Special Technical Report 27
∞
MANUAL FOR ARN-3 TYPE ATMOSPHERIC NOISE MEASURING EQUIPMENT

By: R. L. BROWN

Prepared for:
USS. ARMY ELECTRONICS COMWIAND
CONTRACT DA-36-039 AMC- $\because, 0(\mathrm{~F})$
FORT MONMOUTH, NEW JERSEY
RRGMWE ROPY

$\left(t^{2}\right.$
$\%$

STANFORD:RES.EARCH INSTITUTE
$\triangle E N L O, P A R K, C A L I F O R N I A$

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE.

COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

MANUAL FOF. ARN-3 TYPE ATMOSFHERIC NOISE MEA'URING EQUIPMENT

Prepared for:
U.S. ARMY ELECTRONICS COMMAND

FORT MONMOUTH, NEW JERSEY
CONTRACT DA-36-039 AMC.00040(E) ORDER NO. 5384-PM-63-91

By: R. L. BROWN

SRI Project 4240

Distribution of this document is unlimited.

Approved: E. L. YOUNKER, TECHNICAL DIRECTOR MFRC ELECTRONICS LABOFATORY, EANGKOK
W. R. VINCENT, MANAGER

COMMUNICATION LABORATORY
D. R. SCHEUCH, EXECUTIVE DIRECTOR ELECTFONICS AND RADIO SCIENCES

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY ARPA ORDER 371

Abstract

Equipment has been developed and constructed for use in studies of atmospheric noise in Thailand. Average noise power and the mean envelope voltage can be measured at eight fequencies in the VLF, LF, MF, and HF bands. The design of this equipment is derived from the National Eureau of Standards (now ESSA) ARN-2 noise-measuring equipment. The equipmen i is operated in conjunction with the standard ARN monopole and ground plane and so the data obtained are compatible with data from che existing worldwide network of noise stations coordinated by ESSA, Boilder, Colorado. Impulsive voltages induced in the standard antenna by local thunderstorms are recorded at several threshold levels by l.ghtning-flash analyzer equipment to supplement the ARN type data.

This report is intended as an operation and maintenance manual. It expla:ns the principles of operation and includes schematic diagrams and sample lecords as well as a description of calibration and datareduction procedures.

CONTENTS

ABSTRACT iii
LIST OF ILLUSTRATIONS vii
LIST OF TABIES ix
ACENOWLEDGMENTS xi
I INTRODUCTION 1
II PRINCIPLES OF OPERATION 9
A. General 9
B. Circuit Descriptio. 15

1. Line-Voltage Range Limiter, U-28 26
2. General Radio Automatic Line-Voltage Regulators, Model 1570-ALS 15; U-18 and U-24 28
3. Kepco Power Supplies, Models HB-4-AM (U-11) and SM-325-1M (U-12) 28
4. Relay and Isolator Filament Supply, U-23 28
5. Timing and Control Unit, U-22 28 28
6. Input Fanel, U-7 34
7. Attenuator Panel, U-13 37
8. Hammerlund SP-600-JX Receivers, U-4, U-5, U-16, U-17 43
9. Low-Frequency Converters and Power Supplies U-1, U-20, U-30, id-31 46
10. Function Shelves, $U-3$ and $U-15$ 50
11. Recorder Pen Drive Amplifiers, $\mathbf{U}-10$, and Power Supp:y, U-19 52
12. Recorders, U-2 and U-14 52
13. Speaker Panel, U-8 52
14. HF Signal Generator, U-9 52
15. LF Calibration Instrumentation, U-29 55
16. Calibration Unit, U-6 55
17. Counter Driwe Unit, LFA, U-27 55
18. Display Panel, LFA, U-26 62
19. Recording Camera-Control Unit, U-2! 62
20. Recording Camera, U-25 62

CONTENTS (Concluded)

III INSTALLATION, OPERATION, AND CALIBRATION 67
A. Installation 67

1. Siting 67
2. Antenna 67
3. Other Requirements 67
4. Equipment 68
5. Initial Turn-on and Preliminary Adjustments 68
B. Operation 69
C. Calibration 71
6. Pen-Drive Anplifier Calibration 12
7. HF Calibration 73
8. LF Calibration 77
9. LFA Calibration 79
IV DATA COLLECTION AND REDUCTION 81
A. Gene:al 81
B. Determination of Median and Decile Values 90
V MAINTENANCE AND TROUBLE SHOOTING 93
VI CONCLUSIONS AND RECOMMENDATIONS 103
Appendix A CALIBRATION THEORY 105
Appendix B COMB FILTER ALIGNMENT 113
Appendix C PORTABLE EQUIPMENT INSTALLATION 119
REFERENCES 133
DISTRIBUTION LIST 137
DD Form 1473

I LLUSTRATIONS

Fjg. 1 Map Showing Laem Chabang 4
Fig. 2 View of Ground Plane, Antenna, and Equipment Van 5
Fig. 3 Equipment, South Side, Laem Chabang 6
Fig. 4 Equipment, North Side, Laem Chabang 7
Fig. 5 Functional Block Diagram 11
Fig. 6 Impedance of ARN Antenna 13
Fig. 7 Equipment Layout, Laem Chabang 17
Fig. 8 Signal Interconnections, Laem Chabang 19
Fig. 9 Primary AC Power Distribuxion, Laem Chabang 21
Yig. 10 Control and Secondary Power Ir erconnections, Laem Chabang 23
Fig. 11 Li,re-Voltage Range Limiter, U-28 27
Fig. 12 Line-Voltage Regulator Connections, U-18 and U-24 29
Fig. 13 Relay and Isolator Filament Power Supply, U-23 30
Fig. 14 Niming and Control Unit, U-22 31
Fig. 15 Input Panel, U-7 35
Fig. 16 LF Preamplifier and Filter Response, ARN-3 38
Fig. 17 MF-HF Preamplifier Response, ARN-3 39
Fig. 18 Attenuator Panel, U-13 41
Fig. 19 SP-600-JX Receiver Modifications $\mathrm{U}-4, \mathrm{U}-5, \mathrm{U}-16, \mathrm{~J}-17$. 44
Fig. 20 AVC Control Characteristics 0 : SP-600-JX Receiver $\therefore 5$
Fig. 21 Dynamic Range Requirements, AKN-3 46
Fig. 2. LF Converters, ARN-3, U-1 47
Fig. 23 Power Supply for LF Converters, Laem Chabang, U-20 49
Fig. 24 Function Shelf, U-3 and $U-15$ Back
Fig. 25 Modification to Brush Recorders, U-2, U-14 53
Fig. 26 Speaker Panel, U-8 54

ILIUSTRATIONS (Concluded)

Fig. 27 IF Calibration Instrumentation, U-29 55
Fig. 28 Calibration Unit, U-6 57
Fig. 29 Counter Drive Unit, $\mathrm{LF}_{\mathrm{A}}, \mathrm{U}-27$ 59
Fig. 30 Display Pancl, LFA, U-26 63
Fig. 31 Recording Camera Control Unit, U-21 64
Fig. 32 Recording Canera, U-25 65
Fig. 33 Antenna Installation at Lat "Chabang 68
Fig. 34 Typical Date Chart, Channel 1 and 2 82
Fig. 35 Typical Data Chart, Chanuel 3 and 4 83
Fig. 36 Typical Calibration Marking of Chart 85
Fig. 37 Typical Data Sheet, F_{a} 86
Fig. 38 Typical Data Sheet, V_{d} 87
Fig. 39 Typical Log of Calibration Factors, MF and HF 88
Fig. 40 Typical Log of Calibration Factors, $L F$ and VLF 89
Fig. B-1 Comb Filter Layout 116
Fig. C-1 Equipment Layout, Portable 122
Fig. C-2 Signal Interconnections, Portable 123
Fig. C-3 Primary Power Distribution, Portable 125
Fig. C-4 Control and Secondary Power Interconnections, Portable 127
Fig. C-5 LF Converters, ARN-3, Portadio, U-30 129
Fig. C-6 Power Supplies for LF Convertexs, Portable, U-゙̈1 131

TABLES

Table \quad Equipment Specifications 10
Table II Units Comprising the ARN-3 and LFA Complex 16
Table III Table for Determining Median, Lower, and Upper Decile Values 91
Table IV Typical Voltage and Resistance Values 94
Table V List of Tubes and Fises 98
Table VI Maintenance Components Listed by Unit 99
Table B-1 Effect of Varying Filter Elements 115

ACKNOWLEDGMENTS

We gratefully acknowledge the consulting help of Mr. W. Q. Crichlow, Mr. R. T. Disney and their staff of ESSA (formerly NBS) in the design and check-out of this equipment. Mr, Crichlow designed the ARN-2 and had assembled a portable (panel-truck-mounted) version whic' he designated ARN-3. The ARN-S basic circuitry was used in the design of the equipment described herein, so that it has been called ARN-3 type equipment. Appendix A, Calibration Theory, is entirely based on Mr. Crichlow's work in Ref. 7.

We also wish to thank Mr. John Yerborough and his staff in the SRI Computer Techniques Laboratory for their excellent work in constructing the basic equipments, and Mr. Hichard Krebs of the Commanication Laboratory for his handling of their check-out, shipping and installation.

In addition, the help of Mr. Rangsit Chindahpo $£ n$ of SRI Bangkok; of Lieutenant Chaikamol Lumjiak of the Royal Thai Air Force, and of Mr. Kenneth Taylo: of Vitro Corporation in the installation and checkout of the basic equifment and in the construction and installation of auxiliary portions of the equipment has been invaluable. They have also been responsibie for negotiations with various agencies of the Thai government, for training maintenance and data-processing personnel, and for the operation and maintenance of the equipment. Xi

I INTRODUCTION

The Mil.tary Research and Development Conter, a joint Thai-U.S. agency organized to conduct research or many subjects in a tropicni environment, has a major interest in tropical radio communication. In any radio system or equipment deisign, a fundamental consideration is the noise environment in which it will operate. ${ }^{1 *}$ The environmental noise (as distinguisined from internal or system noise) consists of man-made, cosmic, and atmospheric noise. Man-made noi is a separate problem which involves political as well as technical considerations in its measurement and control. The techniques for neasuring it ${ }^{2},{ }^{3}$ are radicaliy different from those used to measure atmospheric noise. Cosmic (sometimes called galactic) noise, which is radio noise broadcast by the sun and other stars, is relatively low in level, and is not a very important component below 10 MHz because of the shielding effect of the ionosphere. Atmospheric noise ${ }^{4},{ }^{5}$ consistsprimarily of noise generated by lightn.ang discharges.

The principal components generated by lightning consist of large impulses due to nearby discharges and a more contiruous background from more distant flnshes. The transmission of this background is complex; for close discharges it is primarily by ground wave and line-of-sight paths. When the thunderstorm sources are more distant, the transmission at all frequancies up to those penetrating the ionosphere is almost. entirely jy ionospheric reflection. The thunderstorm sources are predominantly located where there are land masses near the geographic equator. Therefore a high noise level can be expected in the tropics because of the high degree of ionization of the ionosphere and consequent good propagation conditions and because the noise is mostly generated in tropical areas.

[^0]A network of identical atmospheric noise measuring equipments designec and coordinated by ESSA (the Envi ronmental Sciences Services Administiation) has been in operation at sixteen locations around the world for a number of years. ${ }^{6}$ The equipment has the designation ARV-2; ${ }^{7}$ it measures noise over a $200-\mathrm{Hz}_{\mathrm{z}}$ bandwidth at eight frequencies. Data from the network is cuordinatud and published bj ESSA ${ }^{8}$ and CCIR ${ }^{9}$, 10 Sinee Thailand is a long way from the nearest of these stations (Singapore, ${ }^{11,12}$ whicl has been inoperative for long periods), and communication experinients in mhailad jndieated very wide statistieal deviations from the predicted noise medians, and sinco data could be obtained from equipment of this kind w colrelate prediction with system performance (particularly with respect to relative antenna acceptance of noise), it was detemiacd to procure similay equipment for measurements iu Thailand.

Since such equipment is complex 13,14 and not commercially available, it was deciled to conctruct equipment embodying the basie circuitry of a transportable NBS mowification of the ARN-2. SRI adapied inis modification for use on Project SEA CORE in Thailand, and the SRI equipment is hereafter referred to as the ARN-3. However, it differs from the NBS equipment in a great many respects. It uses four of the same frequencies (nominally $0.5,2.5,5$, and 10 MHz), the same $200-\mathrm{Hz}$ Uandwidth, and the same integration time constants. There is also provision tc measure noise at four VLF ${ }^{5}$ frequencies: 6, 13, 27, and 160 kHz . Unlike the ARN-2 and wile ARN-3 prototype which moasure two frequencies at a time, this equipner measures four frequencies (has four channel, j. Timing and programning equipment has, in addition, been aesigned and constructed by SRI.

Larger impulses 1 ron reiatively nearby discharges have a briefly catastrophic effect on radio reception. Tic bulk of previous limatological data on lightning flashes has veen collected by counter.s operating in two frequency bands; these are usually referred to as ERA ${ }^{1}$ (100 Hz to 2500 Hz) and $\operatorname{CCIR}^{17}(2 \mathrm{HHz}$ to 50 kHz$)$, indicating the origin of the impulse diatectors lised. The bulk of such studies ${ }^{18}, 19,20,21,22,23$
is not specifically directed toward the problems posed to radio communication by such impulses, Therefore, a Lightning Flash Analyzer was added to the equipment to perform pulse-height analyses in each of the two "standard" frequency bands described above.

Since the ARN-3 equipment is intended to measure atmospheric radio noise uncontaminated by man-made noise, it is necessary to site the equipment where man-made nolse is not excessive. Such siting includes staying well away from power lines, which are not only a source of noise but also act as transmission lines to carry noise from one place to another. As a result the equipment must be powered by a local generator. This involves problems of voltage and frequency conirol which add to the complexity of the equipment. The site chosen in Thailand is at Laem Chabang, on the eastern coast of the Gutf of Thailand about 130 km south of Bangkok (see Figs. 1, ?, 3, and 4). The balance of this manual will be in terms of the Laem Chaba.g installation; Appendix C discusses the mino.diffarence between this and a second ARN-3 unit, which has been designed for portable installation.

With these installations the intention is to assemble a detailed picture of atmospheric noise in Thailand including its statistical distribution with frequency, time of day, season, time of suaspot cycle, and geographic location. The VLF converters provide the capability of identifying sudden ionospheric disturbances and in some cases of predicting communication disruption, sınce these disturbances follow magnetic -torms. The Lightning Flash Analyzer will extend the analysis of the pulse structure of neise up to the "catastrophic" (from a communications point of view) range. The equipment can be used in experiments to gathor data on relative noise acceptance by certain common tactical antenna types. Also, by using data from the Laen Chabang and portable equipments, geographical factcrs and correlation factors depending on distance may be found.

[^1]

FIG. 1 MAP SHOWING LAEM CHABANG

fig. 2 view of ground plane, antenna, and equipment van

FIG. 3 EQUIPMENT, SOUTH SIDE, LAEM CHABANG

FIG. 4 EGUIPMENT, NORTH SIDE, L_EM CHABANG

Analysis ${ }^{24}$ of such data should then provide noise characteristics needed in predicting the quality of radio communication to be expected in Thailand at any particular time with any given set of equipment parameters (frequency, transmitler power, antenna efficiencies, receiver sensitivity, type of modulation, etc.). This will permit more accurate design of communication systems to provide any specified degree of communication reliability.

II PRINCIPLES OF OP BRATION

A. General

The basic purpose of the ARN-3 equipment is to measure on an absolute basis the noise in narrow bands centered at specified frequencies in the VLF, $L F, M F$, and $H F$ bands. The equipment must provide amplification over a wide dynamic range with an internal noise level that is small compared with the minimum atmospheric noise to be measured. The overall specifications for the equipment are given in Table 1.

The equipment has four channels, each of which accents a $200-\mathrm{H} 2$ band of noise at either an LF or an EF center frequency. In each channel outputs are recorded of average power and average envelope voltage. From these the amplitude probability distribution of the noise can be determined. ${ }^{24}$

Calibration consists of comparing the power level at the input terminals with a "standard" noise diode output, and then measuring the antenna efficiency. The procedure is described in detail in Sec. III-c. The theory is discussed in Appendix A.

The purpose of the Lightning Flash Analyzer (LFA) nortion of the equipment is to record the incidence of pulses of various levels induced on the standard antenna in two bands centered at ELF and VLF. Enough data exist, from previous research, to establish a statistical correlation between pulses in these two bandwidths and the geographical distribution of lifhtning strokes near the equipment.

The overall system is shown in simplified form in Fig. 5, the Functional Block Diagram The standard antenna consists of a vertical whip 21.75 feet (6.6294 m) tall above a ground plane of 90 wires extending outward 100 feet (200 -foot-diameter circle). The impedance of this antenna* is plotted in Fig. 6. The signal fiom this is isolated

[^2]
EQUIPMENT SPECIFICATIONS

BLANK PAGE

*

NOTES :
I there are 3 more channels, identical to the above, to the RIGHT OF DASHED LINE.
2 RELAY CONTACTS (R) ARE NORMALLY SWITCHED EACH 30 MINUTES by the timing and control unit.
3 FREQUENCY ASSIGNMENTS ARE AS FOLLOWS:

	MF -HF	
CHANNEL 1	530 kHz	160 kHz
CHANNEL 2	2.3 MHz	27 kHz
CHANNEL 3	5 MHz	13 kHz
CHANNEL 4	10 MHz	6 kHz

4 EACH 30 MINUTES THE LEA COUNTERS ARE DISABLED FOR 4 SECONDS WHILE FLOOD LAMPS ARE TURNED ON AND A PICTURE IS TAKEN BY THE RECORDING CAMERA. THE COUNTERS THEN AUTOMATICALLY RESET TO 0.

FIG. 5 FUNCTIONAL BLOCK DIAGRAM.

FIG. 6 IMPEDANCE OF ARN ANTENNA
from the a nalyzing circuits by three cathode followers. These prevent interaction between the various input filters and provide a siable impedance source for the filters. Following the first of these is a relay which selects a signal path for low-frequency (6 kHiz to 160 kHz) signals or for higl:-frequency ($0.5 \mathrm{MH} \%$ to 10 MHz) signals. The high-iraquency signal goes through a comb filter--a four-frequency band-pass fi’ter-having response peaks at $0.53 \mathrm{MHz}, 2.3 \mathrm{MHz}, 5 \mathrm{MHz}$, and 10 MHz . The value 0.53 MHz is used rather than $(5$ because this is the low-end tuning limit of the $\mathrm{S}^{p-600-J X}$ receiver, and 2.3 MHz is used rather than 2.5 MHz because of strong local interfereace at 2.5 Nr lz .

After the filter, the signal gows into a transistorized preamplifier which amplifies the signal and provides jour outputs at 51 ohms impedance. These feed isto foui at tenuators which provide 10-dB steps of attenuation from 0 ts 70 dB (only one is shown in Fig. 5). The outputs of the attenuators connect to the inputs of the $S P-600-J X$ receivers. These receivers, which cover the frequency range of 0.53 to 54 MHz , have been modified to permit breaking into the AVC bus and to permit signal injection (at 455 kHz) directly into the IF strip. These recejvers provide a buffered $455-\mathrm{kH} \%$ output from the IF strip which feeds both the v ltage strip and the power strip in the funcion shelf. In the power strip the parajolic amplifier and the power detector derive a dc output proportional to the average input power. This is amplified and recorded and is also fed back to the receiver as an AVC voltage with a loig (500-second) time constant. The loop amplification is sufficient to keep the average output of the receiver constant within $0,1 \mathrm{~dB}$ over approximately a $40-\mathrm{dB}$ range of input signal. The $455-\mathrm{kHz}$ signal going into the voltage strip is detected, amplified, and recorded.

In the low "requency position of the relays the signal goes first through a low-pass; filter with a cut-off frequency of 260 kHz , and then (since low-frequency nosse is frequently large in amplitude) through an attenualor and into the low-frequency preamplifier. This has four outputs of approximately 100 ohms impedance which feed the four lawfrequency converters (for $6 \mathrm{kHz}, 13 \mathrm{kH}, ~ 27 \mathrm{kHz}$, and 160 kHz) through four attenuators. The converters are equivalent to the front ends of
the Sp-600-Ji, receiver and !evide $455-k i f$ out outs which are applied to the inputs of the IF strips.

The other two rathode followers feed band-rass filters and pulseheight analyzer counters. The band-pass ot the "CCIR" filter centers on 10 kHz and is down 3 dB at 2 kHz and 50 kiz . The "ERA" filter centers on 500 Hz and is $\because \mathrm{H} / \mathrm{H}$ down at 100 Hz and 2500 Hz . These filters each terminate in a net of three potentiometers which each feed a counter channel. Each channel consists of an amplifier, a phase splitter and detector, a monostabic flip-flop, and a mechanical counter with its c:rive amplifier. Within each requency band the channels are set to 1 -volt, 3-volt, and 10-volt threshold levels. These thresholds are established by discharging a capacitor charged to the specified voltage into the antenma and setting the input potentiometer so that the counting threshord is established at that boltage. The same timing and control circuitry that switches the ALN-3 equipment from $H F$ to $: F$ each 30 minutes causes a recording camera (16 mm) to take a picture of ie counters each 30 minutes, after which they are reset to zero.

During calibration of the equipment, the Calibration Unit provides source impedances equivalent to that of the standard antenna at each frequency. It also contains the reference noise diode and provision for injecting signals from either the $H F$ or $L F$ sign 1 generators.

A list of the units that make up the equipment is given in Table II.

B. Circuit Description

Figure 7 shows the equipment layout for the installation, Fig. 8 the signal path interconnctions, Fig. 9 the primary ac power distribution, and Fig. 10 the distribution of secondary power and control voltages.

The signal connections follow the functional block diagram (Fig. 5) very closely (see Fig. 8). In this and similar diagrams, symbols such as Jl of U-6 indicate coaxial connectors for high-impednnce, low-capacity cable; symbols such as $J G$ of $U-7$ indicate BNC type coaxial connectors; s?mbols such as J4 of U-i indicate audio (telephone) jacks and plurs; and, where a complex comector is shown (like $J 10$ of $\mathrm{U}-10$), a simplified

Table II
UNITS COMPRISING TUE AR-3 AND IFA COMPIEX

Jnit		Fig. No.	Page
1	Low-Frequency Cunvorters	22	42
20	Power stupply for U-i	$\therefore 3$	43
2 and 14	* Brush Recorder's	See manual and Fig. 25	47
3 and 15	Function Shelves	24	Back cover pocket
$4,5,16$ and 17	* SP-600-JX Receivers	See manual and Fig. 19	38
6	Calibration Unit	28	51
7	Inprit Panel	15	32
8	Speaker Panel	26	48
9	* $\mathrm{H}^{\text {D }}$ 606A Signal Generator	See manual	
10	* Brush Recorder Drive Amplifiers	See manual	
19	* Power Supply for U-10	See manual	
1.	* Kepco Power Supply, 300V neg.	Sie manual	
12	* Kepco Power Supply, 300V pos.	See manual	
13	Attenuator Panel	18	36
18 and 24	* GR Automatic Line Voltage Regulators	See manual and Fig. 12	25
21	Recording Camera Control Unit	31	57
22	Timing and Control Unit	14	28
23	Gelay and Iso* ator Filament Power Supply	13	26
25	* Recording Camera	See manua? and Fig. 32	58
26	Display Panel, LFA	30	55
27	Counier Drive Unit, LFA	29	53
28	Line-Voltage Range Limiter	11	23
29	* LF Calibration Instrumnnts	27	50
30	Low-Frequency Converter, Pertable	C-5	121
31	Power Supply for U-30	C-6	122

[^3]

SOUTH WALL ARN - 3
INSTALIATION (LAEM CHABANG)
LINE REGULATOR, $U-18$, PO'IER
SUPPLY FOR RECORDER PEN
DRIVER AMPLIFIERS, $\mathrm{U}-19$, AHD
FOWER SUPPLY FOR LOW
FREQUENCY CONVERTERS, U-20,
ARE BEHIND RACKS.
SCALE : $\frac{1}{4}=1 \frac{3}{4}$

FIG. 9 PRIMARY AC POWĒR DISTRIBUTION, LAEM CHABANG

drawing of the chassis comecter is shown with an adjacent strip showing lettered cireles corresponding to the comector pin identifications. In the dwe position of the Calibration Unit function switch the sigral from the antema goes straight through to the lnput Panel (U-7). From this, two outputs no to the lifd and the threshold calibrating voltage tor the tha comes in on E1-E2. The HF signols cone out of U-7 on J6, 37, Js, and Jy into the attenuators, from which they go to the four recelleיs. The $155-\mathrm{kH}$ / utput of each receiver goes inio tac voltage and power strips in the function shelf; J 2 and Jl 2 go into the power strips, and $J 6$ and $J 16$ foto the voltage strips. These strips dive recorter channels, the power strip outputs are J3 an 1 J 13 , the voltage strip outputs are J8 and Ji8, and the power strips provide an AVC voltage from 17 and $\mathrm{Jl7}$ o the raceivers and converters. The receiver audio outputs go to the speaker panel, so that an operator may identify and avoid man-made interference. This panel also provides a jack for signal injection for calibration, and attenuators for use in calibration. Jal of the nput panel lakes the low-frequency signal into the attenuator panel, from which it goes out through J11, J12, J13, and J14 to the low-frequency cenverters. These in turn have outputs (at 455 rHz) on Jl, Jil, J7, and J10 which go into the receiv, r 'strips at J6.
lhe primary power input (see Fig. 9) goes through the usual circuitbreaker panel and then threserh the voltage-range limiter. This is a unit that acts to remove power from the equipment before the inpet voltare varies beyond the crective range ($115 \mathrm{v} \pm 20$) of the automatic line-voltage regulator. It also activates an alarm circuit when the fuipment is smut off. When the voltage returns to the proper range the power 15 restored to the equipment automatically.

The control und secondary powe: connections (see Fig. 10) are extremely various. They anclude 115 V ac power derived from a frequency standard and used to run clocks and recorders, de and filament power commecions to unitr with external power ;upplies, and selay power distrutution.

A more detailed description of the equipment units is given in the following paragraphs. First will be considered the line-volthee range limiter, the automatic line-voltage regulators, and the main power supplies including the diming and control unit; noxt, the $H:$ and IF atmospheric noise lccorder equipment, followed by its calibration cquipment; and filslly the LFA and its recording camera.

1. Line-Voltage Range Limitcr, U-28 (See Fig. 11)

This unit romoves power from the cquipment whenever the 1 ne foltage approaches the correction limit of the Adtomatic Line Voltagc regulator (see Sec. VI for further discussion). It consists of two heary-duty relays (PR 11 AY), using two sets of contacts wired in parallel, which allow power into the cquipment only when activated. They are activated only when both the dc rclays (LM 11) are activated. The transformer derives its power from the incoming line and provides unregulated outputs (both positive and negative with respect to ground) and iss) 150 -volt mositive and negative regulated voltages. The cathode of cach of the reay drive triodes is connected to ground. Theirgrids are connected to bleeder networks betwecn the regulated and unregulatod de voltages. For the high-limit control, the positive cnd of the network is connected to the reguiated positivc voltage and the negative end to the unregulated negative voltage. The potentiometer is set so that in the normal. range enough current flows throufh the tube to hold the relay operated, but when the input ac voltage rises to the preset point (e.g., 132V) the unregulated negative voltage becomes great enough to cause the relay to drop out. The low limit network is connected between the regulated negative voltage and the unregulated positive voltage. Here, as the voltage drops, thc unregulated positive voltage is insuffic.ent to hold this relay in. The difference in drop-out and pick-up current of che relays provides about 5 voits (at the ac line) of hysteresis in the relay action whicn fievents hunting or chattering at the range limits. When the power-1ine relays drop out, they apply the input voltage to an alarm light and an external alarm circuit which rings a bell in the living quarters of he maintenance operator.

2. General Radio Automatic Line-Voltage F. sulators Model 1570-ALS 15; U-18 and U-24

A drawing (Fig. 12) is provided, showing the connections used for the options required for this equipment (115 volt, single phase, ± 20 range). The manual for this equipment explains its operation.
3. Kepco Power Supplies, Models HB-4-AM (U-11) and $\mathrm{SM}-325-1 \mathrm{M}(\mathrm{U}-12)$

U-11 is used to furnish a regulated negative 300 volts to the Function Shelves ($\mathrm{U}-3$ and $\mathrm{U}-15$). $\mathrm{U}-12$ supplies regulated positive 300 volts to the Function Shelves ($U-3$ and $U-15$), to the Calibration Unit ($\mathbf{U}-6$), to the Input Panel ($\mathbf{U}-7$), and to the Attenuator Panel ($\mathbf{U}-14$). The manuals for these power supplies adequately describe their operation.
4. Relay and Isolator Filament Supply, U-23 (See Fig. 13)

This supply provides 0.35 amp at 24 volts dc unregulated for relay operation, and 12.6 volts reglilated to heat the filaments of the cathode followers which isolate the antenna inputs in thr Input Panel.
5. Timing and Control Unit, U-22 (See Fig. 14)

This unit contains a E0-cycle frequency-stable source to provide 110-volt power ("Time Power") to run clocks and recorders, and also contains various timing and control functions. The stable 60-cycle ($\pm 0.075 \%$) source is a Fork Model YC-60-AA tuning fork, with a following power amplifier. A separate regulated 12 -volt supply is provided for the tuning fork. Its output is amplif:ed by the two-stage 12AU7 driver which is transformer-coupled to the class AB_{2} push-pull power amplifis?. This provides up to 50 watts of timing power output. The output voltage level may be read at test points i and 6 and set by the SET VOLTS potentiometer. The 400 volts dc as read between $T P-1$ and $T P-3$ should be within 15 volts of 400 volts, and can be adjusted (with power turned off) by the variable s00-ohm resistor. The bias voltages as read between TP-2 or TP-4 and TP-3 should be set within $1 / 2$ volt of -28 volts by means of the BIAS potentiometers. Note that there is a 30-second time delay in applying the full 400 volts when the equipment is first turned on. The settings of the bias voltage, the output ac voltage, and the 400 volts of the
I
I

I

NOTE: VALUES OF ALL CAPACITORS IN MICROFARADS UNLESS

power supply interact, so no large changes shoujd be made in any of these settings without looking for possible irouble. Iny change in settings calls for checking the other test points and setings. These test points should be checked at least weekly.

At the output of the power amplifier there is a LOAD switch. The Brush Recorder motors powered by this unit look like an roo-ohm load each, so if either is to be removed from the circuit for some ime this switch should be pat in the 800 -ohn position so that the output voltage will remain constant. The 400 -ohm posivion is suitable for bench testing or for operation of the clocks only. Also across the output is a neon indicator lamp and a rectifier and filter circuit. This rectifier powers a de relay so arranged that if the l ime Power sutput voltage drops below 90 volts the relay will drop out and provide power to the time circuits from the generator line. There is also a synchronous clock across the amplifier output which will give an indication of the time when the amplifier failed, since the opening of the relay remores its power. Note that this is possible only because the time power source uses a wired, not chassis, ground.

The Time Power output provides power for the clock motors in the two internal time switches (Intermatic Types T 101 and T 1975) and externally to the Brush Recorder slow-speed drive and tiring marker mintors and (through J2) to the clock on the LFA displa; panel. The T 101 Date Timer provides an output once each 24 hours which can be used in future to activate a calendar change on the LFA display panel (this is presently done by the operator) and to activate a date mark on the recorders. The $T 1975$ switch timer is normally set to be on for 30 minutes, then off for 30 minutes, alternately. It can be set for any arrangement down to 15 -minute intervals. When it switches to "on" it lights the VLF lamp on the attenuator panel and powers the PR5AY relay. When this relay is activated (if the MODE switch is in TIME position) it applies the $24-v u l t$ relay power to the LF relays in the filter Git the Input Panei and in the $\mathrm{SP}-600-\mathrm{JX}$ receivers. Within the Timing and Sontrol init it activates the KRP1i DG relay to operate the right-band "everit" pens in the Brush recorders. When this relay is
elosed the evenc pens move to the 1 ight; away from the center of the chart. It also inetivates the KHP 17 DLI relay which provides timing for the camera and for the discharge ("Reset") relays in the function shelves.

This relay (KHP 17 D11) when inactivated allows the $1.0-\mu f$ capacitor to charge up to 150 volts through the 1 -megohm resistor to the $+300-v o l t$ supply, When it is activated, this capacitor is discharged through the © 6 -k resistor at the input to the lower monostable flip-flop. This operates the $1 N-11$ relay and (if the Mode switeh is in TIME position) applies 24 volts to the discharge relays for approximately 0.5 second. This brings the "power" pens toward chart conter quickly which serves two purposes. First, it delineates the switch point on each chart track, and, second, it speeds up stabilization at the new input level. buring the period that the KHP 17 D11 relay is held in, the $2.0-\mu f$ capacitor charges up to 150 volts, and when the relay drops out at the end of this period the capacitor discharges into both flip-flop inputs. Thus one of the $L \mathbb{L} 11$ relays operates each time the $t i m e r$ switches on or off; the other only when it switches off. The connections for providing a pulse of 60 Hz to the Camera Control Unit, $\mathrm{U}-21$, can be connected to either relay, depending on whether 15 minute or 30 -minute timing is being used; 30 -minute timing is normal. This circuitry is powered externally so that it will continue to operate even if the time power fails.

Note that these half-second pulse outputs each 15 and 30 minutes or each 30 and 60 minutes can be used to drive latching or stepping relays for operation of more elaborate switching sequences such as would be required for some projected experiments.

6. Input Pane1, U-7 (See Fig. 15)

The Input Panel consists of three subassemblies: the antenna isolator, the filter package, and the MF-HF preamplifier. The antenna isolator consists of three cathode followers and provision for injecting a caliurating pulse fur the LFA. The cathode follower which carries the $A R N-3$ signal has an output impedance of 375 ohms, cnosen to be a

ORS IN MICROFARADS UNLESS UTHEF.WISE INDICATED

FIG. 15 INPUT PANEL, U-7
good source for the comb filter, and the other two cathode followers which feed the two LFA channels have an output impedance of 750 ohms. A $1000-c h m$ series resistor is placed in the output of eack for isolation. , e filaments are supplied with regulated de to minimize circuit noise, and all dc inputs are filtered.

The filter package consists of a relay, a low-pass filter, and a conb filter. Figure 16 shows the neasured response of the low-fiequency preamplifier (in the Attenuator Panel) with and without the low-pass filter. This filter is designed to work between 1000-ohm impedances, so a 620-ohri resistor is added at its input. The comb filter passes four frequencies: $0.53 \mathrm{MHz}, 2.3 \mathrm{MHz}, 5 . C \mathrm{MHz}$, and 10 mHz . At these frequencies the $3-\mathrm{dB}$ bandpasses are $91 . \mathrm{Hz}, 88 \mathrm{kHz}, 127 \mathrm{kltz}$, find 345 kHz . respectively, It should very rarely need alignment, except to avoid persistent interferenc:. Refer to Appendix B if such slignment is necessary.

The output of the comb ilter goes into the MF-HF preamplifier. The preamplifier response is sinown in Fig. 17. It provides four outpurs at a nominal 51-ohm impedance, and ciraw its power from the +300 volt supply through a dropping netrork in the Calibration Unit. Note that the gain show on the ordinaie is that between the points designated $V_{\text {in }}$ and $V_{\text {out. }}$. The accual gain between input and output of the amplifier is 19 dB higier than the ordinate number, since the input imfedance of the amplifier is 1000 ohms. Therefore the gain of the amplifier at the cperating frequencies varies from 31 to 36 dB . This gain, and the low interna? noise of the preamplifier, permits operation in the optimum signal-level rarge of the $S P-600-J X$ receivers with respect to dynamic range and freedom from internal noise.

7. Attenuator Panel, U-13 (See Fig. 18)

This panel includes four Daven coaxial attenuators (50 ohm) for the HF channels, providing up to 70 dB attenuation in $10-\mathrm{dB}$ steps.

In the low-frequency path there is a preamplifier with an attenuator at its input, and one in each of the four outputs. These at tenuators provide up to 50 dD of attenuation in $10-\mathrm{dB}$ steps. The proamplifier is

similar to the MF－HF preamplifier with changes appropriate to the dif－ ferent frequency rame．Its bain varies from 33 to 34.5 dB at the operating frequencies．tro that the actual gain is 10 dB higher than the ordinate readings because of the different impedances at input and qutput．The frequency response is showi in Fig． 16.

8．Hammarlund SP－60U－JX Receivers，U－4，U－5，U－16，U－17
Figure 19 ，the schematic of the modisications to the receiver，refers to Fig． 13 of the instruction mannai for this recaiver：lisue 6 of Hammarlund instruction manual No．K52 icd－1．These modifir，tions consist of a shorting jack added in the AVC bus to allow the use oi an externally developed AVC，and provision for injecting an extermally genersted 455－kHz signal into the $I F$ strip．The added relay which selects either the in－ ternal or external 455 kHz for the I ：also put＇s the gate circuit into the single－conversion morle if the receiver is luned to a freq－ency above 7.4 MHz ，and shorts the \quad nnused inpu：．A 110 －ohm resistor is shunted across the input（which is 95 ohms ）to match the 50 －ohm attenuator and cabje impedance．

The gain and AVC ch racteristias of the receiver determine the operating range permissible．Figure 20 slows a plot of tre AVC character－ istics of the receiver with a superimposed shading＂s the chosen operating rcsinn．This was chosen by consideration of tre dynamic range require－ ments illustrated in Fig．21．To hande F_{a} and V_{d} simultaneously the receiver obviously must have a $60-\mathrm{dB}$ risge：plus anciminus 30 dB from $V_{\text {ref }}$ ．Although $V_{\text {ref }}$ will be held constant by the controlling AVC voltage， the average power at the input of the receiver will vary．Therefore this ± 30 dB range，centered about the fixed $V_{r e f}$ ，must exist for a range of AVC voltages．Specifically，the required $60-\mathrm{dB}$ range about $V_{r e f}$ must be available from the lowest to the highest AVC voltage the equipment will develop．By choosing an AVC range from -4 to -8 volts and a $V_{r e f}$ at 6.6 mV ，the required $60-\mathrm{dB}$ dynamic range is achieved over a 36 －dB control range．The gain of the power strip in the function shelf from which the AVC is derived is sufficient to iola $V_{\text {ref }}$ onstant within 0.1 IB．

FIG. 19 SP-:00-JX RECEIVER MODIFICATIONS U-4, U-5: U-16, U-i7
I

FIG. 20 avC CONTROL CHARACTERISTICS OF SP-600-JX RECEIVER

FIG. 21 DYNAMIC RANGE KEQUIREMENTS, ARN-3
9. Low-Frecuancy Converters and Power Supplies, U-1, U-20, U-30, U-3! (See Figs. 22 and 23)

The design of the converters closely follows that of the RF and converter section of the SP-600-JX, in order that the AVC characteristics will be similar. There are two tuned amplifier stages followed sy a mixer. Note that in order to keep the gain similar to the RF stages in the receiver and in oider to get adequate bandpass it was necessary to shunt the tuned circuits with resistors. Because type CR $46 / \mathrm{U}$ crystals are used, the parallel resonant crystal oscillator is extremely stable. A mechanical filter with a 2100 -cycle bandpass is used in the mixer output because the oscillator frequencies are near the output (455 kHz) frequency. The cathode follower provides a low-impedance (800 -ohm) source for the coaxial cable to the receiver.

FIG. 22 LF CONVERTERS, ARN-3, U-1
10. runction helver $\mathrm{U}-3$ and $\mathrm{U}-15$ iSee $\overline{\mathrm{Fig}}$. 24 , in back cover pocket)

Each shelf holds four romovable sub-units; two Power Strips and t wo Voltage Strips. On the front panel are mounted the two function switches for the two channeis with associated tine-constant capacitors and discharge ('RESEF') buttons and relays.

The purpose of the Power Strip is to dorive an output voltage for recording and iVC which is proportional to the power level at the input. Since pover is proportional to the square of voltage, the signal is put through a squaring process before detection. The $455-\mathrm{kHz}$ input is amplified in the GAH6 tuned amplifier and then applied to the squaring circuit. This consists of two 6BJ6 remote cutoff pentodes, which have a transfer characteristic that is nearly a parabola. The output of such a tube has components that are proportional to the square of the input; the most important of these is the second harmonic. By driving the grids of the two tubes in push-pull and paralleling their plates the fundamental is largely cancelled out, but the second harmonic components add. These tubes are biased at $\mathbf{- 3 . 8}$ volts, a point of maximum curvature of the transfer charicteristic, to maximize the second harmonic. The load and coupling network to the next stage constitute a tuned filter to eliminate all components except those at 910 kHz . The next stage is a CAH6 tuned (at 910 kHz) voltage amplifier, followed by a 6BQ5 driver amplifier. The l-to-7 step-up transformer can deliver up to 2000 volts to the detector. This is necessary because in squaring the voltage the dynamic range in decibels is doubled. Referring to Fig. 21 we see that the input range of $40 \mathrm{~dB}(-10$ to +30$)$ becomes 80 dB . The 3 A 2 detector has a 1.2 -megohm load and its output goes through a 50 -megohm resistor to the function switch.

The function switch has five positions. In the MAN (manual) position, no AVC voltage is fed to the receivers, but the recorder output from the power strip is operating, with a $0.5-s e c o n d$ time constant. In the REF (reference) position a $\mathbf{- 1}$ volt signal (the drop across the 390 -ohm resistor) is applied to the dc amplifier and the AVC output is locked at a negative voltage determined by the setting of the GAIN

```
control. The TCs (time constant short) position gives the power strip detector a time constant of 0.5 second; TrM (time constant medium) gives 5 seconds, and TCL (time constant long; gives 500 seconds. The TCS position is used during calibraticn and when retuning to avrid QRM. The TCM position is suitabie for measuring man-nade noise if desiled. The TCl position is used ior normal operation. The switch sectans affecting the loltage strip will be described later.
The 5755 and the first \(12 A T 7\) tubes constitute a two-stage differential amplifier. The 5755 has plate currents of oniy about 2 nicroamperes in each half. The voltage at its input grid is about - 22 ov without signal. The THRESHOLD control and its VERNIER set the ic cutput in the center of the recording range (with the function switch at KEF).
The first cathcede follower (first half of the output 12AT7) operates with ils cathode at about \(\mathbf{- 3 0}\) volts. The time-constant capacitors are returned to this cathode follower's \(22-k\). load resistor as a convenient dc reference ( -230 volts). This drives a transistor amplifier with 7 diodes in its bias circuits for temperature and linearity compensation. The output is another cathode follower operated with its cathode only a few volts above ground.
The \(455-\mathrm{kHz}\) signal from the receiver also goes into the Voltage Strip. It is amplified and detectod, but the dynamic range requirements are much less demanding than in the power strip, about 50 dB , so that a less elaborate detector is required. (The power detector operates between 0.1 volt and 1000 volts, the voltage detector between 0.3 volt and 100 volts). Since the integrating time constants are smaller by a factor of 5 , howeve, large spikes of noise may possibly come through. Therefore the OA2 is placed at the grid of the first dc anplifier to limit such spikes to 150 volts. The switch positions are as follows: MAN and TCS are the same (a time constant of 0.1 second), TCM his a time constant of 1 second, and TCL (normal operation) a iime constant of 100 seconds. In the REF position the dc amplifier grid is connected to a - 100 volt reference point. The normal range of operation at this point is from -10 to \(\mathbf{- 1 0 0}\) volts. The stabilized dc amplifier and
```

cathode follower output are conventional. The diode and resistor network in the output helps linearize the output in decibels.
11. Recorder Pen Drive Amplifiers, U-10, and Power Supply, U-19

The operating instrustions for the Erush Multichannel dc Amplifier Frame and Power Supply Model RA 568001 with Plug-In Amplifier Units Model RD 5211 13, RD 521115 describes the operiation of these units. The calibration of these amplifiers is part of the weekly calioration of the equipnent.
12. Recorders, $\mathrm{U}-2$ and $\mathrm{U}-14$

These are four-channel oscillographs, Brush Model 2641-00. The operating instructions ior Brusn Oscillograph Models RD 2682-00, RD 2662-00, $2 D 2661-60$; and RD 2642-00 covers this unit adequately. See Fig. 25 for the modification permitting the slow-speed drive motor and the slow-speed marker motor to be powered from the Timing and Control unit.
13. Speaker Panel, U-8 (See Fig. 26)

The speaker panel has a small loudspealer alid T-pad volume control. Four inputs are provided to connect to the audio outputs of the receivers. These go through a selector switch which alno terminates the inputs not being used.

There are also mounted on it a pair of HP attenuators (models 355C and 355 D) which are used as the operating attenuators during calibration. The appropriate signal is fed irto Jo (SIG IN) a!: 0 dB level and can then be attenliated up to 132 dB before going from J 6 into 37 which feeds the Calibration Unit or into the cable leading to the stub antenna.
14. HF Signal Generator, U-9

The instruction manual for the Hewlett-Packard hivdel 606A describes this unit.
I
I

1

FIG. 25 MODIFICATION TO BRUSH RECORDERS, U-2, U-14

15. LF Calibration Instrumentation, $\mathrm{U}-29$

This consists of three Lewlett-Packard instruments; the Model $204 B$ Test Oscillator, the Model 166 A Amplifier, and the Model 403 A AC Voltmeter. Figure 27 shows the inte:connections, and the instruction manuals for these models describe them.

fig. 27 lf Calibration instrumentation, l'-29
16. Calibration Unit, U-6 (See Fig. 28)

This unit contains a noise diode with provision ior varying its filament temperature and metering for its plate current, and dummy loads that have impedances corresponding to that of the 'itandard antenna at various frequencies as shown in Fig. 6. These networks are factoryadjusted and should not require field adjustment. If it should be required, the covers over the variable components may be slid back and an impedance meter used to set the resistance and reactance to the correct value at each frequency. These values can be scaled from Fig. 6. See Appendix A for the therry of calibration and Sec. III-C for the calibration procedure.
17. Counter Drive Unit, LFA, U-27 (See Fig. 29)

The power supply protides 350 volts of B_{+}. This is divided down and regulated to yrovide a dc calibrating voltage adjustable from 0 to

BLANK PAGE

10 volts at J1. This is read on the panel meter provided and is used to charge the $2-\mu f$ capacitor in the antenna loslator. When the IFA CALIB button is pressed, the capa itor discharges across the input circuit and the resultiug p..lse comes into this unit througi J 2 and J 4 . Following J2 is a bandpass filter centered on 500 Hz . Its response at low level, measured from $J 3$ of the Calibration Unit, with the function switch in the $13-\mathrm{kHz}$ position, to the cathode of the phase splitter in the $1-\mathrm{volt}$ channel, is down 3 dB at 100 Hz and 2500 Hz , which corresponds to the response of the ERA lightning counter. The three potentiometers feed three channels which have a counting threshold of 1,3 , and 10 volts, respectively. Each channel has an input amplifier stage followed by a phase splitter, in order that the counter will respond to either positive or negative pulees. The output of the phase spitter is rectified and combined so that any pulse exceeding about 34 volis at the input to the $12 A U 7$ will cause the monostable flip-flop to cycle. It puts out a puise that is over 500 milliseconds long; the total "dead" time is 600 milliseconds. This gives a maximum counting rate of about 2 per second.

The other bandpass filter (CCIR) following $J 4$ is centered on 10 kHz , ard is down 3 dB at 2 kHz and 50 kHz . All six drive channels are identical.

The disable relay is a 115 V ac relay which is wired in parallel with the flood lamps for the recording camera. Each 30 minutes they turn on for 4 seconds while a picture is taken. تhis relay shorts the two inputs so that no counters will be turning as the picture is being taken. During this 4 seconds it also charges the $10-\mu f$ capacitor. This charge then pulses the reset relay in the display panel at the end of this period.

Filament and plate power is taken from this unit for the two 12AU7 tubes in the Timing and Control Unit. Also, there is a 115-volt ac output for the LFA Display Panel which is turned on by the time-delay relay 30 seconds after power is applied to the Counter Drive Unit. This is to allow the tubss to warm up and the cathode voltages of the

12AU7's to approach their normal 34-volt level before power is applied to the transistois in the display panel.

18. Display Panel, LFA, U-26 (See Fig. 30)

This panel contains six Veeder-Root counters, each with a two-stage transiscor driver. It also has a digital clozk powered from the Timing and Control unit. The power supply provides about +30 volts. Since the norma) voltage at the base of each 2 N 3053 is +34 volts (through a $10-\mathrm{k} \Omega$ resistor), this transistor is normally conducting, and its emitter, and the base of the 2 N 301 A , is near 30 volts. Since the emitter of the 2N301A is at 27 volts due to the drop through the five 1 N 4005 diodes, this transistor is cut off. When the drive circuit cycles, a negative square wave down to about 6 volts is applied to the base of the 2N3053. This turns the 2N301.A on and causes a count. Diodes are provided to discharge the energy stored in the counter inductances during count and reser.
19. Recording Camera Control Unit, $\mathbf{Z}-21$ (See Fis. 31)

Each 30 minutes the timing and control unit providas a one-halfsecond pulse of 115 -volt, $60-\mathrm{Hz}$ power which is appiled to El. This activates RL-l which is then held in by the path through RL-3 which is normally closed. Power is also applied to the flood-lamp terminals, E4 and E5, and to the 2 -second time-delay relay RL-2. After 2 seconds RL-2 operates and applies power to the solenoid rectifier and to the heater of RL-3, a 2 -second normally closed delay relay. The $1000-\mu f$ capacitor allows the full peak voltage to be applied to the camera-operate solenoid to give it a positive action and also helps reduce chattering in the solenoic. After another 2 seconds RL-3 opens, causing RL-1 to open, and the circuit returns to the waiting mode. Note that due to the time constant of the $1000-\mu \mathrm{f}$ capacitor, test pulses should never be applied less than 30 seconds apart.
20. Recording Camera, U-25 (See Fig. 32)

This is a Pafllard-Bolex H-16 movie camera. It is set to operate in the frame by irame mode, so a 100 -foot reel of film (containing about 4000 frares), lasts abolt 80 days. The film is normally collected once

FIG. 30 DISPLAY PANEL, LFA, U-26

FIG. 31 RECORDING CAMERA CONTROL UNIT, U-21

LI a l2 ARE I50W FL.OOD L.AMPS.

08-4240-98
FIG. 32 RECORDING CAMERA, U-25
a month for processing. The cable trip is cperated by a solenoid as described above, and tisere are two 150 -watt flood lamps mounted, one on each side of it. Its loading, servicing, and adjustment are described in the operating manual. The film normally used is Kodak Plus-X, $16-\mathrm{mm}$ safety film . For this film the aperture is set to $F 8$, and the distance to 28 inches.

BLANK PAGE

A. Installation

1. Siting

The equipment must be sited away from all sources of man-made elecirical interference. It must ie at least 1 kin from all power lines and at least 3 km from ines carrying power above 5 kV . I'c must be at least 0.5 km from any road carrying appreciabl motor traffic; a $1-\mathrm{km}$ minimur. is much better. It should have a clear horizon free of all structures and hills down to 4 or 5 degrees above the horizon.

2. Anterna

The standard antenna is $\varepsilon 21.75$-foot telescoping monopole mounted or a ground platforin on the roof of the equipa.ent van (see Fig. 33). The base insulator is a 6-inch plastic sphere, and the antenme base is connected to a length of spec al low-capacity coaxial cable which enters the van through a water-tight packing. The ground plane is about 8 feet high and consists of 90 lengths of No. 12 copperweld wire radiating from the platform to make a plane 200 feet in diameter. The outer ends are supperted on guyed posts (see Fig. 2). The ground pletform is conrected to the equipment and to a one-square-yard copper plate buried six feet deep by copper strip one-sixteenth-inch thick by four inches wide. The gap of the lightning protectur must be set to 3 mm .

3. Other .equirements

This equipment requires a 115 -volt, $60-\mathrm{ilz}$ power source which will continuously supply 25 amperes at between 100 and 132 volts ($115 \pm 15 \%$). This is in addition to power requirements for heating, lighting, o: air conditioning. Provision must be made to keep the ambient temperature between 65 and $75^{\circ} \mathrm{F}$ (18 and $24^{\circ} \mathrm{C}$).

FIG. 33 ANTENNA INSTALLATION AT LAEM CHABANG

4. Equipment

The equipment consists of inits mounted in five relay racks, plus scme unmounted units. It is arranged as showi in Fig. 7. A list of these units is given in Table II, and its interconnections for s pnals and power are shown in Ftgs. 8, 9, and 10.

5. Initial Turn-on and Pre.iminary Adjustments

With units in their correct positions and all cabling in place, turi: off ail individual components which have power switches. Turn on min power at circuit breaker. Set the Line Voltage Regulator to 115 volts cutput (the Line Voltage Range Limiter must be set to trip out at 132 volts and 100 volts on the bench before installation). Turn on receivers (U-4, U-5, U-16, U-17). Turn on U-11 and U-12; set 0300 volts each. The front panel meters can be chc sed against a more accurate meter at
the terminals avpilaile on the fronts of these units. Note that $U-11$ must be 300 volts nega:ive from ground; U-12 is 300 volts positive. Turn on the rest of the units. Turn switches on Function Shelves (U-3 and U-15) to REF. Turn VOLTS/CHART LINE switches on the Recorder Pen Drive Amplifiers to OFF. Check U-22, Timing and Control Unit $\mathrm{E}+$ all test points (see Sec. II-B-5). Allow at least eight hrurs warm-up before finel adjustments are made. During this time a check of recorder operation may be made including pen pressure and ink supply. Check the switch timer tabs for the proper timing sequence; normally two tabs in and two ont, alternately, around the drum. Observe whether on and off periods are even, and adjust switch if indicated. The recording camera can be loaded with film and tis focus and exposure set (28 inches focus; F8). The operation of the camera can also be tested by pressing the TEST butten on U-21. The lamps should go on, and 2 seconds later the camer, solenoid should operate (note whether this operation actually takes a picture and returns the cable release). Two seconds later the lamps should turn off. Also check system and antenna grourad-plane grounding.

With initial warm-up completcd, room temperature stabilized, and line regulation properly set and stabilized, check the setting of $U-11$ and U-12 and adjust to exactly 300 volts negative and positive, respectively. Connect the antenne to the Calibration Unit (U-6) with the special low-capacity cable provided. Proceed with calibration (Sec. 3.3).

C. Operation

The operators must check the equipment at the following times each day (see Sec. V1): $0600,0700,0800 ; 1100,1200,1300,1400 ; 1700,1800$, 1900, 2000, 2100, and 2200. At each check they do the following things:

Step 1: Check each channel on HF for man-made interference. Retune if necessary to avoid it. (Use MODE switch on U-22 to switch to HF if right-hand pen is away from chart center.) If man-made interference can not be avoided, mark this information on the chart.

Step 2: Change attenuators on HF if indicated, to keep pens inside the calibrated range on the chart. Arteanation should ve changed whenever the power pen approaches wititil one quarter inch of either edge of the chart. Mark chart with H and attenuator value (e.g., "H 20") on any channel when a change is made.

Step 3: Chen attenuator settings on each channel at lf (put U-22 MODE switch on LF), Mark chart if attenuation is changed with 1 . and attenuator value. Return U-22 MODE switch to TIME.

Step 4: Check line voltage (to be as near 115 volts as possible); room temperature ${ }^{\prime} 18$ to $24^{\circ} \mathrm{C}, 22^{\circ} \mathrm{C}$ nominel) : and ac voltage at TP-5 to TP-6 on Timing and Control Unit, U-22 (to be between 100 and 120 volts!. The meter:, on $U-11$ and $U-12$ are also checked (both must read 300 volts).

The following items are logged by the operators:
(1) Time information at each stop and start of the recorders (logged on the chart). The and date are both noted. This includes logging each time the line voltage range limite is tripped.
(2) Weather and any activities such as gasoline motor operation in the vicinity or local transinitter operation which might afiect the data (logged on tise chart).
(3) Time of equipment failure (logged on the chart). Whoever repairs equipment notes time of return to service and symptoms and cause of failure in the equipaent log.

In addition, the operators do the following:
(1) Check REF position of function switch on all channels daily. Adjust VERNIER to give center of chart reading on power charts.
(2) Change the date tabs on the LFA each day. It is best to place the tabs at the first morning =heck (0600) and remove them at the last ev-ning check 2200).
(3) Check regularly for adequacy of int and chart paper supply.
(4) Periodically inspect the antenna and antenna input connections and wash the insulatcre if required.
(5) Call for technician or engineering b-lp in case of equipment trouble.

In addition to the spare parts indicated in the succerding section on maintenance, the following operational supplies are required
(1) C..art paper, 840 feet long, Brusi, $\approx:$ 9961-80. Usage is about 80 feet per week.
(2) Red ink, Brush or Esterline-Angus.
(3) Film, Kodak P_us-X, $16-\mathrm{mm}$ safety film. 50 or 100 -foot reel. Usage is about 10 feet per week.
(4) Logging forms and books.
C. Calibration

Before calibration is begun, it should be determined that:
(1) Line voltage before regulation is between 110 and 120 volts; and after regulation, is 115 volts.
(2) Ambient temperature is between 18° and $24^{\circ} \mathrm{C}$ (65 to $75^{\circ} \mathrm{F}$).
(3) Time power voltage (TP-5 to TP-6 of U-22) is between 100 and 120 volts. Also that $+400 \mathrm{~V}(\mathrm{TP}-1$ to TP-3) is between 385 and 415 volts and both -28 V (TP-2 and TP-4 to TP-3) readings are between 27.5 and 28.5 volts.
(4) Pen pressures on reccrders are within tolerance (see manual) and all pens are marking properly.
(5) U-11 and U-12 are set accurately on 300 volts.
(6) Local atmospheric noise is moderate, so that U-9 and U-29 can generate enough power to be well above iocal atmospheric noise. In general this means that calibration nust be performed in the morning hours in the absence of thunderstorms.

At this point the chart papers for the previous week should be collected, If any of the results indicated in the following calibration procedures cannot be realized, equipment trouble may be assumed. Note that the most commonly required remedial action is the replacement of tubes in the dc implifiers in the Brush Pen Drive Amplifiers or in the Function Shelves.

The salibration procedure is given below (see Appendix A for theory of calibration). The first part of this procedure is from the Brush Amplifier mariual, but is included here for completeness. Turn switches on Function Shelves ($\mathrm{U}-3$ and $\mathrm{U}-15$) to REF.

1. Pen-Drive-Amplifier Calibration

Note that the arrangement of amplifiers in U-10 is, from left to right, as follows:

Top: Channel 1, voltage; Channel 1, power; Channel 2, voltage; Channel 2, power. Bottom: Channel 3, Vultage: Channel 3, power; Channel 4, voltage: Channel 4 , pow?r. Note also that the 0.02 -volt position is used for normal operation. It is generally advisable to calibrate all eight of these amplifiers before proceeding with the system calibration. It is assumed that the equipment has been tur..jd on and allowed to stabilize for at least eight hours.

The Pen Drive Amplifier channels are balanced and calibrated as follows:

Step 1: Switch VOLTS/CHART LINE controls OFF and set PEN BIAS at the out position.

Step 2: Center oscillograph pen on chart, using B balance control. Rotate the CALIBRATION control rapidly to the ieft ani right, and at the same time turn A (balance) back to the loft slowiy until no pen deflection is noted.
Step 3: Center the pen on the chart again, using the B (balance) control.
Step 4: Turn the VOITS/CHAR' LINE switch to the "calibrate" (CAL) position and set the calibration control for 20 lines of deflection (full-scale left-edge deflection).
Step 5: Turn volus/CHART LINE switch to OFF, turn PEN BIAS to the IN position. Turn the BIAS CONTROL until pen deflects approximately $3 / 16$ inch beyond left edge of chart.

Step 6: Leave PEN BIAS in IN position and rotate VOLTS/ CHART LINE switch to 0.02 -volt position. The recorder amplifier is no:v ready for use. (Note that in many operations using the recorder as an indicator it is faster and more accurate to run the chart faster than normal while making an adjustment or taking a reading.)

2. HF Calibration

Step 1: Set the controls of the re eivers (U-4, U-S, U-16, and U-17) to the following positions:
(1) RF gain--MAX
(2) Audio gain - MAX
(3) Selectivity--200 Hz
(4) Frequency control-.-VFO
(5) Limiter--OFF
(6) MOD CW Switch--MOD
(7) Send and Rec--REC
(8) Band switch--Appropriate bard, see (9).
(9) Tuning control--0.53 MHz (Ch. 1) 2.3 MHz (\because.h. 2) 5 MHz (Ch. 3) and 10 MHz (Ch. 4).
Step 2: Turn the MODE switch in the Til:ing and Control Unit (U-22) to HF.
Step 3: Adjust voltage and power strip controls as follows:
(a) Check that the function switch is in the reference position (REF).
(b) Set both sensitivity controls to the minimum position (CCW).
(c) Set the ZERO controls of the voltage and power strips to position the chart pens at the left and right edges of the chart strips respec ively. (Since the voltage strip settings depend on the positioning of the power strip controls, the latter are adjus ad first.)
(d) Set sower SENSITIVITY control $1 / 4$ turn CW and adjust the THRESHOLD and VERNIER controls for a center-of-chart reading.
(e) Set the function switch to the TCS position. Set attenuator to " O," connect the signal generator (U-9) to J5 (SIG GEN) of the speaker panel and connect J6 (SIG OUT) to J7 (CALIB) to inject a signal into the Cailibrator Init, and tune the generator to the desired frequency. Set the Calibrator Unit function switch to the nominal frequency desired (use 495 kHz for Ch .1) and set the generator output level for an indication on the power strip chart. Use the attenuators on the speaker panel, nct those on the signal
generator, to avoid changing frequency when changing level. Keep the signal generator set at 0 dB out on the meter and internal attenuator, and read the output level from the speaker panel attenuators. Note that generator tuning is critical and touchy. If the speaker selector switch is turned to the channel being adjusted and the T-pad is set for maximum sound (CW), a beat note can be heard as the signal generator is tuned through the center frequency. Tuning to the position of minimum beat frequency (zero beat) puts the generator on frequency. This will also be the point of maximum pen deflection toward the left. keturn the function switch to REF position after this step. All four channels should be adjusted as above. The power strips have now been adjusted to facilitate their use as tuning indicators.

Step 4: Calibrate each channel in turn as follows:
(a) With the Calibrator function switch on ANT and the speaker on this channel, tune the receiver for the quietest (free from $Q R M$) position near (within ± 1 曾 at most) the nominal center frequency of the channel being calibrated.
(b) Set the Calibrator function switch to the nominal frequency of this channel. Set the channel attenuator to zero dB aud disconnect the antenna cable from the Calibrator input to eliminate capacitive coupling to the antenna. Set the GAIN control on the power strip so that the sustem noise (mostly from the preamplifier) makes a chart trace near the right-hand edge of the power chart. Depress the right-hand toggle switch on the Calibrator and adjust the variable transformer for full-scale indication on the diode current meter. Should the noise diode output fail to register on the power chart, increase power-strip CAIN setting until an indication is obtained. If the noise diode does not give an indication at least onequarter inch (on the chart) to the left of the system rinise indication, there is trot:ble-probably a weak tube in the receiver or power strip. It is much more important that the noise diode give a good indication
than that system noise be near the right-hand edge of the chart. Note: The noiss diode indication is a part of the calibration factor and must appear on the power chart. The power strip GAIN adjustment at this time may be too great for typical atmospheric conditions; however, the attenuator pads eliminate this proilem in normal operation.
(c) Set the channel attenuator in the $10-\mathrm{dB}$ position for the remaining calibration sequence. This eliminates the system noise.
(d) With the Calibrator function switch in the frequency position desired, the function switch at TCS position, and the signal generator connected as described above, tune the generator for full-scale indication on the power chart corresponding to the selected frequency. Redice the generator output level until an indication is just perceptible at. the right-hand edge. Increase the generator output +30 dB and adjust the power SENSITIV! for full-scale left-edge deflection.
(e) Reduce the generator output level in $5-\mathrm{dB}$ steps and mark pen deflection on the chart. This will calibrate the chart in $5-\mathrm{dB}$ steps.
(f) Reset the function switch to the REF position and reset threshold VERNIER for centerscale reading on chart.
(g) Turn the function switch back to the TCS position, set generator output level for an indication on the power chart approximately midscale. Adjust the voltage strip GAIN control for full-scale left-edge deflection on the voltage chart.
(h) Set function switch to the MAN position, set channel attenuator at 30 dB position, and adjust generator output level for full-scale left-edgr deflection on the voltage chart.
(i) Step the generator output level down 20 dB and adjust the voltage strip SENSITIVITY for full-scale right-edge deflection. Set the generator back up 20 dB and then decrease in $2-\mathrm{dB}$ steps and mark pen position on the chart. This will calibrate the chart in 2-dB steps.
(j) Slight interaction may occur during calibration between ZERO set, and GAIN ard SENSITIVITY adjustments. Repeat (g), (h), and (i) above to be sure that they are still set as described. Some small further adjustinent may be necessary. Return function switch to REF position.

Step 5: Make noise diode and stub factor measurements on each ct:annel in turn, as follows:
(a) Set the meiel-strip function switch to the TCS position, set attenuator at 0 dB , and ser the Calibrator function switch at frequency po ition desired. Depress the ncise diode switch and set diode current full-scale for an indication, and identify on the chart. Then turn off diode current and release the noise diode switch.
(b) With the generator connected as before, set the generator output level and frequency for the same chart mark indication. The output reading at the generator is the noise diode figure (typical figure $=-91 \mathrm{~dB}$).
(c) Set the attenuator in the $30-\mathrm{dB}$ pcsition to eliminate extraneous noise (daylight morning hours provicie quiet conditions). Make sertain the antenna is connected to the system and the Calibrator function switch is in the ANT position. Listen to speaker output and note pen on chart to be sure there is no man-made interference strong enough to be significant. Move tuning slightly if necessary. Disconnect tio short cable from J6 (SIG OUT) on the speaker panel and connect the feed cable from the stub anterna to it. Set the output for an indication on the power strip--typically, a -10 or -20 dB generator level may be used. Note the generator reading and mark the pen position on the chart. Switch the Calibrator function switch to the frequency position required, disconnect the stub feed cable from J 6 , and reconnect J 6 to J 7 on the speaker pancl. With the attenuator in the same position as above, adjust the generator output for the same pen position on the chart. Nate and log the reading. The
difference between the two readings represerits the stub factur. Example:

Generator o..tput to $s t u b=-10 \mathrm{~dB}$ at $30-\mathrm{dB}$ position

Generator cutput tn
calibrator $=-63 \mathrm{~dB}$ at $30-\mathrm{dB}$ position
Stub factor $=(-10 \mathrm{~dB})-(-63 \mathrm{~dB})=53 \mathrm{~dB}$.
(d) With the system calibrated and measurements of noise diode and stub factor known, the calibration factor is calculated by
$\mathbf{C}=\mathrm{K}+\mathrm{S}-\mathrm{D}$
C = Calibration factor
$K=$ Constant for frequency
$S=$ Stub factor
D = Noise diode figure.
Constants are tabulated below:

Frequency	Constant (K)	Freque	ncy	Constant (K)
6 kHz	62.4	530	kHz	23.5
13 kHz	55.7	2.3	MHz	10.7
27 kHz	49.3	5	MHz	4.0
160 kHz	33.9	10	MHz	-9.6

From the examples given in Steps (b) and (́c) above, and assuming a K value for 10 MHz :

$$
\begin{aligned}
\bar{C} & =K+S-D \\
& =(-9.6)+(53)-(-91) \\
& =134.4 \mathrm{~dB}
\end{aligned}
$$

3. LF Calibration

For calibration at the low frequencies, turn the MODE switch on the Timing and Control Unit (U-22) to LF. Disconnect the HF signal generator, U-9, from J-5 and connect the cable from the HP 466A amplifier to $\mathbf{J}-5$. Turn on the 466A amplifier, the HP 204B oscillator, and the HP 403B ac voltmeter (all parts of $U-29$, on top of the equipment racks). Set the oscillator to give $0-d B$ reading on the voltmeter. Compare voltmeter reading at 0 dB with that of the 406 A generator at 160 kHz every three
months by adjusting to the same pen position on the Chan.el-1 power chart. Correct level so agree with 106 A by adding a correction lactor to readings. The difference should be about 11 dB . Note that no adjustments are to be made to the Function Shei $3 s$, except ihat the THIESHOLD and VERNIER controls should be checked for center-of-chart reading on the power chrifts when switches ara in REF position.

Step 1: Set the Calibration Unit function switch to the $160-\mathrm{kHz}$ position when calibrating channel 1 ; on the other three channels use the $13.3-\mathrm{kHz}$ position.

Step 2; On each channel in turn:
(a) Set function switch to TCS position,
(b) Set LF attenuators to 0 dB , set potentiometer at rear of $L F$ converter t. give a reading near tiie right-hand edge of the power chart.
(c) Inject diode noise and mark level. Inject: signal and note equivalent signal level.
(d) Set channel attenuator to 10 dB . Ch $=\mathrm{k}$ REF for center position on chart. Injest signal and mark power chart in $5-\mathrm{dB}$ steps. Do not adjust power strip.
(c) Set function switch to MAN position and mark voltege strip in 2-dB steps. Do not adjust voltage strip.
(f) Set input attenuator to 20 dB , disconnect short jumper cable irom $J 6$ on speaker panel, and connect stub antenna feeder cable to J6. Turn Calibrator function switch to ANT and moke sure that the antenna cable is connected to the top of the Calibrator. Inject signal at high enough level to get chart reading.
(g) Reconnect jumper from J6 to J7 (after disconnecting stub antenna), turn Calibrator furction switch to 13.3 kHz or 160 kHz as indicated, and inject signal to give same chart marking as obtained in (f). Compute end note stub factor as was done for HF. Turn function switch to TCL.
(h) Tur: off the LF instruments. Note that two of them are battery power ad, and the batteries will be used up far too quickly if this is forgoten. Discontect the jumper cable from $J 7$ on the speaker panel.

Turn the calibrator function switch to ANT and adjust each channe? LF attenuator to get on-scale chart readings. Use the input attencator to keep the lowest of the channci attenuator settilus at $00: 10 \mathrm{~dB}$; this avoids possible overloadirf of the preamplifier. Note attenuntor ettings on charts with prefix L .
(i) Turn the MODE switcin on the Timing and Control Unit ($\mathbf{U}-22$) to HF . Using the speaker on each chatiael, make sure there is no man-made interference and set the HF attenuators give on-scale readings on che charts. Note attenuator settings on charts with prefix H.
(j) Turn the MODE switch on the Timing and Control Unit to TIME. Note time and date on both charts.

4. LFA Calibration

To set the thresholds on the lightning Flash Analyzer, proceed as follows:

Step 1: Set the Calibrate potention pter on the Counter Drive Unit Chassis ($U-27$) to give a l-volt reading on the front panel meter. Set both l-volt threshold controls (ERA and CCIR) so that any decrease in setting will not allow the counters to operate when the ed button on the Input Panel (U-7) is pressed. Note: allow a 5 -second interval after button is pressed before pressing arain to aillow time for recharging.

Step 2: Repeat for 3- and 10 -volt thresholds. Return Calibrate potentiometer to show " 0 " on the meter. This completes the equipment calibration.

At this :ime the Recording Camera must be wound up and if the footage counter is approaching 50 feet ione month's data) the film must be removed for processing, and fresh film loaded in the camera. If 100 -foot rolls are being used it is hest to rewind and cut the film so that 50 feet at a tine are developed. The operating manual for the camera gives a detailed de cription of film loading and uninading.

BLANK PAGE

A. General

The two lengths of data chart ale roimally collected once a week (see Sec. IfI-C). Each has its calibration data at the beginning, find since it normally runs at 5 cm per hour, is about 30 feet long. The charts contain information as described below (see Fig. 34 for typical Channel 1 and 2 data, and Fig. 35 for typical Channel 3 and 4 data). The left-hand track is the time track, and a horizontal wark is made on it each 6 minutes. Reading from left to right, the next is the Channel-1 voltage track; the next is the Channei-1 power track. The next two are the Channel-2 roltage and power tracks respectively. The right-hand track (the "event" pen) is controlled by the relays that switch the equipment between high- and low-frequency recording. When the equipment is recording high-frequency information this pen is toward the left (toward the center of the chart). When recording low frequencies it moves to the right $1 / \&$ inch. It normally changes each 30 minutes. The other chart is similar except that it has information from Channels 3 and 4. These channeis operate at the follouing frequencies:

Channel.	HF		
1	530 kHz	LF	
2	2.3 MHz	27 kHz	
3	5	MHz	
4	10 MHz	13 kHz	
4		6 kHz	

The cnarts also have pencilled on them the amounts of attenuation being used and notes regarding equipment sh't-downs or contamination which rannot be avoided by retuning.

In normal scaling of the data, all traces that are contamineted by man-made noise are marked and not scaled. Man-made noise can usually be identified even ir not noted by the operator because of the voltage pen

:IG. 35 TYPICAL DATA CHART, CHANNELS 3 AND 4
going off scale to the leit and/or because the pen traces becume straight, without the random wiggles characteris : of noise. It is assumed that any $15-m i n u t e$ sampl, in one hoir is characteristic of that hour. On a normal chart, then, each hour will show a 30 -minute sample for a high frequency and one for a low frequency. These are read (scaled) as a reading relative to the callbration scale, less (for the power strip only) any attenuation used. A visual estimate is made of the average value for the 30 -minute period $(2.5 \mathrm{~cm}$, or about 1 inch). Note that the callbration warks on the voltage strip are ? dB apart and those on the power strip are 5 dB apart (see Fig. 36).

These chart readings are then converted to the standard F_{a} and V_{d} values by incorporating the various calibration fartors (rearer to Appendix A for a discussion of theory). F_{a} equals Power (chart reading) + Ca.ioration (C) factor or, from $E q$. ($A-14$) of Appendix A, $F_{a}=R+(K+S-D)$. Note that K factoss are cons'ant for a given frequency, and that S and D are determinea in the calibration. This gives a single number for each irequency to be added to the chart recding from the power strip to give $F_{a} . V_{d}$ is equal to the (averaged) chart reading for each 30 -minute sample. These are logged on separate data sheets for each frequency by date and hour (NBS form RIf-12 or equivaleat-see Figs. 37 and 38). The monthly summary of calibration factors is logged on NBS Form RN-6 or equivalent. See Figs. 39 and 40 for the forms used with this equipment, with typical values logged.

FIG. 39 TY!ICAL LOG OF CALIBRATION FACTORS, MF AND HE
Lat: $1355^{5}:$
Long: $\quad 1009^{5} \mathrm{~F}$

Date	Frequency (kHz)																			Operator
	13										127					160				
	K	5	D	D	C	K	S	D	C		K	5	D		C	K	S	D	T	
1	62.4	53		33	148	55.7	54	-34	14		49.3	48	-41		38	33.9	41	-40	115	Pinyc
2																				
3																				
4																				
5																				
6																				
7	62.4	51		31	144	55.7	50	-33	13		49.3	48	-40		37	33.9	3.4	-40	108	Pinvo
8																				
9																				
10																				
11																				
12																				
13																				
14																				
15	62.4	61		26	149	55.7	55	-30	14		49.3	45	-42		36	33.9	37	-43	114	Pinye
16																				
17																				
18																				
19																				
20																				
21																				
22	62.4	53		33	148	55.7	5.4	-34	14		49.3	43	-41		38	33.9	34	-53	121	Finyo
23																				
24																				
25																				
26																				
27																				
28																				
29	62.4	51		33	146	55.7	56	-31	14		49.3	46	-42		37	33.9	41	-40	115	Pinyo
30																				
31																				

FIG. 40 TYPICAL LOG OF CALIBRATION FACTORS, LF AND VLF
Station: Laem Chabany
Nonth: Derpmber 1966 Calibration factors of radio noisf at yla and lef
Nonth: Derfmor 196
B. Determination oi Media. and Decile Values (See Ref. 7, pp 107-109) After readings have been listed in order according to size, the median, lower, and upper dectle values are found by sse of Table IIf. Round off all values to the nearest whole number.

EXAMPLE: Take a group ai 17 readiags, as follows:

Median $=9$ th value $=j 0$
Upper Decile $=2 n d$ ralue from top Minus 20% (2 nd -3 rd)
$=48-20^{\circ}(48-40)=48-(20$ ef 8$)$
$=48-1.6=46$
Lower Decile $=2$ nd value from botton PLUS 20^{t} ($3 \mathrm{rd}-2$ 2nd)
$=20+20 \%(22-20)=20=(20 \%$ of 2$)$
$=20+0.4=20$

Table 1.1
TABLE FOR DETERMINING MEDIAN, LOWER, AND UPPER DFCILE VALUES

No. of Readiugs in Group	Position of Mectan Valwn	Upper Decile = No. from Top minus Correction	Lower Dedle $=$ No. from Button plus correction
21	17 th	3rd - 604 (3rd - 4th	$3 \mathrm{rc}+60 \mathrm{t}(4 \mathrm{th}-3 \mathrm{rd})$
30	$\frac{15 \mathrm{th}+16 \mathrm{th}}{2}$	$3 \mathrm{r} \cdot \mathrm{i}$ - 50 f (3rd - 4th)	$3 \mathrm{~d}+50 \mathrm{t}$ (1th - ird $)$
29	15:\%	3rd - 40 (3 rd - 4th	3rd + 40) (4th - 3rd)
28	$\frac{14 t h+15 t h}{2}$	3ric - 30t (3rd - 4th)	trd - 30i: (4th - 3 rd)
27	14th	3rd - 20 (3 rd - 4 th)	3 d + 20% (4th - 3 rd)
26	$\frac{13 t h+14 t h}{2}$	3rd - 10\% (3rd - 4th)	$3 \mathrm{rd}+10 \mathrm{t}(4 \mathrm{th}-3 \mathrm{rd})$
25	13th	3rd	3 rd
24	$\frac{12 t h+13 t h}{2}$	2nd - 90% (2nd - 3rd)	2rid + 90, (3rd - 2nd)
23	12th	2nd - 80\% (2nd - 3rd)	2nd $+30 \mathrm{c}(\mathrm{srd}-2 \mathrm{nd})$
22	$\frac{11 \mathrm{th}+12 \mathrm{~h}}{2}$	2nd - 70\% (2 nd - 3 rd)	2nd + 70\% (3rd-2nd)
21	11 th	2nd - 60f (2nd - 3rd)	2nd + 60\% (3rd - 2nd
20	10th + 11th	2nd - 50f (2nd - 3rd)	2nd + 50% (3rd - 2 nd)
19	10th	2nd - 40% (2nd - 3rd)	2nd $+40 \%$ (3rd - 2 nd)
18	$\frac{9 \mathrm{th}+10 \mathrm{tn}}{2}$	2nd - 30% (2 nd - 3 rd)	$2 \mathrm{~d}+30 \%$ (3rd - 2 na)
17	9th	2nr - 20\% (2nd - 3 rd)	2nd + 20\% (3rd - 2 nd)
16	$\frac{8 t h+9 t h}{2}$	2nd - 10% (2nd - 3rd)	2nd + 10\% (3rd - 2nd)
15	8 th	2nd	2nd
14	$\frac{7 \mathrm{th}+8 \mathrm{th}}{2}$	*	*
13	7 th	*	*
12	$\frac{6 t h+7 t h}{2}$	*	*
11	6 th	*	*
10	$\frac{5 t h+6 t h}{2}$	*	*
9	5th	*	*
8	$\frac{4 t h+5 t h}{2}$	*	*
7	4 th	*	*
6	$\frac{3 \mathrm{rd}+4 \mathrm{th}}{2}$	*	*
5	3 rd	*	*
4	$\frac{2 \mathrm{nd}+3 \mathrm{rd}}{3}$	\because	*
3	2nd	*	*
2	$\frac{13 \mathrm{t}+2 \mathrm{nd}}{2}$	*	4

"Decile measurements are not significant fur a small number of readings.

BLANK PAGE

V MAINTENANCE AND TROUBLE SHOOTING

Table ll sives a list of the units in the ARN-3 ald indicates those units for which manufacturers' manuals are provided. These minuals are to be considered part of this manual.

The normal operating and calibrating procedures described in Sec. III will nearly always indicate trouble if present. Any cr nge in diode factor of more than 2 or 3 dB shiuld be viewed with suspicion and traced to its source. Note that a difference in GAIN setting in the power strip will change the stub and calibration factors, but in such a way that F_{a} wi!l not change. Tube failure in de amplifiers is the conmonest trouble.

It must be emphasized that cleanliness of the recorder pen and ink systems, including the res revoirs, is essential.

The folloring tabulation (Table IV) should be helpful in locating trouble. It contains voltage and resistance measurements to ground for ail units for which there is no separate manual. Measurements were made with a Hewlett-Packard Model $410 B$ VTVM.

Tables V and VI list all components that might be expected to have a definite life or a reasonajle failure probability. They cover all the mits in the equipment to facilitate setting up and maintaining spare-parts stores. The total tube and fuse complement is summarized for the same reason. Quantities are for one complete installation.
Table IV
sumty amorlsisay dny 3oflion tvoldil

*Position of control do ss nor affect the value read.

					Vol	age fr	m P_{1}	to Grou						Rest	stance	from Pi	n to gr	ound		
Unit	Luc.	Type	Pin 1	Pin 2	Pin 3	P1n 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Pin 1	Pin 2	Pin 3	P1n 4	Pin 5	P1n 6	Pin 7	Pin 8	Pin 9
U-22	V1	5U4	NC	590	NC	ac	NC	ac	NC	590	--	NC	800K	5	16	NC	16	NC	800k	--
	v2	5 C 4	nc	590	nc	ac	nc	ac	nc	590	--	nc	800K	109	16	NC	16	10 K	800K	--
	v3	OA2	300	160	86	160	300	160	160	--	--	5M	∞	NC	NC	NC	NC	x	--	--
	V4	OA2	160	0	46	0	160	42	0	--	--	--	0	NC	NC	NC	NC	0	--	--
	v5	12AU7	238	0	10	FIL	FIL	134	0	6.4	FIL	32M	500m	1 K	6200	6290	44M	15K	3 K	630\%
	V6	807	FIL	317	-27.7	0	FIL	PLATE	--	--	--	6200	5 M	5000	0	6200	plate	--	-	--
								$\underset{480}{\mathrm{CAP}}$									$\begin{aligned} & \text { CAP } \\ & 500 \mathrm{~K} \end{aligned}$			
	$v 7$	*G7	FIL	317	-28	0	Fil	PLATE CAP	--	--	--	6200	5M	5000	0	6200	$\begin{aligned} & \text { PLATE } \\ & \text { CAP } \end{aligned}$	--	--	--
								480									500K			
	vo	$12 \mathrm{AU7}$	228	0	38	FIL	FIL	105	37.5	38	FIL	2.6 M	30K	6200	FIL	FIL	4M	2.2M	6000	F1L
	v9	$12 \mathrm{AU7}$	228	0	38	F11.	FIL	107	37.5	38	FIL	1 M	28K	6000	FIL	FIL	3m	2. 2M	6000	F1L
$\begin{aligned} & \text { U-27 } \\ & \text { Ccntrol } \\ & \text { Sosition } \\ & \text { scw } \end{aligned}$	V1	OA2	150	0	17.2	0	150	12.5	0	--	--	90k	28 K	NC	28K	90к	nc	28K	--	--
	v2	OA2	300	150	100	150	300	120	150	--	--	28K	0	NC	NC	28K	NC	nc	--	--
	v3	12AX7	128	0	1	FIL	FIL	193	128	128	FIL	400k	460K	1600	FIL	Fil	150K	400K	82K	FIL
	v4	12AU7	302	0	31	FIL	FIL	120	31	31	FIL	140K	85K	3600	FIL	Fil	130 K	- 19	3600	1IL
	vs	12AX7	135	0	1	FIL	FIL	207	135	135	FIL	400K	230K	1600	FIL	FIL	150K	400K	82K	F1L
	v6	12AII7	300	0	31	FIL	FIL	128	31	31	FIL	140K	85K	3600	FIL	FIL	130K	1M	3600	F1L
	v7	12AX7	125	0	1	FIL	FIL	186	125	124	FIL	400k	500	1600	FIL	Fil	150 K	400K	82K	Fil.
	v8	12AU7	290	0	32	FIL	FIL	120	32	32	PIL	140 K	85k	3600	FIL	FIL	130K	1M	3600	FIL
	$v 9$	12AX7	130	0	1	FIL	Fil	195	129	129	FIL	400K	50K	1600	Fil	FIL	150K	40GK	82K	F11
	v10	12AU7	310	0	31	FIL	Fil	120	31	31	FIL	140 K	85K	3600	Fil	FIL	130 K	1M	3600	FIL
	V11	12AX7	130	0	1	FIL	Fil	195	131	130	FIL	400K	23K	1600	FIL	FIL	150K	400k	82K	FIL
	v12	12AU7	310	0	32	F11	FIL	118	31	32	FIL	140K	85k	3600	FIL	FIL	130K	1 M	3600	Fil
	V 13	12AX7	137	0	1	FIL	Fil	204	137	137	FIL	400K	500	1600	FIL	Fil	15 CK	400k	82K	FIL
	V14	12AU7	310	0	31	Fil	Fil	120	31	31	Fil	140K	85\%	3600	FIL	Fil	130K	1.9	3600	FIL
	V15	5U4	NC	400	NC	ac	NC	ac	nc	400	--	nc	90\%	NC	44	N:	40	NC	100k	--
U-28	V1	OA2	153	NC	NC	NC	NC	NC	0	--	--	43K	c,	NC	0	43k	NC	\bigcirc	--	--
	$\checkmark 2$	OA2	0	-150	nc	nC	0	nc	-150	--	--	0	86K	NC	nc	0	sc	86 K	--	--.
	v3	12AT7	34	0.4	0	FiL	Fil	87.5	0	,	FIL	86 K	67K	0	FIL	F1L	86 K	69K	0	FIL

Table V
I.IST OF TUBES AND FUSES

Tube Type	Quantity	Yuse size 3AG	Quantity
OAS	19	150 mA	4
OC:	4	1/4 amp	2
$3{ }^{3} 2$	8	3/8 amp	4
$5 \mathrm{R} \cdot 1$	1	$1 / 2 \mathrm{amp}$	7
5 U 1 GB	4	2 amp	2
$5 \% 3$	2	2-1/2 amp	1
$6 \mathrm{AC7}$	4	3 amp	3
6AH6	16	4 amp	1
6 Ca .5	12	5 amp	1
6AS 7G	2	10 amp	1
Cilw	5		
GBAG	36	$1.6 \mathrm{amp} \mathrm{S.B}$.	1
6BE6	12	2 amp S.B.	2
613J6	8	7 amp S.B.	1
6BQ5	8		
6 C 4	16		
6 CL 5	2		
6v6	4		
12.AT7	32		
12 AU 7	14		
$12 \mathrm{AX7}$	21		
1234 A	7		
807	2		
5651	3		
5687	16		
5:27/2021:	2		
5751	3		
5755	4		
5814	4		
5947/TT-2	1		

Table :I

Table VI (Continued)

Unit	Tube TyLe	Quantity	Trangistur Type	Quantity	Dicde Type	Quantity	Miscculaneturs	Quantit
U-6 Cal Unit	$\begin{aligned} & 59 \cdot 47 / \\ & T T-2 \end{aligned}$	1					Capacitor 20 \& 4500 tubular elec:rolytic	1
L-7 Input Panel	12.4×7	2	2 N 3823 TIXM206 2N3563	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$				
U-S Sigriol Generator 606A	6AWK 12AT7 6CL6 12B4A 5651	$\begin{aligned} & 5 \\ & 4 \\ & 2 \\ & 7 \\ & 1 \end{aligned}$			1N90	3	Capacitor, $3 * 10450 \mathrm{~V}$ electrolytu Capacitor. 120; 40 at 450 H electrolytic Lamp. pilut Fuse, 2 amp S.B. size ? 36	$\begin{aligned} & 1 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$
U-10 R-courder Pen Drive (Amplifier)	122×7 12AT7 5687 6A.i 7 5651	$\begin{array}{r} 9 \\ 16 \\ 16 \\ 2 \\ 1 \end{array}$	2N176	5	$\begin{aligned} & 1 N 2071 \\ & \text { TM }-7 \\ & 1 N 1524 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 1 \end{aligned}$	```Battery, Mercury 2.696 Mallury TR-132R 3 * 20 450v electrolyeic Fuse, 4 amp size 3AG```	$\begin{array}{r} 16 \\ 1 \\ 1 \end{array}$
U-11 Puwer Supply 300V Neg (Kepeo)			$\begin{aligned} & 2 \text { N174 } \\ & 2 \text { N11:31A } \\ & \text { 2N33E } \\ & \text { 2N39とA } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { CEC-105 } \\ & \text { CEC-7050 } \\ & \text { PT-5 } \\ & \text { SV125 } \\ & \text { 1N3O26B } \\ & \text { 1NR21 } \\ & \text { Kepco So. } \\ & 124 \sim 0178 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Capacitors 280 : 500 V (43F1633CA3) 40 . f 5408 ($90 B K G 5$) Fuse, 1/2 amp S.B. size $34 G$ Fuse, 7 amp S.B size 3ag Fuse, 2 amp S.B. :ize 3AG	
U-I? Power Supply 300 V Pos. (Ktpeo)			$\begin{aligned} & \text { 2N338 } \\ & \text { 2N113:A } \\ & \text { 2N1167 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 3 \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 8 \\ & 1 \\ & 2 \\ & 2 \\ & i \end{aligned}$		$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
U-13 Ationuator Panel			2N3962 Tl. man 2 E 2N:563	1 1 2				
U-21 Camera Control					10DB6A	1	Fuse, 2-1/2 amp size 3aG Amperite Time Delay Relays 115 NO2T 115 C 2 T Relay, P\& B KRP!iag 24V dce	

100
Tathe VI（Cositmure

Tint	Tuby Tup	Quantity	Transıstor Trem	Quatity	Dhede Tre	Quantil	Whtallamaus	44，211213
U－23 Reloy and Inolator Filament power Supply					ハைハハ5	1	Fus\％，1／2atipeize 316	1
$\mathrm{U}-18$ and $\mathrm{U}-24$	$\begin{aligned} & 5751 \\ & 5651 \mathrm{WA} \\ & 5727 \\ & 2021 \mathrm{~W} \\ & \text { ca2 Wt } \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$			$\begin{aligned} & \text { Bradyey } \\ & \text { 553P2(bH } \\ & \text { 1N35? } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	Fuse．12 amp atee 3.46	2
U－25 Recurdting Camera 1．F3							Floed Lamp， 150 m	2
U－26 Hamlay Panti lima			$\begin{aligned} & 2 \mathrm{~N}_{2053} 2 \times 3014 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	1310005	16		
［i－27 Cotuntor brive Uni I．FA	50.1 1122 $12 \times 1 \times 7$ 12907	$\begin{aligned} & 1 \\ & 2 \\ & 6 \\ & 6 \end{aligned}$			194005	12	```Amperite 115 (03% Tame Delay Relas Capacitors. 10 & 1504. tubular Mectrulytac * f q50y. tubular mectrosytac 2. 30 1 45%, emertwortac Lamp = &-t Fuse, z amp =rze 3AG```	7
U－2k I．ine Voltage Range Limitur	012 $12 \mathrm{AU7}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$			1Numis	＊		:
U－29．HPOMA OSC			2．51516 $2 \times 21 \times 4$ 2N1516． （）C17（） 53056 T51602	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{array}{r} 1 \\ 5 \\ 10 \\ 10 \\ 1 \\ 2 \end{array}$	Batery．Mrecury，s cell 	；
U－29 hrithat Anplifier			$\begin{aligned} & 2 \times 522 A \\ & 0 C 170 \\ & 2 \times 274 \\ & 0 \mathrm{C} 170 \\ & 2 \times 650 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \vdots \\ & 1 \end{aligned}$	$\begin{aligned} & \text { II' G20N-7 } \\ & \text { BU 1590 } \\ & \text { HP G29G-4 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$		
U－29 HP403B			374 N 252189 2×1183 2N706A	1 3 1 3	$\begin{aligned} & \text { C29M-7 } \\ & \text { HDSDO } \\ & \text { CD159 } \\ & \text { G29A-74 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 5 \\ & 2 \end{aligned}$	Battery，Mercury，is $22.5 \mathrm{mah} 4 \mathrm{HP1420-0015}$	1

Abstract

The equipent meets the design opecifications more than adequately. fhe ststem noise ts well below the calibration diode level at all frequencies, and the diote level is at least 10 dB below the lowest atmospherie level yet encountered. The stability is such that calibration needs to be done only once a wed. In the absence of system trouble the calabration lactors to not change by more than 1 dB in this period.

The presence of an operator would be deninable at all times, but thas $1 s$ seldon practical. The duties of an operator, as distinct lron mantenance personne: are to note and log the ineidence of trouble, to check perrodically for contamation (man-made interference) and tune atway 1 rom it if possible, and to adjetst (and record) attenuator settings to keep the chart pers on scale. It was originally hoped that the addition of an atomatic unit to perfora this last function would pemit the equipment to be operated lor a weok at a time without attention, but the high incidence of man-made interference in Southeast Asia has shown this to be impractical. Aa operator watch was maintained for two months early in 1966 , checking each 30 minutes, 21 hours per day. On typical days $1 t$ was neessary to retune 22% of the time to avoid man-made interference. Even so, approximately 10 of the time was lost, as far as data collection was concerned, inctuding the 3 若 nomally lost during calibration.

Therefore, as aresult of analyzing the operations during these periods with respect to the dimmal distribution of required changes in tuning and attentators, the following schedule has been estabiished. This as condered the minimum amont of attention that will give a reasonable amount of reliable data. (Since this data is statistical, the loss of up to 20 the data, if such loss is not systematic, is not serions.) The operators should eheck the equipment at the following times each day: 0600, 0700, 0800, 1100, 1200, 1300, $1400,1700,1800$,

1900, 2000, 2100, 2200. Checking at these timen will catch nearly all Jf the necessary attenamtur changes, bat it should bo noted that those diurnal changes are not predictable in magntude or ine.
the equipment as now aissembled performs quite adequately, but could of course be improved. Probably the most immediatel: denirable improvenent would be the addition of an MF band to the LFA designed to com: pulses from about 0.1 voit up. As nuted above, it is probably mot desirable to design and construct an automatie attenuator for the ary-3 unless some kind of inverse AFC were also added to autonatically tund the receivers to avoid man-made interference, $l t$ is doubtiful that this much development effort would be justified unless the equipment is to be operated in a location where it is completely impossible to provide operators.

If further equipment of this type is to be monstrusted, it would be highly desirable to redesign some (at least) of the units to use transistors instead of vacuum tubes; the greatest improvement would result from the use of transistors in the dc amplifiers in the power and voltage strips and in the pen driver amplifiers. The necessary temperature compensation would be somewhat complex, bat the reduction of mailtenance could more than justify it. Also, redesign of the front-end civcuitry (antenna coupler/preamplifier combination) to provide individal channels for each frequency would 'je an improvemont, since under the present arrangement interference in one channel affects all channels.

As a result of field experience with this equipment it is strongly recommended that units similar to $U-28$, the Line Voltage Range Iimiter, be used on field operations in the future where mot $\cap \mathfrak{v}$ generator power sources are used. Virtuaily all of the catastrophic equipment failures result from periods of severe under or over voitage beyor the range of normal regulation. Such periods of voltage aberration have occurred because of operator error, failure of regulators in the generators, or failure of auxiliary equipment (such as air conditioners) which overloaded the generators.

I

1 10:
l

Appendix A
 CALIBRAT ION THEORY

Calibration of all channels is provided in terms of an effective antenna noise ligure, ${ }^{\prime}$, winch is defined as the noise power available from an equivalent lossless antenna relative to kTb , the thermal noisn power from a passive resistance. This is from the basic equation $i^{2}=4 \mathrm{RkTb}$, whare

```
\(k=\) Boltzmann's constant \(=1.38 \times 10^{-23}\) joules/degree Kelvin
\(T=\) Temperature in degrees Kelvin
\(b=\) Effective noise bandwidth in cycles per second.
```

The actual calibration procedure consists in detrrmir. ag the power level at the antenna by comparison with the noise diode and then in determining the antenna losses. At 5 MHz and below, the antenna is short (i.e., less than $\lambda / 8$) relativ $=$ to the waveiength, and the current can be considered to have a liaear distribution along the antenna. When this is true, the mutual and self mpedance can be easily calculated. Abo . 5 MHz , where the antenna current cannot be considered linearly distributed, the impedance calculations become very complex. Fortunately, the antenna losses become very small at these frequencies and can be neg lected.

The calibration factors for 5 MHz and below are derived is follows:

With a CW voltage, e_{s}, applied to the stub antenna, the puwer, p_{a}, that would be available from the receiving antenna if it were lossless is riven by

$$
\begin{equation*}
p_{a}=\frac{e_{a}^{2}}{4 r_{a}}=\frac{e^{2} s_{m}^{2}}{4 r_{a} z_{s}^{2}} \tag{A-1}
\end{equation*}
$$

where

$$
\begin{aligned}
e_{a} & =\text { Voltage induced in the receiving antenna } \\
x_{a} & =\text { Radiation resistance of the receiving antenna } \\
z_{m} & =\text { Mutual impedance between antennas } \\
s_{s} & =\text { Self impedance of the stub antenna. }
\end{aligned}
$$

When a CW genexator having an open circuit voltage, e_{g}, is connected through a resistance network to the noise diode load resistance, as shown in Fig. 28, the power available at the dummy antenna networks is given by

$$
\begin{equation*}
p_{d}=\frac{e_{g}^{2}}{4 r_{g_{n}^{\ell}}} \tag{A-2}
\end{equation*}
$$

where

$$
\begin{aligned}
r_{\mathrm{g}}= & \text { Generator resistance } \\
\mathbf{2}_{\mathbf{n}}= & \text { Coefficient of loss in available CW power between } \\
& \text { generator and diode load resis tance caused by resistance } \\
& \text { network. }
\end{aligned}
$$

The value of p_{a} can be exprossed in terms of p_{d} by experimentally determining the values of e_{s} ancl e_{g} that will cause the same recorder deflection when the input of sine receiver is alternately connected to the antenna and dummy antenna, Under these conditions the voltage r itio, s, can be defined as:

$$
\begin{equation*}
s=\frac{e_{s}}{e_{g}} \tag{A-3}
\end{equation*}
$$

and from EqS. $(A-1),(A-2)$, and (A-3) we have

By definition of f_{a} :

$$
\begin{equation*}
f_{a}-\frac{p_{a}}{k T b}=\frac{p_{d} s^{2} r_{t^{\ell} n^{2} z_{m}^{2}}^{k T b r} z^{2}}{k} \tag{A-5}
\end{equation*}
$$

The value of $p_{d} / k T b$ is obtained by direci calibration of the nois dicde plate-current meter and the value of s is obtained by measurements with the alignment oscillator. The other factors in Eq. (A-5) are calculated from the known system clements and physical dimensions.

From the resistance network in $F i g .28$,

$$
\begin{equation*}
r_{L_{n}}=50 \times 253=1.26 \times 10^{4} \tag{A-6}
\end{equation*}
$$

For a short vertical antenna, the radiation resistance is given by

$$
\begin{equation*}
r_{\mathrm{a}}=\frac{4}{9} \times 10^{-3} \pi^{2} e_{\mathrm{a}}^{2} \mathrm{f}_{\mathrm{MH} Z}^{2}=1.93 \times 10^{-1} \mathrm{f}_{\mathrm{MHz}}^{2} \tag{A-7}
\end{equation*}
$$

where

$$
\begin{aligned}
\ell_{\mathrm{a}} & =\text { Length of the antenna }=6.63 \text { meters } \\
\mathrm{f}_{\mathrm{MHz}} & =\text { Frequency in } \mathrm{MHz} .
\end{aligned}
$$

The mutual impedance between the short recelving antenna and the nearby stub antenna is essentially a pure capacitive reactance, and its magnitude is given by

$$
\begin{equation*}
z_{m}=\frac{1430 \ell}{\mathrm{f}_{\mathrm{MHz}^{\ell}}} \mathrm{s}\left[\frac{1}{\mathrm{~d}}-\frac{1}{\sqrt{\ell_{\mathrm{a}}^{2}+\mathrm{d}^{2}}}\right]=\frac{29.5}{\mathrm{f}_{\mathrm{MH} \ell}} \tag{A-8}
\end{equation*}
$$

where

$$
\begin{aligned}
\ell_{\mathbf{s}} & =\text { Length of stub }=0.203 \text { meter } \\
\mathbf{d} & =\text { Distance between antenna and } s t u b=1.2 亡 \text { meters. } .
\end{aligned}
$$

The self impedance of the stub is also essentially a pure capacitive reactance, and its magnitude is given by

$$
\begin{equation*}
\because-\frac{\left(\log _{10} \frac{2_{\ell} s}{a}-0.403\right) \times 10^{4}}{1.52 \ell_{s} f_{\mathrm{MHZ}}}=\frac{6.02 \times 10^{4}}{\mathrm{H}_{\mathrm{HH} /}} \tag{A-9}
\end{equation*}
$$

where

$$
\mathrm{a}=\text { Diameter of the stub }=0.002290 \text { meter. }
$$

Combining Eqs. $(A-5),(A-6),(A-7),(A-8)$, and $(A-9)$,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{a}}=1.57 \times 10^{-2} \frac{\mathrm{p}_{\mathrm{d}} \mathrm{~s}^{2}}{\mathrm{kTbf}_{\mathrm{MHz}}^{2}} \tag{A-10}
\end{equation*}
$$

Converting to $d B$ we have

$$
\begin{equation*}
F_{a}=F_{d}+3-18.04-20 \log _{10} f_{M H z} \tag{A-11}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{F}_{\mathrm{a}} & =10 \log _{10} \mathrm{f}_{\mathrm{a}} \\
\mathrm{~F}_{\mathrm{d}} & =10 \log _{10} \mathrm{p}_{\mathrm{d}} / \mathrm{kTb} \\
\mathrm{~S} & =20 \log _{10} \mathrm{~s} .
\end{aligned}
$$

In this expression, the value of F_{d} represents the noise diode level that would give the same chart reading R as t actual noise level at the antenna. In practice, however, instead of matching each inout level with a corresponding value of F_{d}, the chart is calibrated with a reference noise diode level, F_{d}^{\prime}, and the resulting recorder deflection, D, is noted. Thus, the value of F_{d} that corresponds to the antenna power is given by

$$
\begin{equation*}
\mathrm{F}_{\mathrm{d}}=\mathrm{H}+\mathrm{F}_{\mathrm{d}}^{\prime}-\mathrm{D} \tag{A-12}
\end{equation*}
$$

In calibration, the value of F_{d}^{\prime} is tak f n as 36 dB above kTb , and combining this with the constant and the frequency terms of $E q$. (A•11) a system constant, K, for the systen is given by

$$
\begin{align*}
\mathrm{K} & =F_{d}^{\prime}-18.04-20 \log _{10} \mathrm{f}_{\mathrm{NH} 2} \\
& =17.96-20 \log _{10} \mathrm{f}_{\mathrm{NH} z} \tag{A-13}
\end{align*}
$$

We can no:" vrite Eq. (A-11) as

$$
\begin{equation*}
F_{a}=R+K+S-D \tag{A-14}
\end{equation*}
$$

Values of K for the frequencies used here are as follows:

Frequency	K (System Cons' ant)
6 kHz	62.4
13 kHz	55.7
27 kHz	49.3
160 kHz	33.9
530 kHz	23.5
2.3 MHz	10.7
5 MHz	4.0
10 MHz	-9.6

Since the anterna can be considered lossless at 10 MHz , the value of F_{a} is equal to F_{d}, provided the dumny antenna impedance is equal to the antenna impedance. Correct adjustment of the dummy impedance is made initially, but in order to correct for changes during shipment or with time, measurements witn the stub antenna are also made at this frequency.

The mutual impedance equations used previously are not valid at 10 NHz and, thus, the value of K must be determined empirically by measuring S with a correctly adjusted dummy antenna and equating Eq.. ($A-12$) and ($A-14$) so that

$$
\begin{equation*}
K=36-S \tag{A-15}
\end{equation*}
$$

The value of K thus determined can then be used in $E q$. (A-14) as a calibration constant, and is also biven above.

Appendi: B

COMB FILTER ALIGNMENT

This alignment should rarely be required, and should be performed only by qualified personnel. A Loonton Model 250 A RX meter is required, and the procedure is as follows. Connect the filter input to the antenna isolator, which must have power on and its inpul isolated (surning the Calibration Unit function switch to any position except ANT does this). Set the $R X$ meter to the required frequency, short its input and maximize the detector response, remove the short and null input connector capacity, and connect to filter output cable (use cabie which normally connects to preamplifier) through the special low-capacity adapter provided. This makes the capacity of the connecting cable part of the filter. Set the Calibration Unit function switch to the frequency nearest the one being tuned to. Tune for resonance at tre proper frequency and for correct output impedance at resonance, as shown in Table B-1. (See Fig. B-1 for I, and C physical lucations.)

Table B-1
Effect of varying filter elements

Frequency	Required R	Increasing Component	Effect on Tuned Frequency	$\begin{gathered} \text { Effect } \\ \text { on Output R } \end{gathered}$
530 kHz	3000	L1	Decrease	Increase
		L4	Decrease	Decrease
		CA	Decrease	Decreas:
2.3 MHz	1000	C1	Decrease	Decrease
		C5	Decrease	Increase
5 MHz	1000	C2	Decrease	Decrease
		C6	Decrease	Increase
10 MHz	1000	C3	Decrease	Decrease
		c. 7	Decrease	Increase

FIG. B. 1 COMB FILTER LAYOUT

There is some slight interaction between filter elements, so after funing each of the four frequencies (starting with the lowest) it is wise to go through again and touch up as indicated. It is not difficult to set the output resistances within $i 5 \%$, although it is doubtful that any good purpose is served by getting closer than $\pm 10 \%$ 。
Appendix C PORTABLE EQUIPMENT INSTALLATION

Appendix C

The second installation is in a type $S-141$ Van aid $1 S$ constdered portable. This van is transported on a $2-i / 2-t o n$ truck, The portability is somewhat iimited, since the standard fround plane and antenma are frequently used, and since generators and fuel must accompany $1 t$. Figure $\mathrm{C}-1$ shows the equipment layout, and figs. $\mathrm{C}-2, \mathrm{C}-2$ and $\mathrm{C}-1$ show the power and signal interconnections.

Note that the Low Frequency Converters carry the designation $U-30$ instead of $U-1$ (as in the fixed installation) and the power supplies for the converters are designated $U-31$ instead of $U-20$. This change in designation reflects only a different physical arrangement, not a difierence in principle. Sche .tics for these urits are Figs. C-S and C-G.

Aside from these small differences, the equipments are the same, and all of the preceding manual applies to both.

$$
\begin{aligned}
& \text { PORTABLE ARN-3 AND LFA } \\
& \text { INSTALLATION. LINE REGUL.A- } \\
& \text { TOR, U-I8, POWER SUPPLY } \\
& \text { FOR PECURDER PEN DRIVER } \\
& \text { AMPLIFIERS, U-I9, AND } \\
& \text { POWER SUPPLY FOR LOW- } \\
& \text { FREQUENCY CONVERTERS, } \\
& \text { UI-3I, ARE BEHIND RACKS. } \\
& \text { LINE-VOLTAGE RAR:GE } \\
& \text { LIMITER, LU-26, AND LF } \\
& \text { CALIBRATION INSTRLMEN- } \\
& \text { TATION, U-29, NOT SHOWN. } \\
& \text { SCALE }: \frac{1}{4}=1 \frac{3}{4}
\end{aligned}
$$

A

FIG. C. 5
LF CONVERTERS, ARN-3, PORTABLE, U-30

FIG. C-6 POWER SUPPLIES FOR LF CONVERTERS, PORTABLE, U-31

REFERENCES

The literature concerning atmospheric radio noise and lightning flash measurements is huge. A bibliograrhy which even pretended to completeness would be much larger than this report. The following is a sampling, mostly from mare aecent work.

1. P. H. Enslow, "Noise Figuras, Noise Temperatures, and System Sensitivity," Technical Report No. 516-2, Contract DA 36(039) SC-78296, Stanford Electronics Laboratories, Stanford University, California (10 July 1961).
2. J. A. Saxton, "Advances in Radio Research" (Acaapmic Press, Inc., London, 1964).
3. H. A. Thomas, "A Subjective Method of Measuring Kadio Noise," Proc. Instn. Elect. Engrs., V.l. 97, Part III, pp. 329-334 (1950).
4. W. Q. Critchlow, G. Foldes, F. J. Hewitti, and F. Horner, "Special Report on Characteristics of Terrestrial Radio Noise," Subcommittee of Commission IV, URSI (August 1960).
5. W. B. Davenport and W. L. Root, "Ani Introduction to the Theory of Random Signals and Noise" (McGraw-Hill Book Company, Inc., New York, New York, 1958).
6. W. Q. Crichlow, "Noise Investigations at VLF by the National Bureau of Standards," Proc. IRE, pF. 778-782 (June 1957).
7. W. H. Ahlbeck et al,, "Instruction Book for ARN-2 Radio Noise Recorder, Serial Nos. 1-10," NBS Report 5545, National Bureau of Standards, Boulder, Colorado (3 January 1958).
8. W. Q. Crichlow, R. T. Disney, and M. A. Jenkins, "Quarterly Radio Noise Data," NBS Technical Notes Nos. 18-12 tinrough 18-27 (1961 thrcuig 1965).
9. "Revision of Atmospheric Radio Noise Data," CCIR Report No. 65, International Telecommunication Union, Feneva (1957).
10. "World Distribution and Characteristics of Atmospheric Radio Noise," CCIR Report 322, Doc. X, Plenary Assembly, Geneva, 1963 (Int. Teje. Union, Geneva, 1964).
11. C. ©arke, P. A. Bradley, and D. E. Mortimer, "Some Characteristics of Atwospheric Radio Noise Observed at Singapore and Their Comparison wi:2 Temper:te Latitude Data," Department of Scientific and Industrial Research, Radto Research Station (1963).
3.L. C. Clarice, P. A. Bradle, and D. E. Mortimer, "Characteristics of Atmaspheric Radio Nuise Observed at Singaporc," Proc. IEE. Vol. 112, No. 5, pp. 849-860 (May 1965).
12. C. Clarke, "Atmospheric Noise Structure: Measuring Equipment for $15 \mathrm{kc} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}, "$ Electronic Technology, pp. 197-203 (May 1930).
13. H. E. Dinger and H. G. Paine, "Factors Affecting the Accuracy of Radio Noise Meters," Proc. IRE, pp. 75-81 (January 1947).
14. F. Horner and J. Harwood, "An Investigation of Atmospheric Radio Noise at Very Low Frequencies," Proc. Instn. Elect. Engrs., Vol. 103B, 2p. 743-751 (November 1956).
15. "Lightning Flash Counter," The British Electrical and Allied Industries Research Association, England (19 May 1958).
16. F. Horner, "The Design and Use of Instruments for Counting Local Lightning Flashes," Proc. IRE, Vol. 107, Part B، No. 34, pp. 321-330 (July 1060).
17. H. D. Muller-Hildebrend, "Lightning Counters: I. Therange in Electric Field due to Lightning Strokes, with Reference to Its Effect on Lightning Counters," Ark. Gcophys., Vol. 4, pp. 247-269 (1963).
18. H. D. Muller-Hildebsand, "Lightning Counters: II. The Effect of Changes of Electric Field on Counter Circuits," Ark. Geophys., Vol. 4, pp. 271-291 (1963).
19. H. D. Muller-Hildebrand, "Lightning Flash Counters," CIGRE Study Committee No. 8.
20. T. Obayarihi, "Measured Frequeney Spec ra of Very-Low-Frequency Atmospherics," J. Research NBSD Rad: - srocagation, Vol. 64 D., No. 1, pp. 41-48 (1960).
21. E. T. Piercc, H. R. Arnold, and A. S. Dennis, "Very-Low-Frequency Atmospherics due to Lightning Flaskes,' Final Feport, SRI Project 3738, Contract AF 33(657)-7009, Stanford Resear:h Institute, Menlo Park, California (September 1962).
22. E. T. Pierce, "The Influence of Individual Variations in the Field Change due to Lightning Discharges Upon the Design and Performance of Lightning Flash Counter," Arch. Met. Geophysil and Bioklimatolugie, Vol. 9, pp. 78-86 (1956).
23. W. Q. C.chlow, C. J. Roubique, A. D. Spaulding, and W. M. Beery, "Determination of the Amplitude-Probability ifotribution of Atmospheric Radio Noise from Statistical moments," J. Research NBS, Vol. 64 D, No. 1, pp. 49-55 (January-February 1960).

Fi- 24 FUNCTION SHELF, U-j AND U-15

Distribution of this document is unlimited.

Advanced Research Projects Agency Washington, D.C.

AESthact
Equipment har been developed and constructed for use in studies of atmospheric noise in Thailand. Average noise power and the mean elvelope voltage can be measured at eight frequencies in the VLF, LF, MF, and HF bands. The design of this equipment is derived from the National Bureau o: Standards (now ESSA) ARN-2 rolse-measuring equipment. The equipment is operated in conjunction with the standard ARN monopole and ground plane and so the data obtained are compatible with data from the existing worlciwide network of noise stations courdinated by ESSA, Boulder, Colorido. Impulsive voltages induced in the standard antenna by local thunderstorms are recorded at several threshola levels by lightning-flast analyzer equipment to supplement the ARN type data.

This report is intended as an operation and maintenarse manual. It explains the principles of operation and includes schmatic diagrams and sample records as well as a description of calibration and data-reduction procedures.

Security Classification
radio noise
atmospheric noise
radio noise recorder
ARN-3
VLF, LF, MF, HF
lightning flash counter
operation and maintenance
Thailand
SEACORE

[^0]: References are listed at the end of this report.

[^1]: See "Selection of MRDC Low Noise Field Site, Memo for SRI Project 4240 (unpublished).

[^2]: * Supplied by Mr. W. Q. Crichlow.

[^3]: * These units have instruction manuals supplied by the manufacturer. These manuals are to be considered part of this manual.

