjustment procedure can be shortened by adjusting R1, R2, B3 and R4 to the values given in step 13 below. The complete procedure need only be run if work has been done on the rf Sensor Bridge.

PRELIMINARY SETUP	ADJUSTMENT	ADJUSTM		
1. Connect test radio as in figure 10-5.	 Close CW KEY and switch MODE to V-RCV and back to V-TR. This generates a tune start pulse. 	10. Adjust B3 until the 1.5 TP9, is the same as that no		
 Connect an rf signal generator to the input of the power amplifier module at A1J1. Set the level to -100dbm and the frequency to 2.000 MHz. 	 Ground (continuously) E7 of ribbon cable. Increase level of rf signal generator until TP13 is 	11. Adjust B2 until the 1.6 TP8 is +10.6v higher than		
3. Remove the antenna tuner module from the test bed radio. Separate the two halves of the antenna	+10v rms. This corresponds to 2 watts in a 50-ohm system.	12. Adjust B1 until the volt		
tuner module which is to be aligned, except for the interconnecting ribbon cable.	4. Measure the dc output of the Z sensor at TP12.	13. The following are typic ALC REM R1		
4. Plug the antenna tuner module to be aligned into the test bed radio.	 Record voltage at TP12. 5. Adjust R4 until the Z comparator reference voltage, TP10, is the same as that measured in step 4. 6. Replace the 100 load with the 130-ohm load (figure 3-11-F, TM 11-5820-919-40-1). 	1.6 REPR21.5 REPR3ZREFR414. Turn radio off and disc		
5. Connect the 100 ohm load (figure 3-11E, TM 11- 5820-919-40-1 to the radio set BNC connector.				
6. Set the radio control to the following:		Reassemble the two boards module being very careful t cable.		
 a. FREQUENCY KHz to 02,000.0 b. MODE to V-TR c. SB to USB d. VOLUME to on e. ANT SEL to BNC 	7. Adjust the rf signal generator so that the voltage at TP13 varies between +7 ant +14v (+7v = 1 watt, +14v = 4 watts) and measure the output of the vswr detector at TP11. But, do not stay at the 4-watt level for any length of tine.			
	 Adjust the level compensation resistor, R7, for minimum variation in do output of TP11 as performed in step 7. 			
	9. Once R7 is adjusted, adjust the rf signal generator			

so that TP13 is +10v rms, Note the voltage at TP11.

IENT (cont)

vswr reference voltage, oted in step 9.

vswr reference voltage at that of TP9.

tage at TP7 is +3.0v.

al settings after alignment:

TP7	+3.0v
TP8	+4.3v
TP9	+3.7v
TP10	+3.3v

connect test equipment. ds of the antenna tuner to avoid pinching the ribbon

APPENDIX A

REFERENCES

AR 55-38	Reporting of Transportation Discrepancies in Shipments
AR 735-11-2	Reporting of Item and Packaging Discrepancies
DA Pam 310-1	Consolidated Index of Army Publications and Blank Forms
DA Pam 738-750	The Army Maintenance Management System (TAMMS)
TM 11-582919-24P	Organizational, Direct Support, and General Support Maintenance Repair Parts and Set AN/PRC-104A
TM 11-5820-919-24P	General Support Maintenance Manual Radio Set AN/PRC-104A
TM 740-90-1	Administrative Storage of Equipment
TM 750-244-2	Procedures for Destruction of Electronic Material to Prevent Enemy Use (Electronics

TM 11-5820-919-40-2

Special Tools List for Radio

s Command**)**

☆U.S. GOVERNMENT PRINTING OFFICE: 1988 0-212-504

/	RECOMMENDED CHANGES TO EQUIPMENT TECHNICAL PUBLICATIONS							
$\overline{7}$	5			Some		WRONG WITH PUBLICATION		
	FROM: (PRINT YOUR UNIT'S COMPLETE ADDRESS)							
\bigcap	CAREFULLY TEAR IT OUT, FOLD IT AND DROP IT IN THE MAIL.							
PUBLICAT	PUBLICATION NUMBER PUBLICATION DATE PUBLICATION TITLE							
BE EXAC	T PIN-P	DINT WHEF	re it is	IN THIS SPACE, T	ELL WH/	AT IS WRONG		
NO.	GRAPH	NO.	ΝΟ.	AND WHAT SHOU				
PRINTED	NAME, GRA	DE OR TITL	E AND TELE	EPHONE NUMBER	SIGN HE	RE		
DA 1 JU	DRM 20)28-2		EVIOUS EDITIONS E OBSOLETE.	RE	SIF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR COMMENDATION MAKE A CARBON COPY OF THIS ID GIVE IT TO YOUR HEADQUARTERS.		

PIN: 059437