ARMY TM11-5805-650-34\&P
 AIR FORCE TO 31W2-2TT-12

DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL

TELEPHONE SET TA-838/TT
 (NSN 5805-00-124-8678) AND TELEPHONE SET TA-838A/TT
 (NSN 5805-01-125-5976)

This copy is a reprint which includes current pages from Changes 1 through 4.

DEPARTMENTS OF THE ARMY AND THE AIR FORCE

Direct Support and General Support Maintenance Manual
 TELEPHONE SET TA-838/TT (NSN 5805-00-124-8678) (EIC: HJR) AND
 TELEPHONE SET TA-838A/TT (NSN 5805-01-125-5976) (EIC: HOR)

TM 11-5805-650-34\&P/TO 31W2-2TT-12, 1 October 1976, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page. Added or revised illustrations are indicated by a vertical bar adjacent to the identification number.

Remove Pages	Insert Pages
iii and iv	iiiland iv
$3-12.3$ and $3-12.4$	$3-12.3$ and $3-12.4$
$4-1$ through 4-2.1	$4-1$ through $4-2.1 /(4-2.2$ blank)
None	FO-21/(FO-22 blank)
None	FO-23/(FO-24 blank)
None	FO-25/(FO-26 blank)

2. File this change sheet in front of the publication for reference purposes.
[^0]By Order of the Secretary of the Army:

GORDON R. SULLIVAN
General, United States Army
Chief of Staff

Official:

MILTON H. HAMILTON
Administrative Assistant to the
Secretary of the Army
06451

By Order of the Secretary of the Air Force:

LARRY D. WELSH
General, United States Air Force Chief of Staff

Official:

CHARLES D. McDONALD
General, United States Air Force
Commander, Air Force
Logistics Command

DISTRIBUTION:

To be distributed in accordance with DAForm 12-36-E, block 6974 requirements for TM 11-5805-650-34\&P.

Change
No. 4

DEPARTMENTS OF THE ARMY AND THE AIR FORCE Washington, DC, 1 July 1988

Direct Support and General Support Maintenance Manual
 TELEPHONE SET TA-838/TT
 (NSN 5805-00-124-8678) AND
 TELEPHONE SET TA-838A/TT
 (NSN 5805-01-125-5976)

TM 11-5805-650-34\&P/TO 31W2-2TT-12, 1 October 1976, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or revised material is indicated by a vertical bar in the margin of the page. Added or revised illustrations are indicated by a vertical bar in front of the figure caption.

Remove pages Insert pages

```
3-7 and 3-8
4-24.1 and 4-24.2
4-24.4.1 and 4-24.4.2
3-7 and 3-8
4-24.1 and 4-24.2
4.24.4.1 and 4-24.4.2
```

2. File this change in front of the manual for reference purposes.

By Order of the Secretaries of the Army and the Air Force:

CARL E. VUONO
General, United States Army
Chief of Staff

R. L. DILWORTH

Brigadier General, United States Army
The Adjutant General

Official:

WILLIAM O. NATIONS
Colonel, USA F
LARRY D. WELSH
General, USAF
Director of Information
Chief of Staff
\section*{DI STRI BUTI ON:}
To be distributed in accordance with DA Form 12-36 DS/GS
requi rements for TA- 838, A TT.

Direct Support and General Support Maintenance Manual
 TELEPHONE SET TA-838/TT
 (NSN 5805-00-124-8678) AND
 TELEPHONE SET TA-838A/TT
 (NSN 5805-01-125-5976)

TM 11-5805-650-34\&P/TO 31W2-2TT,12, 1 October 1976, is changed as follows:

1. Title of manual is changed as shown above.
2. Remove and insert pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page. Added or revised illustrations are indicated by a vertical bar in front of the figure caption.

Remove	Insert
i through iv	i through iv
1-1 and 1-2	1-1 and 1-2
2-1 through 2-4	2-1 through 2-4
None	2-7 through 2-11/(2-12 blank)
3-1 and 3-2	3-1 and 3-2
3-5 through 3-8,	3-5 through 3-8
3-12.3 and 3-12.4,	3-12.3 through 3-12.5 /(3-12.6 blank)
4-1 and 4-2,	4-1 and 4-2
4-13 and 4-14	4-13 and 4-14
4-19 and 4-20	4-19 and 4-20
4-23 through 4-24.6	4-23 through 4-24.6
A-1	A-1/(A-2 blank)
B-1 through B-10	None
Figure FO-3	Figure FO-3
Figure FO-4 (1) and F0-4	Figures FO-4 (1) and FO-4 (2)
Figure FO-5	Figure FO-5
Figure FO-6	Figure FO-6
None .	Figures FO-7 (1) through FO-7 (3)

3. File this change sheet in front of publication for reference purposes.

> This publication is required for official use or for administrative or operational purposes only. Distribution is IImited to US Government Agencies. Other requests for this document must be referred to Commander, US Army Communicatlons-Electronics Command and fort Monmouth, ATTN: AMSEL-ME-P, Fort Monmouth, NJ $07703-5007$.

By Order of the Secretaries of the Army and the Air Force:

Official:
JOHN A WICKHAM, JR.
General, United States Army
Chief of Staff

MILDRED E. HEDBERG
Brigadier General, United States Army
The Adjutant General

Official:

EARL T. O'LOUGHLIN
General, USAF, Commander, Air Force Logistics Command

CHARLES A. GABRIEL
General, USAF
Chief of Staff

DI STRI BUTI ON:

To redistributed in accordance with DA Form 12-51 literature requi rements for TA-838/TT.

Direct Support and General Support Maintenance Manual

 Including Repair Parts and Special Tools ListsFOR

TELEPHONE SET TA-838/TT

(NSN 5805-00-124-8678)

TM 11-5805-650-34\&P TO 31W2-2TT-12, 1 October 1976, is changed as follows.

1. New or changed material in text is indicated by a vertical bar in the margin.
2. Added or revised illustrations are indicated by a vertical bar adjacent to the illustration identification number.
3. Remove and insert pages as indicated in the page list below:

4. File this change sheet in front of publication for reference purposes.

By Order of the Secretaries of the Army, the Navy, and the Air Force:
E. C. MEYER
General, United States Army Chief of Staff
ROBERT M. JOYCE
Brigadier General, United States Army
The Adjutant General
LEW ALLEN. JR.. Gencral USAIChictof Staft
JAMES P. MULLINS
General, USAF, Commander, Air ForceLogistics Command
DISTRIBUTION:To be distributed in accordance with Special Mailing List.

Direct Support and General Support

Maintenance Manual Including
Repair Parts and Special Tools Lists

for
 TELEPHONE SET TA-838/TT

(NSN 5805-00-12-8678)

TM 11-5805-650-34\&P/T0 31W2-2TT-12, 1 October 1976, is changed as follows:

1. New or changed material is indicated by a vertical bar in the margin.
2. Remove and insert pages as indicated below:

Remove	Insert
iii	iii
2-1 and 2-2	. 2-1 and 2-2
3-7 through 3-12	. . 3-7 through 3-12.4
4-1 and 4-2	4-1 through 4-2.1
4-3 through 4-24	. . 4-3 through 4-24.7
B-11 and B-12	. B-11 and B-12
Figure FO-4 (2)	.. Figure FO-4 (2)

3. File this change sheet in the front of the manual for reference purposes.

Official:

J.C. PENNINGTON

Brigadier General, United States Army
The Adjutant General
official:
F. M. ROGERS, General, USAF

Commander, Air Force Logistics Command

Distribution:
Active Army:
USASA (2) USAIS (2)
COE (1)
TSG (1)
USAARENBD (1)
DARCOM (1)
TECOM (2)
USACC (4)
TRADOC (2)
OS Maj Comd (4)
MDW (1)
Armies (2)
Corps (2)
HISA (Ft Monmouth) (33)
Ft Gillem (10)
Ft Gordon (10)
Ft Huachuca (10)
Ft Carson (5)
Svc Colleges (1)
USASIGS (5)
USAICS (3)
USAADS (2)
USAFAS (2)
USAARMS (2)
ARNG \& USAR: None
For explanation of abbreviations used, see AR 310-50.

BERNARD W. ROGERS
General, United States Army Chief of staff

DAVID C. JONES, General, USAF Chief of Staff

USAES (2)
AD (1) except
SAAD (30)
LBAD (14)
TOAD (14)
SHAD (3)
USA Dep (1)
Sig Sec USA Dep (1)
Sig Dep (1)
MAAG (1)
USARMIS (1)
USERDAA (1)
USERDAW (1)
Sig FLDMS (1)

DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL

TELEPHONE SET TA-838/TT (NSN 5805-00-124-8678) AND
 TELEPHONE SET TA-838A/TT
 (NSN 5805-01-125-5976)

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in back of this manual direct to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-MP, Fort Monmouth, NJ 07703-5007.
For Air Force, submit AFTO Form 22 (Technical Order System Publication Improvement Report and Reply) in accordance with paragraph 6-5, Section VI, T.O. 00-5-1. Forward direct to prime ALC/MST.
In either case, a reply will be furnished direct to you.

Table of Contents

CHAPTER 1.	INTRODUCTION	Paragraph Page
	Scope	1-1 1-1
	Maintenance forms, records, reports	1-2 1-1
	Reporting equipment improvement recommendations (EIR)	1-3 1-1
	Destruction of Army electronics material.	1-4 1-1
	Administrative storage	1-5 1-1
	Index of technical publications	.1-6 1-1

CHAPTER 3 . Section 1.	DIRECT SUPPORT MAINTENANCE INSTRUCTIONS		
	General	Paragraph	Page
	Scope	3-1	3-1
	Parts location diagrams	3-2	3-1
	Troubleshooting	3-3	3-1]
	Troubleshooting Chart	3-4	3-1
II.	Maintenance of telephone set TA-838/TT		
	Visual inspection	3-5	3-5
	Fault isolation .	3-6	-3-5
	Removal and replacement procedures	.3-7	3-5
	Transmitter element, removal and replacement	. 3-8	3-5
	Receiver element, removal and replacement	3-9	-3-6
	Telephone set base	3-10	3-6
	Retractile cord, removal and replacement	3-11	-3-6
	Loudspeaker horn (DS1), removal and replacement	3-12	3-6
	Ring indicator (DS2), removal and replacement	3-13	3-7
	Ringer volume control (R1), removal and replacement	3-14	-3-7
	Switch (S1), removal and replacement	3-15	-3-7
	Hookswitch (S2), removal and replacement	3-16	-3-7
	Circuit card assembly (A1), removal and replacement	3-17	-3-7
	Terminal board (TB1), removal and replacement	3-18	3-8
	Binding posts (E1 through E4), removal and replacement . . .	3-19	-3-8
	Battery contacts (upper and lower), removal and replacement	3-20	-3-8
III.	Testing procedure for Telephone Set TA-838/TT		
	General . .	3-21	3-8
	Physical tests and inspection..	.3-22	3-8
	Signalling tests	3-23	3-8
	Operational tests	3-24	3-12.4
IV.	Maintenance of Telephone Set TA4338/TT		
	General	3-25	3-12.4
	Fault isolation	3-26	3-12.4
V.	Testing procedures for Telephone Set TA-838A/TT General	3-27	3-12.4
	Self-testing provisions in Telephone Set TA-838A/TT 3-28	.3-12.4	
VI.	Description of replacement circuit card assembly for Telephone Set TA-838/TT and TA-838A/TT		
	Scope .	.3-29	3-12.4
	General	. $3-30$	3-12.4
CHAPTER 4.	GENERAL SUPPORT MAINTENANCE INSTRUCTIONS		
	General	.4-1	4-1
	Troubleshooting	.4-2	4-1
	Troubleshooting chart	4-3	4-1
	Fault isolation	4-4	4-2
	Preliminary setup	4-5	4-2
	Keyset (S3) test	.4-6	4-2
	MODE SELECT switch (S4) test.	4-7	4-4
	Removal and replacement procedures	4-8	4-4
	Component board (A2)I, removal and replacement	4-9	4-4
	Keyset (S3), removal and replacement	4-10	4-5]
	MODE SELECT switch (S4), removal and replacement	4-11	4-7
	Circuit card test procedure	4-12	4-7.
	Circuit card troubleshooting for Telephone Set TA-838/TT	4-13	4-24
	Circuit card troubleshooting for Telephone Set TA-838A/TT	4-13.1	4-24.4
	Removal of circuit card components	4-14	4-24.6
	Testing of components (out of circuit)	4-15	4-24.6
	Replacement of circuit card components	4-16	4-24.6
	Post repair inspection4-17	4-24.6
APPENDIX	A	REFERENC	

LIST OF ILLUSTRATIONS

Number	Title	Page
1-1	Telephone Set TA-838/TT	1-2
2-1	Tone/Keyset relationships	2-2
3-1	Handset and retractile cord assembly	3-1
3-2	Telephone set base, parts location for Telephone Set TA-838/TT	3-2
3-3	Telephone set, top and bottom views (base removed), parts location	3-3
3-4	Telephone set, side view, parts location	3-4
3-5	Handset cord, wiring diagram.	3-6
3-6	Signalling test setup	3-9
3-7	Local battery ring and seize acknowledge test setup	3-10
3-8	Common battery, 4-wire test setup	3-11
3-9	Common battery, 2-wire test setup	3-12
3-10	Parts location on Circuit Card Assembly (A1) for Telephone Set TA-838/TT.	3-12.5
4-1	Keyset (S3), test point locations	4-3
4-2	Connector (J1), test point locations	4-4
4-3	General circuit card (A1) test setup	4-6
4-4	Common/local battery, test setup	4-7
4-5	Ring circuit, test setup	4-8
4-6	Receive circuit, test setup	4-9
4-7	Send output, test setup	4-10
4-8	Loop resistance, test setup....	4-11
4-9	Return loss (2-wire), test setup.	4-12
4-10	Return loss (4-wire), test setup	4-13
4-11	Microcircuit pin location diagram for Telephone Set TA-838/TT	4-14
F0-1	Military standard color code marking	FO-1
FO-2	Telephone Set TA-838/TT, functional block diagram	FO-3
FO-3	Telephone Set TA-838/TT, and TA-838A/TT wiring diagram	FO-5
FO-4 (1)	Circuit card assembly (A1), schematic diagram for Telephone Set TA-838/TT (sheet 1 of 2)	FO-7
FO-4 (2)	Circuit card assembly (A) schematic diagram for Telephone Set TA-838/TT (sheet 2 of 2) .	FO-9
FO-5	Circuit card assembly test setup fixture, schematic diagram, for Telephone Set TA-838/TT	FO-11
FO-6	Telephone Set TA-838A/TT functionai block diagram .	FO-13
FO-7 (1)	Circuit Card Assembly (A1) schematic diagram for Telephone Set TA-838A/TT (sheet 1 of 3)	FO-15
FO-7 (2)	Circuit Card Assembly (A1) schematic diagram for Telephone Set TA-838A/TT (sheet 2 of 3)	FO-17
FO-7 (3)	Circuit Card Assembly (A1) schematic diagram for Telephone Set TA-838A/TT (sheet 3 of 3)	FO-19
FO-8 (1)	Circuit Card Assembly (A1), (Part Number A3188334) Schematic Diagram for Telephone Set TA-838A/TT and TA-838A/TT	FO-21
FO-8 (2)	Circuit Card Assembly (A1), (Part Number A3188334) Schematic Diagram for Telephone Set TA-838A/TTand TA-838A/TT	FO-23
FO-8 (3)	Circuit Card Assembly (A1), (Part Number A3188334) Schematic Diagram for Telephone Set TA-838A/TTand TA-838A/TT	FO-25
Number	LIST OF TABLES Title	Page
2-1	Detection and control network, inputs	2-3
2-2	Detection and control network, outputs	2-4
3-1	Troubleshooting, Direct Support	3-4
4-1	Troubleshooting, General Support	4-1
4-2	Keyset continuity check	4-2.1
4-3	Circuit card performance test.	4-19
4-4	Circuit card troubleshooting for Telephone SetTA-838/TT	4-24
4-4.1	Circuit card troubleshooting for Telephone SetTA-838A/TT	4-24.4
4-4.2	DTMF circuit component voltage levels	4-24.5
4-5	Required test equipment	4-24.5

CHAPTER 1

1-1. Scope

This technical manual describes Telephone Set TA838/TT and Telephone Set TA-838A/TT (fig. 1-1) and contains information pertinent to functioning, troubleshooting, testing, and removal and replacement of equipment components.

1-2. Maintenance Forms, Records and Reports

a. Reports of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those prescribed by DA Pam 738-750 as contained in Maintenance Management Update. Air Force personnel will use AFR 66-1 for maintenance reporting and TO-00-35D54 for unsatisfactory equipment reporting.
b. Report of Packaging and Handling Deficiencies. Fill out and forward SF 364 (Report of Discrepancy (ROD) as prescribed in AR 735-11-2/DLAR 4140.55/NAVMATINST 4355.73A/AFR 400-54/MCO 4430.3F.
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 55-38/NAVSUPINST 4610.33C/AFR 75-18/MCO P4610.19D/DLAR 4500.15.

1-3. Reporting Equipment Improvement Recommendations (EIR)

a. Army. If your TA-838/TT or TA-838A/TT needs im-
provement, let us know. Send us an EIR. You, the user, are the only one who can tell us what you don't like about your equipment. Let us know why you don't like the design. Put it on an SF 368 (Quality Deficiency Report). Mail it to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-MP, Fort Monmouth, New Jersey 07703-5007. We'll send you a reply.
b. Air Force. Air Force personnel are encouraged to submit EIR's in accordance with AFR 900-4.

1-4. Destruction of Army Electronics Materiel

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

1-5. Administrative Storage

Administrative Storage of equipment issued to an used by Army activities will have preventive maintenance performed in accordance with the PMCS charts before storing. When removing the equipment from administrative storage the PMCS should be performed to assure operational readiness.

1-6. Consolidated Index of Army Publications and Blank Forms

Refer to the latest issue of DA Pam 310-1 to determine whether there are new editions, changes or additional publications pertaining to the equipment.

Figure 1-1. Telephone Set TA-838/TT and TA-838A/TT

CHAPTER 2

FUNCTIONING OF EQUIPMENT

Section I. BLOCK DIAGRAM ANALYSIS FOR TELEPHONE SET TA-838/TT

2-1. Scope

This section provides a block diagram analysis for Telephone Set TA-838/TT, since repair of the circuit card assembly, hookswitch assembly, and keyset assembly is within the capabilities of direct/ general support facilities.

2-2. General

(fig FO-2 through FO-4 (2))
The major circuits of the telephone set are listed blow. Subsequent paragraphs discuss the functions of these major circuits in the order presented below.
a. MODE SELECT switch.
b. Hookswitch.
c. Keyset.
d. Tone encoder.
e Tone filter and level shifter.
f. Send amplifier.
g. Extension control.
h. Receive amplifier.
i. $570-\mathrm{Hz}$ clipper.
j. Ring trip circuit.
k. Ringer circuit.
I. DC/DC converter.
m. Voltage regulator circuit.
n. Detection and control network.
o. 2-wire common battery circuit.

2-3. Overall Description

a. The basic telephone set consists of a send amplifier, producing output signals from the telephone set, and a receive amplifier, accepting incoming signals to the telephone set. The send amplifier receives its signals from the microphone in the handset and the tone encoder. The pro-
duced signals of the tone encoder are the dialing (DTMF) and control signals (seize and release) required by the switching centeto process a call The receive amplifier inputs are the voice signal and a series of control signals from the switching center, such as dial tones, ringing, busy, and acknowledge signals.
b. The operation of the telephone set is controlled by a MODE SELECT switch and a detection and control network. These devices allow the use of the telephone set in various combinations of the following modes of operation:
(1) AC or DC supervision.
(2) 2-wire or 4 -wire connection.
(3) Common or Local Battery.
(4) With switching network or Point-to-Point.
c. Since the telephone set operates differently in each mode, several circuits serve several functions, depending on the mode in use.

2-4. MODE SELECT Switch

The MODE SELECT switch determines the telephone set mode of operation by interconnecting the functional circuits in the required manner and by applying control signals to the detection and control network. The network can then control the operation of the telephone set.

2-5. Hookswitch

The hookswitch provides the detection and control network with off-cradle or on-cradle information to allow programmed circuits to be enabled and/or disabled.

2-6. Keyset

The keyset consists of a set of 16 double-pole pushbutton switches. The switches are connected in a matrix of four vertical columns and four horizontal rows. One pole of every switch in each vertical column is connected to a single output line. The four columns, therefore, have four outputs (V1 through V4). The second pole of every

Figure 2-1. Tone/ keyset reltionships.
switch in each horizontal row is connected to form a single output line. The four rows, therefore, produce four outputs (H 1 through H 4). Since the arms of all the switches are grounded by the extension control circuit when off-cradle, pressing any of the 16 switches will ground one vertical and one horizontal output line. The horizontal and vertical lines provide the grounds to the detection and control network to determine priority, and to the tone encoder to control the develop ment of the DTMF frequencies associated with the key (switch) depressed. Fiqure 2-1 shows the relationship between the keyset key codes and the corresponding high and low frequencies to be developed by the tone encoder circuit,

2-7. Tone Encoder

The tone encoder (U4, RA13 and RA14) receives four vertical (V1 through V4) and four horizontal (H 1 through H 4) input signals from the keyset. When enabled by a level and a $295-\mathrm{kilohertz}(\mathrm{kHz})$ encoder clock from the detection and control network, the encoder will generate two audio outputs. The frequencies of the outputs are determined by the vertical or horizontal input lines which are grounded. The tone encoder also generates $2250-\mathrm{Hertz}(\mathrm{Hz})$ seize signal, the $2,600-\mathrm{Hz}$ release signal or the $570-\mathrm{Hz}$ ring signal when requested by the detection and control network. The audio outputs (high and low frequency) of the tone encoder are applied to the send amplifier by way of the tone filter and level shifter circuit.

2-8. Tone Filter and Level Shifter Circuit

The tone filter and level shifter circuit (Q11, RA3 and RA6) receive the high and low frequency audio outputs of the tone encoder, filter the signals, mix them, and control their amplitude. The amplitude of DTMF tones are attenuated to ap proximately one-half of the amplitude of the supervision signal outputs (seize, release, etc). A control signal from the detection and control network informs the level shifter when a DTMF signal is being supplied by the tone encoder.

2-9. Send Amplifier

The send amplifier (A1) is a microcircuit, linear amplifier which receives signals from the tone encoder by way of the tone filter and level shifter circuit, and voice signals from the microphone of the handset. When the amplifier is enabled by the hookswitch being off-cradle, the input signals are amplified and provided to the output lines via output transformer T1.

2-10. Extension Control

The extension control circuit (Q4 and Q5) is a control circuit which inhibits the generation of seize or release signals when an extension phone is off-cradle, enables the keyset when off-cradle, and inhibits ringer amplifier when an extension is in use. When all extensions are on-cradle, each phone will operate normally, generating seize and release tones. When the hookswitch goes off-cradle at any extension, an inhibit signal is applied to all extensions.

2-11. Receive Amplifier

a. The receive amplifier (U1) is a single-stage, linear operational amplifier connected in a differential gain configuration, It is used to control voice and supervision signals received from an external source. The source of input signals is selected by the MODE SELECT switch. In the 2 wire mode, U1 receives inputs from transformer T1. In the 4 -wire mode, transformer T2 provides the inputs. The amplifier adjusts the amplitude of the voice and supervisory signals supplied to the earphone element in the handset, The amplifier is turned on and off by a receive amp enable signal from the detection and control network (U3, pin 31). Disabling the amplifier output, during the reception of high power supervisory signals, prevents discomfort for the user and possible damage to the earphone.
b. The amplifier also contains a resistor net-
work, R-4, R12 and R53, which, under control of the hookswitch. connects either approximately $2700-\mathrm{ohm}$ or 550 -ohm resistance across the secondary of the input transformer T2. This change of resistance is reflected back through T2 to control the off-cradle input impedance of the telephone. When the handset is off-cradle, a 549 -ohm resistor (R12) is connected across the secondary of transformer T2, causing the telephone input impedance to drop to about 600 ohms. When oncradle, 2,678 ohms ($\mathrm{R} 4+\mathrm{R} 12$ - R53) is connected across transformer T2, causing an input impedance of about 3,000 ohms.

2-12. 570-Hz Clipper

The $570-\mathrm{Hz}$ (U2) clipper input is a sample of the input to the receive amplifier (U1). Whenever the receive amplifier receives a $570-\mathrm{Hz}$ input, independent of the state of the receive amp enable signal, the $570-\mathrm{Hz}$ clipper- produces a $570-\mathrm{Hz}$ squarewave output of fixed amplitude. In normal ac supervised operation, the telephone receives pure $570-\mathrm{Hz}$ signals as seize acknowledge, ring trip acknowledge, and release acknowledge signals from the switching center. The telephone set receives a modulated $570-\mathrm{Hz}$ signal as a ring tone input signal. Each of these inputs will cause the squarewave output which is applied to the detection and control network (U3, pin 1) to inform the network of the receipt of the input signal.

2-13. Ring Trip Circuit

a. When the telephone set is in the 2-wire mode, the ring trip circuit (Q28 and Q30) is connected to the XMT terminals. When the receiver is oncradle and the telephone is to be called, a $20-\mathrm{Hz}$, 2-wire ring signal is sent from the switching center to the XMT terminals and, therefore, to the ring trip circuit. The ring trip circuit senses the $20-\mathrm{Hz}$ signal and produces a 2 -wire ring signal which cycles low for 1 second and high for 2 seconds. This signal is applied to the detection and control network (U3, pin 11) to allow U3 to generate the ringer enable signal for the ringer circuit.
b. The circuit is disabled whenever the receiver is lifted off-cradle, or if the $20-\mathrm{Hz}, 2$-wire ring signal ends.

2-14. Ringer Circuit

The ringer circuit receives a ringer clock signal and a ringer enable signal from the detection and control network. The ringer clock signal (between 1,800 and $1,886 \mathrm{~Hz}$) is amplified by the ringer circuit only when a ringer enable signal is pres-
ent. The ringer enable signal is applied in 3second cycles (during which it is present for 1 second and absent for 2 seconds) until the handset is lifted from the cradle. The amplified clock signal may be used to provide an aural ring signal, a visual ring signal, or both.

2-15. DC/DC Converter Circuit

When operating the telephone set in a 4-wire common battery mode, the DC/DC converter circuit converts the supply voltage from the switching facility to approximately 6 volts dc (VDD).

2-16. Voltage Regulator Circuit

The voltage regulator circuit supplies a highly regulated direct current (dc) voltage to the tone encoder. The regulator is also gated so that it is in operation only when the telephone set is offcradle.

2-17. Detection and Control Network

The detection and control network is programmed by the MODE SELECT switch and performs all of the timing, sequencing, and logic functions required for proper operation of the telephone set. Table 2-1 lists the inputs to the microcircuit U3 and discusses the information that each contains; table 2-2 lists the outputs and discusses the manner in which they control other circuits of the telephone set. Section II of this chapter, Call Processing Analysis, describes timing and sequencing performed by this circuit. The internal oscillator of microcircuit U3 is maintained at 295 kHz by the crystal Y 1 and its associated components.

2-18. Common Battery Circuit (2-Wire)

This circuit contains a diode bridge and two switching transistors. The diode bridge directs the common battery power to the proper positive and negative points regardless of input polarity. Negative is always connected, via diode. to ground, and positive is connected, via diode and switching transistor, to the telephone set positive terminal. The function of the second switching transistor is to decrease the current drain on the power circuit when the telephone set is being operated with a 2 wire extension telephone set.

Table 2-1. Detection and Control Network, Inputs

Table 2-1. Detection and Control Netwvrk, Inputs -Continued
Off Hook
Selected Mode
$\overline{\text { Q-Wire Ring }}$
$\overline{W 1}$ (vertical 1)
$\overline{W 2}$
$\overline{W 3}$
$\overline{V 4}$
Hi (horizontal 1$).$
Crystal IniOut

570 Hz
Provides the circult with offeradle information trom the hookswitch, via transistor Q5.
Provides the circuit with position information about the MODE SELECT switch.
Provides the circuit with ring cycle information to activate the ringer enable output.
Receives signal when keyset button 1. 4,7 , or R is depressed.
Receives signal when keyset button 2.5 , X, or 0 is depressed.
Receives signal when keyset button 3, 6,9 , or C is depressed.
Receives signal when keyset button $F 0, F$, I, or P is depressed.
Receives signal when keyset button $1,2.3$, or FO is depressed.
Receives $295-\mathrm{kHz}$ signal from erystal Y 1 to control the circuit internal oscillator.
Depending on the state of other circuit inputs and internal counting devices, this input will represent either a ring signal, seize acknowledge signal, or a release acknowledge signal.

Table 2-2. Detection and Control Network, Outputs

Signal name
 Encoder Clock

Regulator Enable

Transmit Amplifier

Provides 295 kHz , to be used by the tone encoder as a clock signal.
Enables voltage regulator circuit via transmitter Q^{7}, when handset is removed from cradle. Enables transmitter amplifier. via transistors Qx^{8} and Q10. when handset is removed from cradle.

Table 2-1. Detection and Control, Network, Inputs-

Voice Transmit Inhibit

Receive Amplifier Enable

Ringer Enable

Ringer Clock
$\overline{\mathrm{C} 4}$
$\overline{\mathrm{C}} 3$

R1
R1

Contirued

Inhibits voce transmission va transistor Q9 during DTMF di aling.
Enables receive amplifier U1 when handset is removed from. cradle.
Enables the ringer circuit via transistors Q20 and Q24 for 1 second out of every 3 seconds during telephone ring cycle.
Supplies 1850 Hz ring signal to the ringer circuit.
a. Caluses tone encoder to produce a $2.250-\mathrm{Hz}$ seize signal when handset is removed from cradle, if the extensoons are on-cradle and the MODE SELECT switch is in an AC position.
b. Enables the tone encoder to produce a $1.633-\mathrm{Hz}$ tone for use in a DTMF priority signal, when a priority button is depressed on the keyset.
Causes tone encoder to produce a $2,600-\mathrm{Hz}$ release signal when handset is replaced on cradle, if all extensions are also on-cradle. MODE SELECT switch must be in an AC mode.
Causes tone encoder to produce a $570-\mathrm{Hz}$ ring signal when handset is removed from cradle, if the MODE SELECT switch is in the PT'PT position.
Controls the level of the sidetone signal, via transistor Q6. Seize sidetone and digit sidetone are lower than voice sidetone.
DTMF Level Control
Controls the level of tone signals being transmitted, via transistor Q11. Seize tone and release tone are higher than digit tones.

Section II. CALL PROCESSING ANALYSIS FOR TELEPHONE SET TA-838/TT

2-19. General (fig FO-2 through FO-4 (2))

This section describes the sequence of events when operating with Automatic Telephone Central Office AN/TTC-25 or AN/TTC-38. When required to operate into another system, the key digit requirements must be obtained from that system's manual.

a. Outgoing Call.

b. Incoming Call.
c. Point-to-Point Call.
d. DC Supervision.
e. 2-Wire Mode, Incoming Call.

NOTE
Unless otherwise stated, the telephone is assumed to be in the 4-Wire AC/CB mode. mode.

2-20. Outgoing Call

a. When the handset is lifted from its cradle, the hookswitch performs the following functions:
(1) Changes the input impedance of the telephone to approximately 600 ohms.
(2) Applies a positive potential (high) to the base of transistor Q5, causing aground potential (low) to be applied to the keyset and the detection control network. The low that is applied to the keyset enables it. The low that is applied to the detection and control network causes the network to enable the voltage regulator circuit and the transmit amplifier circuit. This low also inhibits the ringer circuit and causes the tone encoder to generate a seize signal ($2,250 \mathrm{~Hz}$) which is then applied to the tone filter and level shifter circuit. When seize $(2,250 \mathrm{~Hz})$ or release $(2,600 \mathrm{~Hz})$ tone is sent, the detection and control network conditions level shifter transistor Q11 for cutoff, resulting in no attenuation to these signals. The tone is then applied to send amplifier, amplified, and then coupled by transformer T1 to send pair for transmission to the switching center.
b. The switching center recognizes the request for service and transmits a receive acknowledge signal (570 Hz) to the telephone. The acknowledge signal is received on the receive terminals of the telephone and is inductively coupled to the input of the $570-\mathrm{Hz}$ clipper circuit. The $570-\mathrm{Hz}$ clipper output is then applied to the detection and control network which causes the tone encoder to discontinue generation of the seize signal.
c. The switching center recognizes the absence of the seize tone, stops sending the seize acknowledge signal (570 Hz), and starts sending a dial tone (425 Hz). The discontinuance of the $570-\mathrm{Hz}$ seize acknowledge signal from the switching center causes the detection and control network to then enable the receive amplifier in preparation for reception of dial tone and/or voice. The dial tone is received on the receive terminals of the telephone, inductively coupled to the receive amplifier U1, and amplified and impressed across the receiver element.
d. The subscriber recognizes dial tone and depresses a pushbutton on the keyset representing the first digit of the number he wishes to dial. Depressing the pushbutton causes the tone encoder to apply the appropriate high and low frequency tones to the tone filter and level shifter circuit. When DTMF tones are being sent, the detection and control network conditions level shifter transistor Q11 to conduct, resulting in a 50% reduction in tone amplitude. The DTMF tones are combined and the composite signal applied to the send amplifier, amplified, and then coupled by transformer T1 to the send pair for transmission to the switching center.
e The switching center recognizes the first dig-it
and stops sending the dial tone to the telephone. The subscriber then sends the remainder of the digits. The switching center then processes the call to a free subscriber, or returns a busy tone if the desired subscriber is busy. If the called party is not busy, the call is connected and a talk path is established. The output of the microphone element is applied through a 20 -kilohm variable resistor to the send amplifier, amplified, and coupled by transformer T1 to the send pair for transmission to the switching center.
f. At the termination of the call, the handset is replaced on the cradle which causes a signal to be applied, via the detection and control network, to the tone encoder, selecting a release signal (2,600 $\mathrm{Hz})$ for transmission to the switching center. The $2,600-\mathrm{Hz}$ signal is processed by the tone filter and level shift circuit with no reduction in amplitude. The release tone is timed out after 3 to 10 seconds if acknowledge signal is not received from the switching center.
g. The switching center recognizes the $2,600-\mathrm{Hz}$ signal as a request for release and returns a 570Hz acknowledge signal to the telephone. This signal is recognized by the $570-\mathrm{Hz}$ clipper circuit and causes the application of a $570-\mathrm{Hz}$ input signal to the detection and control network, which inhibits the transmission of the $2,600-\mathrm{Hz}$ signal after a delay of approximately 300 milliseconds. The switching center notices the absence of the release signal and stops sending the release acknowledge signal after a delay of approximately 250 milliseconds. After the time period of the release sequence (approximately 550 milliseconds) the telephone is ready to accept incoming calls.

2-21. Incoming Call

a. When the switching center wishes to contact a telephone subscriber, a modulated $570-\mathrm{Hz}$ signal is transmitted to the selected telephone. This signal appears on the receive pair of the telephone and is recognized by the $570-\mathrm{Hz}$ clipper circuit which, in turn, causes the application of a $570-\mathrm{Hz}$ input signal to the detection and control network. When the telephone is ready to accept incoming calls, (handset is on-cradle, and the telephone is not in a release sequence), a $570-\mathrm{Hz}$ input signal causes a ringer clock signal and a ringer enable signal to be applied to the ringer circuit which, in turn, supplies an aural or visual ring signal. (Refer to paragraph 2-12.)
b. The call is answered when the subscriber lifts the handset from its cradle. A $2,250-\mathrm{Hz}$ ring trip tone is transmitted to the switching center ex-
actly as described in paragraph 2-20a for seize tone.
c. The switching center recognizes the ring trip tone, inhibits the transmission of the ring tone, and transmits a steady $570-\mathrm{Hz}$ ring trip tone. This tone is discontinued as soon as the telephone responds by discontinuing the ring trip tone $(2,250$ $\mathrm{Hz})$. The receive amplifier is now active and a voice path is establisghed between telephone subscriber and the switching center.
d. When the subscriber replaces the handset on its cradle at the termination of the call, a release time ($2.600 \mathrm{H} \%$) is transmitted to the switching center and the release sequence is repeated as described for termination of an outgoing call.

2-22. Point-to-Point Mode

When the telephones are connected for point-topoint mode operation, it is necessary for the calling telephone to signal the called telephone without the aid of the switching center. When the MODE SELECT switch is in the PT-PT position, lifting the handset of the calling telephone causes a $570-\mathrm{HZ}$ signal burst to be transmitted for a 2 second period. The calling telephone detects the $570-\mathrm{Hz}$ signal in the same manner as for incoming calls and causes the telephone to ring for one signal burst. If the called telephone does not answer, the calling telephone must replace the handset on the cradle and lift it again, repeating the procedure. When the called telephone answers, a burst of $570-\mathrm{Hz}$ tone is sent to the calling telephone. The calling telephone does not ring because the handset is not in the cradle. The voice path is now established between the two telephones and conversation can proceed.

2-23. Dc Supervision

a. With the MODE SELECT switch in any DC position, generation of seize tone $(2,250 \mathrm{~Hz})$ and release tone $(2,600 \mathrm{~Hz})$ are inhibited in the detection and control network.
b. With the MODE SELECT switch in a DC position, an off-cradle indication is supplied to the switching center by means of hookswitch S2 inserting a load resistor between the center tap of the receive transformer and the center tap of the send transformer when the handset is lifted from the cradle. This essentially insterts a load resistor between the send and receive transformers at the
switching facility, causing an additional current drain on the switching facility power supply. This is recognized by the switching facility as a request for service or an answer, depending on whether it is an incoming call from the telephone or an outgoing call to the telephone. When the handset is replaced on the cradle the load resister is removed from the circuit and the switching center recognizes the on-cradle condition due to the reduced current drain.

2-24. Two-Wire Mode, Incoming Calls

a. When the MOIOE SELECT switeh is in a 2wire position, and the handset is on its cradle, the telephone send/receive signal is connected to the X M'T (black) binding posts (E:3 \& E4). A $20-\mathrm{Hz}$ polar ring signal from the switching facility caluses the ring trip relay circuit to apply a $\overline{2 \text {-wire }}$ ring signal to the detection and control network. This causes the telephone to ring until it is either answered or the 20-Hz signal is discontinued (in the same manner as the $570-\mathrm{Hz}$ input signal in a 4 wire mode incoming call; refer to paragraph $2-$ $21 a)$.
b. When the call is answered, an off-cradle mdication is supplied to the switching center by means of the hookswitch inserting a dc load across the send receive (XMT) terminals. This causes a de drain on the switching center power supply and is recognized by the switching center as an offradle indication; the $20-\mathrm{H} \%$ signal is discontinued. The receive amplifier is now activated and a voice path is established between the telephone subscriber and the switching center. The receive amplifier input consists of a high level sidetone signal (higher than that used in 4-wire operation), supplied to the receive amplifier from transformer T 1 . The output of the receive amplifier is applied to the earphone element in the handset.
c. The output of microphone element is applied directly to the send amplifier, amplified, and then transmitted, via transformer Tl , over the send/ receive pair. Sidetones generated as a result of signals from the send amplifier are of reduced level, due to an RC network attached to the send amplifier.
d. When the handset is replaced on the cradle, the dc load is removed from the circuit. The switching center recognizes the on-cradle condition due to the reduced current drain and releases the line.

Section III. BLOCK DIAGRAM ANALYSIS FOR TELEPHONE SET TA-838A/TT

2-25. Scope

This section provides a block diagram analysis for Telephone Set TA-838A/TT, since repair of the circuit card assembly, the hookswitch assembly, the keyset assembly, and the circuit board is within the capabilities of rect/general support facilities.

2-26. General

(fig. FO-3 and FO-6 through FO-7 (3)
The major circuits of the telephone set are listed below. Subsequent paragraphs discuss the functions of these major circuits in the order presented below.
a. MODE SELECT Switch.
b. Hookswitch.
c. Keyset.
d. Circuit Board.

The circuit board can be divided into the following functions:
(1) Output Circuit.
(2) Input Circuit.
(3) Microcomputer Circuit.
(4) Control Signal Generator Circuit.
(5) Power Control Circuit.
(6) Ring Amplifier.
(7) DTMF Circuit.
(8) Voice Amplifier.
(9) Side Tone Circuit.
(10) Extension Control Circuit.
(11) 3.6 Volt Voltage Regulator.
(12) 4W/CB Switcher Circuit.
(13) $2 \mathrm{~W} / \mathrm{DC} / \mathrm{CB}$ Voltage Regulator.

2-27. Overall Description

a. The telephone set basically consists of:
(1) A receive amplifier that receives signals incoming to the telephone set, while its output is applied to the receive element (the earphone) in the handset.
(2) A send amplifier that receives signals from three different sources:
(a) The microphone element.
(b) The control signal generator.
(c) The dual tone generator.
nd amplifier output is applied to the transmit transrmer.
(3) A microcomputer which coordinates all the actions of the telephone set and generates control signals through the control signal generator.
b. The operation of the telephone set is controlled by a MODE SELECT switch and a microcomputer. These devices allow the use of the telephone set in various combinations of the following modes of operation:
(1) AC or DC supervision.
(2) 2-wire or 4 -wire connection.
(3) Common or local battery.
(4) With a switching center or point-to-point.

2-28. MODE SELECT Switch

The MODE SELECT switch determines the telephone set mode of operation by interconnecting the functional circuits in the required manner and by applying control signals to the detection and control network. The network controls the operation of the telephone set.

2-29. Hookswitch

The hookswitch provides the microcomputer with off-cradle or on-cradle information, changes the input impedance of the receive amplifier, and adds additional load in DC modes.

2-30. Keyset

The keyset consists of a set of 16 double-pole pushbutton switches. The switches are connected in a matrix of four vertical columns and four horizontal rows. One pole of every switch in each vertical column is connected to a single output line. The four columns, therefore, have four outputs (V1 through V4). The second pole of every switch in each horizontal row is connected to form a single output line. The four rows produce four outputs (H1 through H4). Since the arms of all the switches are grounded by the extension control circuit when offcradle, pressing any of the 16 switches will ground one vertical and one horizontal output line. The horizontal and vertical lines provide the grounds to the tone encoder to control the development of the DTMF frequencies associated with the depressed key (switch). Figure 2-1 shows the relationship between the keyset key codes and the corresponding high and low frequencies to be developed by the tone encoder circuit.

2-31. Output Circuit

The output circuit includes op-amps U1 and U2 (located inside the send amplifier assembly), and the transformer T1.

The output circuit receives signals from three different sources: the DTMF circuit, the control signal generator, and the voice amplifier. U2 is the preamp-mixer,
and U 1 is the driver stage. The diode VR1 is the clipping diode to ensure the the absolute maximum limit of the output signal at the XMT terminals is 4 volts pp . The resistor R18 sets the output impedance to 600 ohms, and the resistor R7 prevents oscillation of the output stage when it is unloaded. The transformer T1 isolates output with the rest of the circuit, and, in the case of the 2-wire mode, is used as both an output and an input transformer.

2-32. Input Circuit

The input circuit includes op-amps U1 (located inside the receive amplifier assembly), U20, U21, one-shot U22, and the transformer T2.

In the 4 W mode, input signals (both voice and supervision signals) go through T2. U19 is the voice amplifier, and its output drives the receive element (the earphone). U20 is the 570 Hz conformer that shapes the 570 Hz signal into a square wave of the same frequency. U22 forms a high-pass filter to eliminate 425 Hz in a priority ring.

In the 2 W mode, the ring signal of 20 Hz goes directly to U21 (the 20 Hz conformer), which shapes it into a square wave; the voice signal goes through the transformer T1, and the op-amp U1 remains as the voice amplifier.

The output of the conformers is directed to the microcomputer circuit.

2-33. Microcomputer Circuit

The microcomputer circuit includes the microcomputer U1, the buffer U13, and one portion of the buffer U10. Gates U2 and U1 monitor the MODE SELECT switch, the hookswitch, and signals from the conformers. The microcomputer circuit generates signals to supervise the control signal generator, the extension control circuit, and the power of all other parts of the board.

2-34. Control Signal Generator Circuit

The control signal generator circuit includes gates U4, U12 and U14; the counters U6, U7 and U8; the along switch U9; and the op-amps U17 and U18.

A signal of appropriate frequency is generated at counters U6, U7 and U8, and is directed to different destinations by selectors U12 and U9. U17 forms a lowpass filter to generate a 2250 Hz or a 2600 Hz sine wave; U18 forms a low-pass filter to generate a 570 Hz sine wave. The output signals of the filters are directed to the output circuit, and the ring signal of the 1830 Hz is directed to the ring amplifier.

2-35. Power Control Circuit

The power control circuit includes the latch U3, and the transistors Q9, Q11 and Q12. The power control signals come from the microcomputer and are latched at U3. U9 turns on/off the ring amplifier. Q11 turns on/ off the voice amplifier U1 and the voice amplifier U19, Q12 turns on/off the filters U17 and U18, and the out put circuit.

2-36. Ring Amplifier

The ring amplifier includes the inverter U11, and the transistors Q1, Q2, Q3, Q4, Q5 and Q10. Q10 and U11 form a buffer. Q1, Q2, Q3 and Q4 form a bridge amplifier to drive the loudspeaker horn. Q5 drives the LED of the ring indicator.

2-37. DTMF Circuit

The DTMF circuit includes the single and dual tone generator U15 and the filter U16. U15 generates different dual tones or single tones, depending on keyboard input. The output of U15 is filtered at U16 and is directed to the output circuit. The keyboard also controls the power for the DTMF circuit.

2-38. Voice Amplifier

The op-amp U19 forms the voice amplifier. It receives signals from the transmit element (the microphone), and its output is directed to the output circuit.

2-39. Side Tone Control Circuit

The side tone control circuit includes the resistor network RA13, the coil L1, and the transistors Q13 and Q14. It serves to feed a small portion of the output signal back to the receive amplifier. Q13 and Q14 lower the side tone when a dual tone is sent out.

2-40. Extension Control Circuit

The extension control circuit includes the transistors Q6, Q7 and Q8. In the $4 \mathrm{~W} / \mathrm{AC} / \mathrm{LB}$ mode and when the handset is lifted, the microcomputer monitors the existence of power between the XMT and RCV terminals via Q7. If power exists (which means that another set mounted in parallel is off-hook), the set does not generate a seize signal. The first set off-hook provides power between the terminals after its handset is lifted by turning on Q6 and Q8. Only when the last set goes onhook, the microcomputer will detect no power at Q7 and generate a release signal.

2-41. 3.6 Volt Voltage Regulator

The 3.6 volt voltage regulator includes the op-amp U23. It generates 3.6 volts $\pm 5 \%$ from + Vcc to feed the microcomputer circuit and the control signal generator circuit.

2-42. 4W/CB Switcher

The 4W/CB switcher includes the transistors Q18, Q19, Q20 and Q21. It forms a switching regulator to generate Vcc (about 5 volts) from the common battery voltage (24 volts).

2-43. 2W/DC/CB Voltage Regulator

The 2W/DC/CB voltage regulator includes the diodes D11, D12, D13 and D14 (which form a rectifier bridge), and the transistors Q15 and Q16. The voltage regulator receives power from the 20 Hz ring signal to generate Vcc. When the handset is off-hook, it receives power from the common battery. The regulating element is Q16. Q15 provides the extra load signaling the switchboard that the set is off-hook.

Section IV. CALL PROCESSING ANALYSIS FOR TELEPHONE SET TA-838A/TT

2-44. General

(fig. FO-3 and FO-6 through FO-7 (3)
This section describes the sequence of events when operating with an Automatic Telephone Central Office AN/TCC-25 or AN/TCC-38, in the modes and order listed below. The key digit requirements must be obtained from the appropriate system's manual to operate the TA-838A/TT with another system,
a. Outgoing Calls.
b. Incoming Calls.
c. Point-to-Point Mode.
d. DC Supervision.
e. 2-Wire Mode, Incoming Calls.

NOTE

Unless otherwise stated, the telephone is assumed to be in the $4 \mathrm{~W} / \mathrm{AC} / \mathrm{CB}$ mode.

2-45. Outgoing Calls

a. When the handset is lifted from its cradle, the hookswitch performs the following functions:
(1) It changes the input impedance of the telephone to approximately 600 ohms.
(2) It alerts the microcomputer, then generates the seize signal of 2250 Hz through the control signal generator.
b. The switching center recognizes the request for service and transmits a receive acknowledge signal (570 Hz) to the telephone. The acknowledge signal is received on the receive terminals of the telephone and is coupled inductively to the input of the 570 Hz signal conformer. The 570 Hz signal output is then applied to the microcomputer, which discontinues generation of the seize signal.
c. The switching center recognizes the absense of the seize tone and stops sending the seize acknowledge signal (570 Hz); it then starts sending a dial tone (425
$\mathrm{Hz})$. The discontinuance of the 570 Hz seize acknow-
ledge signal from the switching center causes the microcomputer to enable the receive amplifier in preparation for reception of a dial tone and/or voice signal. The dial tone (or voice signal) is received on the receive terminals of the telephone, inductively coupled to the receive amplifier AR2, amplified, and impressed across the receiver element.
d. The subscriber recognizes the dial tone and depresses a pushbutton on the keyset which represents the first digit of the number he wishes to dial. Depressing this pushbutton causes the tone encoder to apply the appropriate dual tones to the tone filter and to the send amplifier, and to be coupled by the transformer T 1 to the send terminals for transmission to the switching center.
e. The switching center recognizes the first dialed digit and stops sending the dial tone to the telephone. The subscriber then sends the remainder of the digits. The switching center processes the call to a free subscriber, or returns a busy tone if the desired subscriber is busy. If the called party is not busy, the call is connected and a talk path is established. The output of the microphone element is amplified by the voice amplifier, then sent to the send amplifier, and then coupled by the transformer T1 to the send terminals for transmission to the switching center.
f. At the termination of the call, the handset is replaced on the cradle. Upon receiving a signal from the hookswitch, the microcomputer generates and outputs a release signal of 2600 Hz through the control signal generator. The release signal is timed out after 3 to 10 seconds if an acknowledge signal is not received from the switching center.
g. The switching center recognizes the 2600 Hz signal as a request for release and returns a 570 Hz acknowledge signal to the telephone. This signal is recognized by the 570 Hz conformer and causes the application of a 570 Hz input signsl to the microcomputer, which stops the transmission of the 2600 Hz signal after a delay of approximately 300 milliseconds. The switching center notices the absence of the release signal and stops sending the release acknowledge signal after a delay of approximately 250 milliseconds. After the release sequence the telephone is ready to accept incoming calls.

2-46. Incoming Calls

a. When the switching center wishes to contact a telephone subscriber, a modulated 570 Hz signal is transmitted to the selected telephone. This signal appears on the receive terminals of the telephone, shaped by the 570 Hz conformer; and its output is applied to the microcomputer. When the telephone is ready to accept incoming calls (the handset is on-hook and the telephone is not in a release sequence), the microcomputer sends a ring signal to the ring amplifier, which supplies a signal that generates a visual and/or audible indication. (Refer to paragraph 2-12.
b. The call is answered when the subscriber lifts the handset from its cradle. A 2250 Hz ring trip tone is transmitted to the switching center exactly as described in paragraph 2-20 for the seize tone.
c. The switching center recognizes the ring trip tone, inhibits the transmission of the ring tone, and transmits a steady 570 Hz ring trip tone. This tone is discontinued as soon as the telephone responds by discontinuing the ring trip tone $(2250 \mathrm{~Hz})$, The receive amplifier is now active and a voice path is established between the telephone subscriber and the switching center.
d. When the subscriber replaces the handset on its cradle at the termination of the call, a release tone (2600 $\mathrm{Hz})$ is transmitted to the switching center and the release sequence is repeated as described for the termination of an outgoing call. (Refer to paragraph 2-45 f and g).

2-47. Point-to-Point Mode

When the telephone are connected for a point-topoint operation mode, it is necessary for the calling telephone to signal the called telephone without the aid of the switching center. When the MODE SELECT switch is in the PT-PT position, lifting the handset of the calling telephone causes a 570 Hz signal burst to be transmitted for a period of 2 seconds. The called telephone detects the 570 Hz signal (in the same manner as incoming calls) and causes the telephone to ring for one signal burst. If the called telephone does not answer, the calling telephone must replace the handset on the cradle
and lift it again, repeating the procedure. When the called telephone answers, a burst of 570 Hz tone is sent to the calling telephone. The calling telephone does not ring because the handset is not in the cradle. The voice path is now established between the two telephones and conversation can proceed.

2-48. DC Supervision

a. No seize tone or a release tone is generated with the MODE SELECT switch in any DC position.
b. With the MODE SELECT switch in a DC position, an off-cradle indication is supplied to the switching center by means of the hookswitch S2, which inserts a load resistor between the center tap of the receive transformer (T2) and the center tap of the send transformer (Tl). This inserts a load resistor between the send and receive transformers at the switching facility, which causes an additional current drain on the switching facility power supply. The switching facility recognizes this as a request for service or as an answer, depending on whether it is an incoming call from the telephone or an outgoing call to the telephone.

When the handset is replaced on the cradle, the load resistor is removed from the circuit and the switching center can recognize the on-cradle condition due to the reduced current drain.

2-49. Two-Wire Mode, Incoming Calls

a. When the MODE SELECT switch is in a 2-wire position and the handset is on its cradle, the telephone send/receive signal is connected to the XMT (black) binding posts (E3 and E4). A 20 Hz ring signal from the switching facility causes the telephone to ring until either it is answered or the 20 Hz signal is discontinued (in the same manner as the 570 Hz input signal in a 4 -wire mode incoming call; refer to paragraph 2-211).
b. When the call is answered, an off-cradle indication is supplied to the switching center by means of the hookswitch inserting a DC load across the send/receive (XMT) terminals. This causes a DC drain on the switching center power supply and is recognized by the switching center as an off-cradle indication; the 20 Hz signal is then discontinued. The receive amplifier is now activated and a voice path is established between the telephone subscriber and the switching center, The receive amplifier input consists of a high level side tone signal (higher than that used a 4 -wire operation), supplied to the receive amplifier from the transformer T1. The output of the receive amplifier is applied to the ear phone element in the handset.
c. The output of the microphone element is amplified by the voice amplifier, sent to the send amplifier, and then transmitted (via transformer T1) over the send/
receive terminals. Sidetones generated as a result of signals from the send amplifier are of a reduced level, due to an RC network attached to the send amplifier.
d. When the handset is replaced on the cradle, the DC load is removed from the circuit. The switching center recognizes the on-hook condition due to the reduced current drain, and it releases the line.

CHAPTER 3

DIRECT SUPPORT MAINTENANCE INSTRUCTIONS

Section I. GENERAL

3-1. Scope

The maintenance instructions provided in this chapter are for direct support maintenance only. The procedures that follow apply to the telephone set regardless of its location. Restrictions are imposed only by the immediate circumstances involved; the availability of spare parts, tools, test equipment, and the skill of the maintenance technicians.

3-2. Parts Location Diagrams

Refer thfigures 3-1 through $3-4$ for telephone set parts location diagrams for Telephone Set TA-838/TT. Refer to figures 3-1 3-3 $3-4$ and 3-10 for the telephone set parts location diagrams for Telephone Set TA838A/TT.

3-3. Troubleshooting

Troubleshooting is based on symptoms that may occur when the telephone set is operated. The trouble/symptoms may be discovered through operation, or through incorrect indications on the preventive maintenance checks and services.

3-4. Troubleshooting Chart

When a trouble or symptom occurs, refer totable 3-1. Troubleshooting, to find possible trouble and corrective measures. Use wiring diagram, figure FO-3 during the course of the maintenance procedures.

EL 5800-650-34-TM-4

Figure 3-1. Handset and retractile cord assembly.

Fisure 3-2. Telephone sel base, parts location for Telephone Set TA-838 TT

Figure 3-3. Telephone set, top and bottom views (base removed), parts location.

EL $5805 \cdot 650-34-$ TM- 7
Figure 3-4. Telephone set, side view, parts location.

Table 3-1. Troubleshooting, Direct Support

1. Dial tone not returned from switch-
ing facility.
2. Repeated wrong numbers andior absence of ringback tone. Low digit sidetone level. Call times out.
3. No ringing or intermittent ringing.
4. No sidetone; voice transmission is normal.
5. No voice reception or sidetone.
6. Telephone set does not inhibit seize or release from extension telephones.
7. Seize or release not inhibited by another off cradle extension telephone.
8. Voice transmission low or non-existent.
a. Faulty hookswitch (S2).
b. Faulty circuit card assembly (A1).
a. Faulty keyset.
b. Faulty circuit card assembly (A1).
a. Loudspeaker horn (DS1) inoperative.
b. Ring indicator (DS2) or $\mathrm{ON} / \mathrm{OFF}$ switch (S1) inoperative.
c. Ringer volume control (R1) defective.
d. Defective hookswitch (S2).
e. Faulty circuit card assembly (A1). Defective circuit card assembly (A1).
a. Faulty hookswitch (S2).
b. Faulty circuit card assembly (A1).
a. Defective hook-switch (S2).
b. Defective circuit card assembly (Al). Defective circuit card assembly (A1).
a. Faulty transmitter element.
b. Faulty circuit card assembly (A1).
a. Faulty hookswitch (S2).

Corrective action
a. Perform testing procedur of paragraph 3-6. Replace hookswitch, if necessary.
b. Replace circuit card assembly.
a. Refer telephone set to higher category maintenance.
b. Replace circuit card assembly.
a. Replace loudspeaker horn (DS1).
b. Replace ring indicator (DS2) or ON/ OFF switch (S1).
c. Replace ringer volume control.
d. Perform testing procedur of paragraph 3-6. Replace hookswitch, if necessary.
e. Replace circuit card assembly.
Replace circuit card assembly.
a. Perform testing procedur of paragraph 3-6. Replace hookswitch, if necessary.
b. Replace circuit card assembly.
a. Perform testing procedur of paragraph 3-6. Replace hookswitch, if necessary.
b. Replace circuit card assembly.

Replace circuit card assembly.
b. Defective circuit card assembly (A1). b. Replace circuit card assembly.

Table 3-1. Troubleshooting, Direct Support-Continued

	Malfunction	Probable cause	Correctue action
.0. No release tone.		a. Faulty hookswitch (S2).	a. Perform testing procedur of paragraph 3-6. Replace hookswitch, if necessary.
		b. Defective circuit card assembly (A1).	b. Replace circuit card assembly.
	No digit tones or single frequency tone when keyset (S 3) is de-	a. Defective keyset (S3).	a. Refer telephone set to higher category maintenance.
		b. Defective hookswitch (S2).	b. Perform testing procdure of paragraph 3-6. Replace hookswitch, if necessary.

Section II. MAINTENANCE OF TELEPHONE SET TA-838/TT

3-5. Visual Inspection

a. Visually inspect the telephone set for obvious faults. Inspect the following items for defects such as broken wires, loose connections, or physical damage.
(1) Telephone set housing.
(2) Handset (receiver and transmitter).
(3) Retractile cord.
(4) Keyset.
(5) Battery compartment.
b. Remove telephone set base and check the following
(1) Check for obvious physical damage to printed circuit card.
(2) Check wiring between all parts and assemblies.
(3) Check all switch contacts for obvious physical damage.
(4) Replace obvious damaged items.

3-6. Fault Isolation

Setting the ON/OFF switch (S1) in the ON position and the RING VOLUME control fully clockwise shall cause the telephone set to ring aurally and visually indicate when a call is received. A failing of either will indicate a defective loudspeaker horn (DS1), ring indicator (DS2), or ON/ OFF switch (S1). A failing of both may indicate a defective circuit card assembly (A1). If a defective hookswitch is suspected, perform the following procedure:

CAUTION

Prior to disconnecting J 1, connect a shorting wire to the the shorting pins (fig. 3-2) to prevent inadvertent damage to electronic components. Shorting wire must be removed after reconnecting Jl in order for unit to operate.
a. Disconnect connector J 1 from circuit card assembly (A1), and remove telephone set base.
b. Set MODE SELECT switch to a 4 -wire common battery position.
c. Refer to figure 3-3 and locate hookswitch (S2). Do not disconnect any wires.
d. Refer to schematic diagram (fig. FO-3) and connector (J 1) test point location diagram (fig. 4-2) and perform continuity check with button released. Perform continuity check with button depressed.

3-7. Removal and Replacement Procedures

The procedures given in paragraphs 3-7 through 3-20 provide instructions for removal and replacement of parts found to be defective.

NOTE

Remove batteries before proceeding with any removal or replacement procedures.

CAUTION

Prior to disconnecting J 1, connect a shorting wire to the three shorting pins (fig. 3-2) to prevent inadvertent damage to electronic components. Shorting wire must be removed after reconnecting Jl in order for unit to operate.

3-8. Transmitter Element, Removal and Replacement (fig. 3-1)

a. Removal.
(1) Remove transmitter cap.
(2) Lift out transmitter element and disconnect the two wires.
b. Replacement.
(1) Connect wires to transmitter element as shown in figure 3-5.

Figure 3-5. Handset cord, wiring diagram.
(2) Replace transmitter element in handset and install transmitter cap.

NOTE

When replacing transmitter element in handset avoid pinching the connecting wires.

3-9. Receiver Element, Removal and Replacement (fig. 3-1)

a. Removal.
(1) Remove receiver cap.
(2) Lift out receiver and disconnect two wires.

b. Replacement.

(1) Connect wires to receiver element as shown in fiqure 3-5.
(2) Replace receiver element in handset and install receiver cap.

NOTE

When replacing receiver element in handset avoid pinching the connecting wires.

3-10. Telephone Set Base fig. 3-2)

The following procedures require that the telephone set base is removed. To accomplish this, perform the following:
a. Remove the ten screws from the outside edge of the telephone set base, going in one direction, using a partial screw removal method for each complete cycle. This requires approximately five cycles to clear all ten screws from case.
b. Attach shorting wire to shorting pins (fig. 3-2).
c. Disconnect electrical connector J 1 by loosen-
ing two attaching screws. Lay unit on side to facilitate J 1 removal.
d. The telephone set base is replaced by reversing the above procedure.

3-11. Retractile Cord, Removal and Replacement (fig. 3-1, 3-3, and 3-5)

a. Removal.
(1) Remove telephone set base as described in paragraph 3-10
(2) Remove two cable clamps and (disconnect five wires from terminal block TB1.
(3) Remove transmitter and receiver caps and disconnect wires from transmitter element and receiver element, as dcscribed in paragraphs 3-8 and 3-9.
(4) Remove the two screws, securing the access plate. Remove the access plate, packing, and cord.
b. Replacement.
(1) Run new cord through case, seat grommet and connect cord to terminal block TB1 as shown in figure 3-5
(2) Replace two cable clamps.
(3) Connect wires to receiver and transmitter elements as shown in figure $3-5$ and replace caps on handset.
(4) Replace packing, using RTV sealant. Replace access plate.

NOTE

If sealant in handset was damaged during removal, new sealant (RTV) is required to complete reassembly.
(5) Replace telephone set base as described in paragraph 3-10

3-12. Loudspeaker Horn (DSI), Removal and Replacement (fig. 3-4)

a. Removal.
(1) Remove telephone set base as described in paragraph 3-10
(2) Remove four screws securing loudspeaker horn to telephone set housing.
(1) Disconnect two wires and remove loudspeaker horn.
b. Replacement.
(1) Connect wires to loudspeaker horn.
(2) Install loudspeaker horn in telephone set housing and secure, using four screws.

3-6 Change 3

CAUTION

Observe hole alignment (o insure loudspeaker horn clearance with respect to MODE SELECT switch.
Do not overtighten screws when installing the loudspeaker horn DS1. This can cause cracking of the shell assembly.
(3) Replace telephone set base as described in paragraph 3-10.

3-13. Ring Indicator (DS2), Removal and Replacement (fig. 3-3)

a. Removal.
(1) Remove telephone set base as described in paragraph 3-10.
(2) Remove loudspeaker horn as described in paragraph 3-12.
(3) Tag and disconnect two wires from ring indicator.
(4) Remove nut securing ring indicator to telephone set housing and lift out ring indicator.
b. Replacement.
(1) Secure ring indicator to telephone set ousing using nut removed in procedure a above.
(2) Connect two wires to ring indicator.
(3) Replace loudspeaker horn and telephone set base as described in paragraphs 3-10 and 3-12.

3-14. Ring Volume Control (R1), Removal and Replacement fig. 3-3

a. Removal.
(1) Remove telephone set base as described in paragraph 3-10
(2) Remove loudspeaker horn as described in paragraph 3-12
(3) Tag and disconnect three wires from ringer volume control.
(4) Loosen setscrew and remove knob.
(5) Remove nut securing ring volume control to telephone set housing and lift out ring volume control.
b. Replacement.
(1) Install ring volume control in telephone set housing and secure with nut.
(2) Install knob on ring volume control shaft nd tighten setscrew.
(3) Connect three wires to ring volume control.
(4) Replace loudspeaker horn and telephone set base as described in paragraphs 3-10 and 3-12.

3-15. Switch (S1), Removal and Replacement (fig. 3-3)
a. Removal.
(1) Remove telephone set base as described in paragraph 3-10.
(2) Remove loudspeaker horn as described in paragraph 3-12.
(3) Tag and disconnect two wires from ON/ OFF switch.
(4) Remove nut securing ON/OFF switch to telephone set housing and lift out ON/OFF switch.
b. Replacement.
(1) Install ON/OFF switch in telephone set housing and secure with nut.
(2) Connect two wires to ON/OFF switch.
(3) Replace loudspeaker horn and telephone set base as described in paragraphs 3-10 and 3-12.

3-16. Hookswitch (S2), Removal and Replacement fig. 3-3

a. Removal.
(1) Remove telephone set base as described in paragraph 3-10
(2) Tag and disconnect wires from hookswitch.
(3) Remove nut and collar securing hookswitch to telephone set housing and lift out hookswitch.
b. Replacement.
(1) Install hookswitch in telephone set housing and secure, using nut and collar.
(2) Connect wires to hookswitch.
(3) Replace telephone set base as described in paragraph 3-10

3-17. Circuit Cord Assembly (A1), Removal and Replacement
 (fig. 3-2)

a. Removal.
(1) Remove telephone set base as described in paragraph 3-10
(2) Remove two screws and carefully remove electrical connector J 1. (See Caution in para 4-3.)
(3) Remove six screws and lift circuit card assembly from telephone set base.
b. Replacement.
(1) Set circuit card assembly in telephone set base and secure, using six screws.
(2) Install electrical connector J 1 and secure, using two screws.
(3) Replace telephone set base as described in paragraph 3-10

3-18. Terminal Board (TB1), Removal and Replacement

(fig. 3-3
a. Removal
(1) Remove telephone set base as described in paragraph 3-10
(2) Tag and disconnect wires from terminal board.
(3) Remove two screws and carefully remove terminal board.
b. Replacement.
(1) Install terminal board in telephone set housing and secure using two screws.
(2) Connect wires to terminal board.
(3) Replace telephone set base as described in paragraph 3-10

3-19. Binding Posts (E1 through E4), Removal and Replacement
(fig. 3-3).
a Removal
(1) Remove telephone set base as described in paragraph 3-10
(2) Unsolder wires from binding post terminals.
(3) Remove binding post, attaching nut, and connector lugs. Tag connector lugs.
b. Replacement.
(1) Install binding post in telephone set.
(2) Install connector lug and secure with attaching nut.
(3) Resolder wires to binding post terminals.
(4) Replace telephone set base as described in paragraph 3-10

3-20. Battery Contacts (Upper and Lower), Removal and Replacement

(fig. 3-3)
a Removal.
(1) Open battery cover. Remove upper contact and attaching screw if desired.
(2) Remove batteries.
(3) Remove telephone set base as described in paragraph 3-10.
(4) Remove nuts and washers securing connector lugs to battery terminals and lift off connector lugs.
(5) Remove nuts securing lower contact assembly and lift assembly out of battery compartment.
b. Replacement.
(1) Install lower contact assembly in battery compartment and secure to telephone set housing using washers under attaching nuts.
(2) Install connector lugs on battery terminals and secure using washers under attaching nuts.
(3) Replace telephone set base as described in paragraph 3-10.
(4) Install upper contact and secure using attaching screw.
(5) Replace batteries.

Section III. TESTING PROCEDURES FOR TELEPHONE SET TA-838/TT

3-21. General

The testing procedures provided in this section are intended for use by direct support maintenance personnel to determine whether the performance of a repaired telephone set is satisfactory for return to use. All tests must be performed in accordance with the step-by-step procedures. Failure to meet acceptable performance constitutes a malfunction which should be located using applicable fault isolation procedures. Return the part to the category of maintenance responsible for repair in accordance with the maintenance allocation chart (TM 11-5805-650-12\&P).

3-22. Physical Tests and Inspections

Refer to procedures in paragraph 3-5 and perform those checks prior to performing the test procedures in this section.

3-23. Signaling Tests

a Test Equipment and Materials.
(1) Ac voltmeter, ME-30()/U, or equivalent.
(2) Electronic Counter, AN/USM - 207A, or equivalent.
(3) Oscilloscope, AN/USM-281, or equivalent.
(4) oscillator, TS-421, or equivalent.
(5) Decade Attenuator, TS-402, or equivalent.
(6) Interrupter, KY-834/U, or equivalent.
(7) Dc power supply, PP-351/U: 5.4 vdc $\pm 20 \%$; and $24 \mathrm{vdc} \pm 20 \%$; and $48 \mathrm{vdc} \pm 20 \%$.
(8) Test leads (6).
(9) Resistors 600-ohm, 1/2W (2).
(10) Switch, SPDT.
(11) Resistor, 270-ohm. 5W (2).
(12) Balanced transformer, C-161, or equivalent. 1:1 ratio, 600-ohm Input/Output, Frequency range of 50 to $3,500 \mathrm{~Hz}$. (Lin number E48707) (NSN5950-00-235-8730).

3-8 Change 4

(13) Capacitors. $300 \mu \mathrm{f} .60 \mathrm{vdc}$ Polarized (2). (14) Resistor, $2700-\mathrm{ohm} 1 / 2 \mathrm{~W}$ (1).
b. Test Connections and Conditions (fig. 3-6 through 3-9). When in the local battery (LB) mode during testing, the telephone set can operate from four batteries, BA-42 or BA-3042, or an equivalent power source. If using an equivalent power source, the output voltage must be $5.4 \pm 1 \mathrm{vdc}$. In order to apply power from an equivalent power source, the
telephone set base must be removed to allow access to the terminals.
c. Initial Test Equipment Settings. Connect the test equipment to the power source; allow a 10-minute warmup period before starting test procedures. Test equipment settings should be within the allowable range indicated by the expected performance standard.

Figure 3-6. Signaling, test setup.

Figure 3-7. Local battery, ring and seize acknowledge, test setup.

Figure 3-8. Common battery, 4-wire test setup.

Figure 3-9. Common battery, 2-wire, test setup.
d. Procedure.

$\begin{gathered} s_{1} u_{1} \\ x_{0} \end{gathered}$	Concrol setting		Test procedure	Performance olandard
	teon equipment	Equipment under tees		
	c. Set TSW-1 to position 2. d. Set TSW- 1 to position 1.	c. MODE SELECT switch to 4 wire DC/CB. On-hook.	c. Repeat a.	c. None. d. Ring indicator (DS2) and loudspeaker horn (DS1) respond at a $10-\mathrm{Hz}$ rate.
4	Set up in accordance with figure 3-9. a. Using low amplitude osciliator output level. adjust for $20-\mathrm{Hz}$ frequency as read on electronic counter. Remove counter from test setup. Adjust oscillator output for 60 volts as indicated on VTVM.	a. MODE SELECT switch to 2 WIRE DC/CB. On-hook.	a. Incoming Ring Detector.	a. None. b. Ring indicator (DS2) and loudspeaker horn (DS1) respond at $20-\mathrm{Hz}$ rate.

3-24. Operational Tests

a. Test Equipment and Materials.
(1) Resistors, 1000 ohm $\pm 10 \%$, 1/2W (2).
(2) Battery BA-42 or BA-3042 Type C cell (4).
b. Procedure, Perform preinstallation operational check presented in TM 11-5805-650-12\&P. If a Switchboard connection is available, the switchboard operational installation check can also be performed, although performance of this check is not a requirement to return the unit to service.

Section IV. MAINTENANCE OF TELEPHONE SET TA-838A/TT

3-25. General

All paragraphs in Section II in this chapter apply to Telephone Set TA-838A/TT except paragraph 3-6 and the caution in paragraph 3-7 Refer to figure 3-10 when working on Telephone Set TA-828A/TT.

3-26. Fault Isolation

a. Perform self test in accordance with Section V.
b. If unit passes self test, perform the following procedure:
(1) Disconnect connector J1 from circuit card assembly A1, and remove the telephone set base.
(2) Set the MODE SELECT switch to a 4 -wire common battery position.
(3) Refer to figure 3-3. Do not disconnect any wires.
(4) Refer to schematic diagram figure [FO-3] and to connector J1 test point location diagram figure 4-2 and perform a continuity check with the hook switch button released.
(5) Then perform the continuity check with the hook switch button depressed.

Section V. TESTING PROCEDURES FOR TELEPHONE SET TA-838A/TT

3-27. General

When testing Telephone Set TA-838A/TT, refer to paragraphs 3-21 through 3-24 and figures 3-6 through 3-10 in Section III in this chapter.

3-28. Self-testing provisions in Telephone Set TA838A/TT

a. Load the battery compartment with known good batteries.
b. Set the MODE SELECT switch to the 4 wire AC/LB position, the LED ON-OFF switch to ON and the RING VOLUME control to mid range.
c. Loosen all of the base assembly screws and remove the base assembly from the case assembly without disconnecting the cable assembly from J 1 .
d. Place the handset on-hook.
e. Place a shorting clip lead across the two P1 terminals (near U2) and a shorting clip lead across the two P2 terminals (near the LED on the Circuit Card Assembly).
f. Go off-hook and listen at the handset earphone.
g. Remove one end of the shorting clip lead from across one of the P1 terminals.
h. The following sequence of events should occur:
(1) The LED on the Circuit Card Assembly and the LED on the Case Assembly should operate three times.
(2) The Loudspeaker Horn should sound three times simultaneously with the LED operation.
(3) A tone should be heard three times in the earphone following the LED and Loudspeaker operation.
i. The first set of three rings indicates that the digital circuit section (U1, U3, U4, U5, U6, U7, U8, U9, U10, U12) and the ring amplifier (U11, Q1, Q2, Q3, Q4, Q5, Q9, Q10) are operating.
j. The second set of three earphone tones indicates that the digital circuit section (U1, U3, U4, U5, U6, U7, U8, U9, U10) and the linear circuit section (U18, Send Amplifier and Receive Amplifier) are operating.
k. To repeat the self test place the handset back on hook, the shorting clip lead back across the two terminals of P1 and repeat steps f and g above.

Section VI. DESCRIPTION OF REPLACEMENT CIRCUIT CARD ASSEMBLY FOR TELEPHONE SET TA-838/TT AND TA-838A/TT

3-29. Scope

This section describes the replacement of circuit card assembly part number A3188334 that applies to both Telephone Set TA-838/TT and TA-838A/TT. Should the circuit card assembly malfunction replace the entire assembly as its component parts are not authorized for replacement.

3-30. General (fig. FO-3, FO-6 and FO-8)

Chapter 3 Direct Support Maintenance Instructions Sections I, II, III and IV also applies to the TA-838/TT and TA-838A/TT with replacement circuit card assembly A3188334, with the exception of references to self test and circuit symbol designations.

3-12.4 Change 5

Figure 3-10. Parts location on Circuil Card Assembly (Al) for Telephone Set TA-838A/TT

CHAPTER 4

GENERAL SUPPORT MAINTENANCE INSTRUCTIONS

4-1. General

a. Limitations. The maintenance instructions provided in this chapter are for general support maintenance only. The procedures that follow apply to the telephone set regardless of its location. Restrictions are imposed only by the immediate circumstances involved, the availability of spare parts, tools, test equipment, and the skill of the maintenance technicians.
b. Maintenance diagrams. Maximum use of wiring, schematic, and parts location diagrams should be made during performance of general support maintenance procedures. figure FO-1 shows how to interpret the military standard color code markings used in this equipment.
(1) For Telephone Set TA-838/TT: The wiring diagram and schematic diagram, figures FO-3, FO-4 (1) and FO-4 (2), are used to aid in fault isolation and signal tracing. The locations of serviceable components in the telephone set and on the circuit card assembly are shown on the parts location diagrams figures 3-1 through 3-4. Refer to figure 4-11 for methods of determining pin locations on microcircuit components mounted on the circuit card assembly.
(2) For Telephone Set TA-838A/TT: The wiring diagram and schematic diagram, figures FO-3, FO-7 (1), FO-7 (2), and FO-7 (3), are used to aid in fault isolation and signal tracing. The locations of serviceable compo-
nents in the telephone set and on the circuit card assembly are shown on the parts location diagrams, figures 3-1 3-3, 3-4 and 3-10.
(3) The schematic diagram figure FO-8 applicable to circuit card assembly part number A3188334 is for reference only. Paragraphs 4-2 through 4-12 only are applicable as there are no serviceable components on this circuit card assembly.

4-2. Troubleshooting

Troubleshooting is based on symptoms that may occur when the telephone set is operated. The troubles/symptoms may be discovered through operation, or through incorrect indications on the preventive maintenance checks and services.

4-3. Troubleshooting Chart

When a trouble or symptom occurs, refer to table 4-1 Troubleshooting, to find possible trouble and corrective measures.

CAUTION

When troubleshooting Telephone Set TA-838A/TT , prior to disconnecting J 1 , connect a shorting wire to the three shorting pins (fig. $3-2$) to prevent inadvertent damage to electronic components. Shorting wire must be removed after reconnecting J .

Table 4-1. Troubleshooting, General Support

Malfunction	Probable cause	corrective action
1. Dial tone not returned from switching facility.	a. Faulty hookswitch (S2). b. Faulty circuit card assembly (A1).	a. Perform testing procedure of paragraph 3-6. Replace hookswitch, if necessary. b. Replace circuit card assembly. (Perform circuit card test procedure (para 4-12.
2. Repeated wrong numbers and/or absence of ringback tone. Low digit sidetone level. Call times out.	a. Faulty keyset. b. Faulty circuit card assembly (Al).	a. Perform testing procedure of paragraph 4-6. Replace keyset, if necessary. b. Replace circuit card assembly. Perform circuit card test procedure (para 4-12.

Table 4-1. Troubleshooting, General Support-Continued

Malfunction	Probable cause	Corrective action
3. No ringing or intermittent ringing.	a. Loudspeaker horn (DS1) inoperative. b. Ring indicator (DS2) or ON/OFF switch (S I) inoperative. c. Ringer volume control (R1) defective. d. Defective hookswitch (S2).	a. Replace loudspeaker horn (DS1).
		b. Replace ring indicator (DS2) or ON/ OFF switch (S1).
		c. Replace ringer volume control.
		d. Perform testing procedur of paragraph 3-6. Replace hookswitch, if necessary.
	e. Faulty circuit card assembly (Al).	e. Replace circuit card assembly. Perform circuit card test procedure (para 4-12).
4. $\because 0$ sidetone: voice transmission is normal.	Defective circuit card assembly (A1).	Replace circuit card assembly. Perform circuit card test procedure (para 4-12.
5. No voice reception or sidetone.	a. Faulty hookswitch (S2).	a. Perform testing procedur of paragraph 3-6. Replace hookswitch. if necessary. b. Replace circuit card assembly. Perform circuit card test procedure (para 4-12).
	b. Faulty circuit card assembly (A1).	
6. Telephone set does not inhibit seize or release from extension telephones.	a. Defective hookswitch (S2).	a. Perform testing procedur\& of paragraph 3-6. Replace hookswitch, if necessary.
	b. Defective circuit card assembly (A1).	b. Replace circuit card assembly. Perform circuit card test procedure (pare 4-12).
7. Seize or release not inhibited by an-		
other off cradle extension telephone	Defective circuit card assembly (A1).	Replace circuit card assembly. Perform circuit card test procedure (para 4-12.
8. Voice transmission low or nonexistent.	a. Faulty transmitter erement.	a. Replace transmitter element.
	b. Faulty circuit card assembly (A1).	b. Replace circuit card assembly. Perform circuit card test procedure para 4-12.
9. No output or reduced output.	a. Faulty hookswitch (S2).	a. Perform testing procedur of paragraph 3-6. Replace hookswitch, if necessary.
	b. Defective circuit card assembly (A1).	b. Replace circuit card assembly. Perform circuit card test procedure (para 4-12).
10. No release tone.	a. Faulty hookswitch (S2).	a. Perform testing procedur of paragraph 3-6. Replace hookswitch, if necessary.
	b. Defective circuit card assembly (A1).	b. Replace circuit card assembly. Perform circuit card test procedure para 4-12.
11. No digit tones or single frequency tone when keyset (S3) is depressed.	a. Defective keyset (S3).	a. Perform testing procedur of paragraph 4-6. Replace keyset, if necessary. b. Perform testing procedur of paragraph 3-6. Replace hookswitch, if necessary.

4-2 Change 5

4-4. Fault Isolation

This section contains procedures for fault isolating the following components of the telephone set:
a. Keyset (S3).
b. MODE SELECT switch (S4).
c. Wiring harness.

4-5. Preliminary Setup

a. Disconnect leads from RCV and XMT terminals.
b. Set MODE SELECT switch to any common battery (CB) position.
c. Remove ten attaching screws and remove telephone set base assembly to obtain access to inside of telephone. Do not disconnect J1.

CAUTION

Exercise care when moving electrical components, as damage to wiring harness may result.

NOTE

At the completion of test, restore telephone set to its original condition and place a call to ensure telephone set is functioning properly.

4-6. Keyset (S3) Test

a. Remove two attaching screws and move component board (A2) to obtain access to keyset connections.
b. Perform continuity check of keyset as listed in table 4-2. See wiring diagram (fig. FO-3) and Keyset (S3) test point location diagram (fig. 4-1).

Table 4-2. Keyset Continuity Check

Keyser (S:3) pushbutton	Keyset pins (F common)
1	A and G
2	A and B
3	A and C
FO	A and E
4	D and G
5	D and B
6	D and C
F	D and E
7	H and G
8	H and K
9	H and J
I	H and E
R	L and G
0	L and K
C	L and J
P	L and E

Figure 4-1. Keyset (S3), test point locations.

4-7. MODE SELECT Switch (S4) Test
NOTE
Before testing the MODE SELECT switch, performance of the hook-switch test (para 3-6) should be completed.
a. Remove handset (HS1) from cradle (off-hook).
b. Remove telephone set base and disconnect connector J 1 .
c. Check for continuity between pins of J 1 (and
other points) as listed in the chart below for each position of the MODE SELECT switch. (See figure FO-3 and fiqure 4-2 for test point locations.) When the switch is moved from the indicated position, the continuity should be lost unless the same pins are also listed for the new position. The chart also indicates the particular deck and area of switch S4 through which each continuity check is made.

Figure 4-2. Connector (J 1), test point locations.

MODE SELECCT switch St position	Deck 1		Deck 2		Deck 3	
	Frone	Rear	Front	Hear	Front	Rear
2 WIRE DCILB	$36-11$	1-37-19	39-26	20-18-+ BAT	$\begin{aligned} & 26-31 \\ & 30-39 \end{aligned}$	2-34
2 WIRE DC/CB	36-11	1-37-19	$\begin{aligned} & 26-50 \\ & 18-29 \end{aligned}$	21-20	$\begin{aligned} & 26-31 \\ & 30-39 \end{aligned}$	2-34
4 WIRE DC/CB	36-24	19-54	$\begin{aligned} & 18-29 \\ & 18-16 \end{aligned}$		30-31-15	35-19
						2-3
4 WIRE DC/LB	36-24		18-16	20-18-+ BAT	30-31	19-45
		19-54	18-36			2-3
4 WIRE AC/CB	36-43				30-31-15	2-3
4 WIRE AC/LB	36-25	19-36		20-18-+ BAT	30-31-5	2-3
4 WIRE PT-PT	36-44			20-18-+BAT	30-31	2-3

4-8. Removal and Replacement Procedures

The procedures given in paragraphed 4-9, 4-10, and 4-11 provide instructions for removal and replacement of parts found to be defective.

4-9. Component Board (A2), Removal and Replacement

 (fig. 3-3)a. Removal.
(1) Remove telephone set base as described in paragraph 3-10.
(2) Remove two screws securing component board to keysender; tag and disconnect the two wires; and remove board.
b. Replacement.
(1) Replace the component board by connecting the two wires and securing in place using two screws.
(2) Replace telephone set base as described in paragraph 3-10

4-10. Keyset (S3), Removal and Replacement (fig. 3-3).
a. Removal.
(1) Remove component board as described in paragraph 4-9.
(2) Remove six nuts securing keyset to telephone set housing and lift off keyset.
b. Replacement.
(1) Replace the keyset by placing it in position on the telephone set housing and securing, using six nuts.
(2) Replace the component board (A2) as described in paragraph 4-9

4-11. MODE SELECT Switch (S4), Removal and Replacement (fiq. 3-3)

a. Removal
(1) Remove telephone set base as described in paragraph 3-10
(2) Remove loudspeaker horn as described in paragraph 3-12
(3) Remove two screws and two nuts securing switch to telephone set housing and lift out MODE SELECT switch.
(4) Tag and disonnnect wires from MODE SELECT switch.
b. Repl acement.
(1) Connect wires to MODE SELECT switch.
(2) Secure MODE SELECT switch to telephone set housing using two screws and two nuts.
(3) Replace loudspeaker horn and tel ephone set base as described in paragraphs 3-10 and 3-12.

4-12. Circuit Card Test Procedure

a. To verify malfunctions, aid in troubleshooting, and as a post-repair test of circuit card A1, perform the circuit card test procedures contained intable 4-3. (Seefigures 4-3 through 4-10.) E ach step of the test procedure is independent and maybe performed
out of sequence. Each step is related to a corresponding procedural step in troubleshooting table 4-4 (with the same step number), which provides troubleshooting data for the circuits causing a failure of that particular test.
b. To perform either the circuit card performance test or troubleshooting test, a common test fixture setup is required. This test fixture, figure FO-5, may be fabricated using components normally used in a TA-838/TT Telephone Set. Table 4-5]lists other required test equipment, the quantities required, and the reference designations used to identify the equipment on the test setup disgrams fig. 4-3 through 4-10).

NOTE

Suitable substitute test equipment may be used.
c. Prior to performing any step of the circuit card test procedures, the following pretest procedure must be performed:
(1) Fabricate the test fixture as indicated in figure FO-5.
(2) Connect the circuit card to be tested to the test fixture by way of connector J 1.
(3) Remove the shorting straps from the unit under test.
(4) Connect all test equipment requiring power to their power source using isolation plugs.
d. After completion of troubleshooting, the performance test should be performed in its entirety and upon completion of the performance test, the shorting straps should be replaced prior to disconnecting the card from the test fixture.

NOTE: THE INTERRUPTER IS ANY DEVICE THAT WILL PERFORM THE FOLLOWING FUNCTIONS WITH A CONTINUOUS SIGNAL APPLIED TO ITS INPUT:

1. NON-OPERATED - OUTPUT IS AN OPEN CIRCUIT.
2. OPERATED CONTINUOUS - OUTPUT SIGNAL IS SAME AS INPUT.
3. OPERATE INTERRUPTED - OUTPUT SIGNAL INTERRUPTED AT 10 HZ RATE.

EL2YY005

Figure 4-3. General Circuit card, test setup.

Figure 4-5. Ring circuit, test setup.

Figure 4-6. Receive circuit, test setup.

Figure 4-7. Send output, test setup.

Figure 4-8. Loop resistance, test setup.

Figure 4-9. Return loss (2-wire) test setup.

Figure 4-10. Return loss (4-wire) test setup.

U1 OR U2 SMA790739 MICROCIRCUIT LINEAR TEAR DROP SHAPED PAD INDICATING PIN 1 IS LOCATED ON PRINTED WIRING SIDE	
RAISED DOT INDICATES PIN 1	RA (TYPICAL) RESISTOR NETWORK, FIXED [12345678910 SQUARE SHAPED PAD INDICATING PIN I IS LOCATED ON PRINTED WIRING SIDE PINS COUNTED FROM LEFT TO RIGHT

NOTE: ALL VIEWS ARE FROM COMPONENT SIDE. PIN NUMBERS ARE COUNTED COUNTERCLOCKWISE UNLESS OTHERWISE SPECIFIED.

Table 4-3. Circuit Card Performance Test

a. Perform Step $1 a$ through h.

DTMF Signals
b. Remove wave analyzer from TP 5 and TP6 and replace with VTVM-3. Connect wave analyzer meter input leads across TP1 and TP2. Remove electronic counter EC-2, and connect to wave analyzer OUTPUT connector.
e. Wave analyzer indicates -7 dBm , $+2,-3 \mathrm{~dB}$; electronic counter $\mathrm{EC}-2$ indicates $697 \mathrm{~Hz} \pm 9.06 \mathrm{~Hz}$; VTV. $\mathrm{M}-2$ indicates -4 dBm ; $+2,-3 \mathrm{~dB}$; VTVM-3 indicates 2.15 to 6.85 mv .
g. Wave analyzer indicates -7 dBm $+2,-3 \mathrm{~dB}$; electronic counter EC-2 indicates $770 \mathrm{~Hz} \pm 10.1 \mathrm{~Hz}$: VTV $\mathrm{M}-2$ indicates $-4 \mathrm{dBm},+2,-3 \mathrm{~dB}$.
i. Wave analyzer indicates -7 dBm $+2,-3 \mathrm{~dB}$; electronic counter EC-2 indicates $852 \mathrm{~Hz} \pm 11.1 \mathrm{~Hz}$: VTV. $\mathrm{M}-2$ indicates $-4 \mathrm{~dB} \mathrm{~m},+2,-3 \mathrm{~dB}$.
k. Wave analyzer indicates -7 dBm , $+2,-3 \mathrm{~dB}$; electronic counter EC-2 indicates $941 \mathrm{~Hz} \pm 12.2 \mathrm{~Hz}$: VTV $\mathrm{M}-2$ indicates $-4 \mathrm{~dB} \mathrm{~m},+2,-3 \mathrm{~dB}$.

Table 4-3. Circuit Card Performance Test-Continued

Table 4-3. Circuit Card Perıormance Test-Continued

d. Ammeter (A) indicates 4 ma or less DVM indicates between 4.4 and 6.4 vdc.
e. Ammeter (A) indicates 4 ma or less DVM indicates between 4.4 and 6.4 vde.
f. Ammeter (A) indicates 10 ma or less; DVM indicates between 4.4 and 6.4 vdc .
g. Ammeter (A) indicates 10 ma or ess: $D V M$ indicates between 4.4 and 6.4 vdc .
h. Ammeter (A) indicates 4 ma or less DVM indicates between 4.4 and 6.4 vdc.
i. Ammeter (A) indicates 4 ma or less: DVM indicates between 4.4 and 6.4 vdc.

Table 4-3. Circuit Card Performance Test-Continued

Table 4-3. Circuit Card Performance Test-Continued

$\begin{aligned} & \begin{array}{l} \text { Step } \\ \text { No } \end{array} \end{aligned}$	Control setings		Test procedure	Performance standard
	Test equipment ${ }^{\text {contrul setings }}$,			
	ak. Set S5 and S6 to "Measure" position. al Set S5 to "Check Level" and S6 to "Balance Check". Set wave analyzer to 300 Hz at -4 dBm . am. Set $\mathbf{S} 5$ and S6 to "Measure" position.		$a n$. Repeat steps al and am above at 1000 Hz . ao. Repeat steps al and am above at 3500 Hz . ap. Interchange the test connections to TP1 and TP2 with those to TP3 and TP4. Repeat steps al through ao above.	ak. Seize signal ceases. am. Wave analyzer indicates -18 dB or less. an. Wave analyzer indicates -24 dB , or less. ao. Wave analyzer indicates -18 dB । or less. ap. Wave analyzer indicates - $18 \mathrm{~dB}_{1}$ or less.

4-13. Circuit Card Troubleshooting for Telephone Set TA-838/TT

After verification of a malfunction by performance of the tests given in table 4-3, perform the appropriate fault isolation procedure in table 4-4 (identified by the same step number as the step of table 4-3 in which failure was noted). Upon isolation of the malfunction to a small group of components, use standard techniques to determine the individual faulty component. Paragraph 4-14 provides procedures for removal of components for testing. Several of the standard troubleshooting procedures are given in paragraph 4-15. These procedures are not recommended for troubleshooting as a general
rule, but sometimes it is difficult to isolate troubles to a particular component. In such cases, it may be necessary to remove the suspected component and test it. DO NOT remove components for testing without some indication that the particular component is at fault.

NOTE

To make measurements on the printed circuit board, removal of the conformal coating at the point of measurement is required. This may be accomplished by scraping the area well with a sharp knife.

Table 4-4. Circuit Card Troubleshooting for Telephone Set TA-838/TT

	Procodure	Required results	Correction action if results are	
No.			Correct	Incorrect
1	With the card connected and stimulated as described in step 1 (Seize Signal) of the Circuit Card Test Procedure (table-4-3). perform the following: a. With a dc voltmeter, measure the voltage between pins 18 and 36 of test connector J1. NOTE Pin 36 will be the low (Return) point for all measurements unless otherwise specified.	+4.4 $\mathrm{vdc} \pm 10 \%$	Go to step 16.	Replace VR2, C2, C3, C12 or C25. (Standard methods of testing can determine which component has malfunctioned.)
	b. With the dc voltmeter, measure the voltage at pin 12 of U3. c. Measure the dc voltage at the base of transistor Q4.	$0 \pm 0.1 \mathrm{vdc}$ Less than 0.75 vdc but more than 0.4 vdc	Goto step 1 e. Replace Q4.	Go to step lc. Go to step 1d.
	d. Measure the dc voltage at the junction of CR 2 and CR5.	$4.0 \mathrm{vdc} \pm 10 \%$	Replace C6 or RA5.	Replace CR2 or CR5.
	e. Measure the dc voltages at terminals 6, 7. 9 and 10 of U3.	4.4. vdc $\pm 10 \%$	Go to step 1 f .	Replace RA10.
	f. Measure the dc voltage at pin 34 of U3.	$0 \pm 0.1 \mathrm{vdc}$	Go to step 1 lg .	Replace U3.
	g. With an oscilloscope, observe waveform at pin 18 of U3.	295 kHz	Go to step 1 h	$\begin{aligned} & \text { Replace Y1, C28, C29, R102, } \\ & \text { R103, or U3. } \end{aligned}$
	h. Measure the dc voltage at the emitter of Q3.	$\approx 2.25 \mathrm{vdc} \pm 10 \%$	Gotostep 1m.	Go to step $1 i$
	i. Measure the dc voltage at pin 28 of U3.	$4.4 \mathrm{vdc} \pm 10 \%$	Goto step 1 j .	Replace U3.
	j. Measure the dc voltage at the junction of CR1 and RA14 pin 5.	$4.0 \mathrm{vdc} \pm 10 \%$	Goto step 1k.	Replece CR1 or RA14.
	k. Measure the dc voitage at the collector of Q1.	$2.7 \mathrm{vdc} \pm 10 \%$	Goto step 16	Replace VR1. Q1 or Q2.
	L Measure the dc voltage at the collector of Q3.	$4.4 \mathrm{vdc} \pm 10 \%$	Replace Q3 or C5.	Replace RA14.
	m. With a frequency counter, measure the signal at pin 4 of RA17.	$2234.8 \mathrm{~Hz} \pm 10 \%$	To to step 1m	Replace U4 or RA17.
	n. Measure the dc voltage at the collector of Q11.	$0 \pm 0.1 \mathrm{vdc}$	Goto step 10.	Goto step 1 p .
	o. Measure the ac voltage at the junction of C15 and C18.	$68.5 \pm 2 \mathrm{mv}$	Replace C15 or RA3.	Replace C18 or RA6.
	p. Measure the dc voltage at pin 26 of U3.	$0 \pm 0.1 \mathrm{vdc}$	Replace Q11 or RA2.	Replace U3.
	q. With frequency counter, measure the signal at pin 1 of Al.	$2234.8 \mathrm{~Hz} \pm 10 \%$	Replace T1.	Replace A 1.

Table 4-4. Circuit Card Troubleshooting for Telephone Set TA-838/TT - Continued

$\begin{aligned} & \text { SLep } \\ & \text { No. } \end{aligned}$	Procedure	Required results	Corrective acuon if resulis are	
			Correct	Incorress
	With the card connected and stimulated as described in step 2 (Seize Sidetone) of the Circuit Card Test Procedure (table 4-3), perform the following: a. With frequency counter, measure the signal at the junction of RA4 pin 3. RA1	$2234.8 \mathrm{~Hz} \pm 10 \%$	Goto step 26.	Replace T1.
	b. Measure the dc voltage at the collector of Q6.	$0 \pm 0.1 \mathrm{vdc}$	Goto step 2 e.	Gotostep 2c.
	c. Measure the dc voltage at the base of Q6.	$0 \pm 1 \mathrm{vdc}$	Replace Q6, RA4, RA1. C26.	Goto step 2d.
	d. Measure the dc voltage at pin 25 of U3.	$0 \pm 1 \mathrm{vdc}$	Replace RA2.	Replace U3.
	e. Measure the dc voltage at pin 8 of Ul .	$4.4 \mathrm{vdc} \pm 10 \%$	Go to step $2 f$.	Replace RA9 or U3.
	f. Measure the dc voltage at pin 3 of $U 1$.	$2.25 \mathrm{vdc} \pm 10 \%$	Go to step 2g.	Replace RA4, RA9, CR7, CR6,
	g. Measure the ac voltage at pin 6 of U1.	Less than 0.38 mvac	Replace Cl	CR3, CR4, C9 or U1. Replace U1, RA9, C11 or L1.
3	With the card connected and stimulated as described in step 3 (Release Signal) of the Circuit Card Test Procedure (thble-43). perform the following:			
	a Measure the dc voltage at the base of Q5.	$0 \pm 0.1 \mathrm{vdc}$	Go to step 36.	Replace RA5 or C7. Replace Q5 or RA10.
	b. Measure the dc voltage at the collector of Q5.	$4.4 \mathrm{vdc} \pm 10 \%$	Go to step 3c.	Replace Q5 or RA10.
	c. During Release signal measure the do voltage at pin 35 of U3.	$0 \pm 0.1 \mathrm{vdc}$	Replace U4 or RA17.	Replace U3.
4	With the card connected and stimulated as described in steps $4 a$ thru $4 c$ (Extension Control) of the Circuit Card Test Procedure (table 43), perform the following:			
	a. Measure the dc voltage at the + side of C6.	$+2.25 \mathrm{vdc} \pm 10 \%$	Goto step 46.	Replace RA5 or CRS.
	b. Measure the dc voltage at the base of Q4. c. Measure the dc voltage at pin 12 of U3.	$\begin{aligned} & +067 \mathrm{vdc} \pm 10 \% \\ & 0 \pm 0.1 \mathrm{vdc} \end{aligned}$	Go to step 4c. Replace U3.	Replace RA5 or C6. Replace Q4.
5	With card and test equipment connected as described in step 5 (DTMF Signals) of the Circuit Card Test Procedure, (table - 4-3), perform therollowing:		Gotostep 5b.	
	a. Turn off PS-1 and remove card from test fixture. Using multimeter, check continuity between the following pins:	Continuity	Goto step 56.	Repair printed wiring track.
	$\begin{array}{cc} \text { From } & \text { To } \\ \text { U3-34 } & \text { U4-23 } \end{array}$			
	U3-35 U4-22			
	U3-36 U4-02			
	U3-21 U4-13			
	U3-31 U4-01			
	J1-40 U3-17			
	J1-42 U3-13			
	J1-42 U4-20			
	J1-23 U3-14			
	J1-23 U4-21			
	J1-41 U3-15			
	J1-22 U3-16			
	J1-28 U4-03			
	J1-47 U4-04			
	J1-46 U4-05			
	b. Reconnect the card, turn on PS-1. and stimulate the card as described in step 5 of teble-3.3.	None		

With wave analyzer connected to Send Output (TP1 and TP2), depress Digit 1 and tune wave ánlayzer for 697 Hz . Observe level.
j. Tune wave analyzer for 1209 Hz and observe level.
k. Using oscilloscope, check signal at pin 1 of Al.
l Check signal at pin 3 of A1.
With the card connected and stimulated as described in step 6 (Receive Circuit Loss) of the Circuit Card Test Procedure 4-3), perform the following:
a. Measure the audio signal across C4.
b. Measure the dc voltage at the + side of C9.
c. Measure the ac voltage at pin 6 of U1.

W'ith the card connected and stimulated as described in step 7 (Ring Detector) of the Circuit Card Test Procedure (table 4-3), perform the following: If ring signal is correct but LED indicator remains off. go to step 7 m .)
a. Observe signal at pin 1 of U3 with oscilloscope.
b. Measure the dc voltage at pin 8 of U2.
c. Measure the dc voltage at pin 3 of U2..
d. Measure the dc voltage at pin 2 of $U 2$.
e. Using oscilloscope, observe signal at pin 32 of U3.
f. Observe signal at pin 33 of U3.
. Observe signal at the base of $\mathbf{Q} 24$.

4-24.2 Change 4

Table 4-4. Circuit Card Troubleshooting for Telephone Set TA-838/TT -- Continued

Table 4 4. Circmil Card Trombleshooting for Telephone Set TA-838 TT -- Comimued

4-13.1 Circuit Card Troubleshooting

 for Telephone Set TA-838A/TTAfter verification of a malfunction by performance ofthe test given in table 4-3, perform the appropriate fault isolation procedure intable 4-41. Upon isolation of the malfunction to a small group of components, use stand-
ard techniques to determine the individual faulty component Paragraph 4-14 provides procedures for cornponent removal. Several of the standard trouble shooting procedures are given in paragraph 4-15 Do not remove components for testing without some indication that the particular component is at fault.

Table 4-4.1 Circuit Card Troubleshooting for Telephone Set TA-838A/TT

Note 1. All measurements below to be taken between J2/9 (Ground) and the identified test points.
Note 2. Corrective actions must be performed one at a time in the order presented. After each action, the procedure must be repeated. When the required result is achieved, no further action is required.

$\begin{gathered} \operatorname{sep} \\ 1 . \end{gathered}$	Procedure	Required resuls	Correction axtion if results are	
			Correct	Incorrect
	Go off-hook and set PSI to 4.4 v . Perform the following: a. With a DC voltmeter, measure the voltage between J2/3 and J2/9.	$+4.4 \mathrm{v} \pm 10 \%$	Go to step lb.	Disconnect JI, clean connector pins and reconnect it, or replace C46.
	b. With a DC voltmeter, measure $\mathrm{J} 2 / 20$.	$+3.6 \mathrm{v} \pm 10$	Go to step 1. d	Go to step l.c
	c. With a DC voltmeter, measure $\mathrm{J} / 333$.	$0 \mathrm{v}+0.2 \mathrm{v}$	Replace U10	Clean connector J1.
	d. With a scope, observe $\mathbf{J} 2 / 23$	Square wave 0-3.6v 2250 Hz	Go to step le.	Replace U8, U6, U7, U4, Q7, Q6, Q8 or U1.
	e. With a scope, observe $\mathrm{J} 2 / 8$.	Square wave 0-3.6v 2250 Hz	Go to step If.	Replace U9. U12 or US.
	f. With a DC voltmeter, measure J2/7.	$0 \mathrm{v}+0.2 \mathrm{v}$	Go to step lg.	Replace U3 or Q12.
	g. With a scope, observe $\mathrm{J} 2 / 19$.	Sine wave 2250 Hz $1.3 \mathrm{vPP} \pm 10 \%$	Go to step lh.	Replace U17 or its surroundding components.
	h. With a scope, observe J2/6. Expect some ringing in the observed sine wave.	Sine wave 2250 Hz $1.8 \mathrm{vpp} \pm 10 \%$	Replace R18, C33 or R7.	Replace the sond amplitier.
2.	SEIZE SIDE TONE Go off-hook and set PSI to 4.4 v . Perform the following:			
	With a DC voltmeter, measure $\mathrm{J} 2 / 5$.	$+4.4 \mathrm{v} \pm 10 \%$	Replace L1, C22. C23 or the receive amplifier.	Replace U3, Qll or RA4.
3.	RELEASE SIGNAL Go on-hook and set PSI to 4.4 v . Perform the following:			
	a. With a DC voltmeter, measure $\mathrm{J} 2 / 20$.		Go to step 3c.	
	b. With a $D C$ voltmeter, measure $\mathrm{J} / 33$.	$3.6 v \pm 10 \%$	Repalce UIO.	Clean JI or replace C3.
	c. With a scope on $\mathrm{J} 2 / 23$ go on-hook, then offhook and observe square wave during approximately first six seconds.	Square wave 0-3.6v 2600 Hz .	Replace UIT.	Replace Ul.
4.	EXTENSION CONTROL Go on-hook and set PSI to 4.4 v . Perform the following: a. With a DC voltmeter, measure $\mathrm{J} 2 / 1$. b. Go off-hook and with a DC voltmeter measure J1/5.			
		$3.6 \mathrm{v} \pm 10 \%$	Replace UI.	Go to step $\mathbf{4 b}$.
		$+2.0 \mathrm{v} \text { Min. }$	Replace Q7, RAI or D2.	Clean JI.
5.	DTMF SIGNALS Set MODE SELECT witch to PT. PT. Go ofli-henth and set PSI to 4.4 v . Perform the following: a. With a scope, observe $\mathrm{J} / 22$ while pushing any key on keyset. b. With a DC voltmeter, measure J2/7.			
		Dual tone signal.	Go to step 5b.	Replace U15 or U16.
		$0 \mathrm{v} \pm 0.2 \mathrm{v}$	Replace C29. R20 or RA2.	Replace U3 $\mathbf{Y}_{\text {Q }}$ Q12, or RA1.

Table 4-4.1 Circuit Card Troubleshooting_for Telephone Set TA-838A/TT-Continued

8. POINT TO POINT OPERATION

Sel MODE SELECT switch to PT-PT. Go on-hook and set PS1 to 4.4 v . Perform the following:
a. With scope connected to $\mathrm{J} 2 / 17$ go on-hook then off-hook. Observe sine wave on scope during first iwo seconds.
b. With scope connected to $\mathrm{J} 2 / \mathrm{ll}$ go on-hook then off-hook. Observe square wave on scope during first two seconds.
c. With scope connected to $\mathrm{J} 2 / 23$ go on-hook the off-hook. Observe square wave on scope during first two seconds.

SEND OUTPUT
Set MODE SELECT switch to PT-PT. Go off-hook and set PSI to 4.4 v . Perform the following:

With a DC voltmeter, measure J2/7.
10.

AC, DC/CB
Set MODE SELECT swtich to 4W/DC/CB. Connect 24VDC power supply, positive to one XMT terminal and negative to one RCV terminal. Go off-hook and perform the following:
a. Measure DC voltage from $\mathrm{J} 1 / 15$ to $\mathrm{J} / 54$
b. Measure DC voltage from $\mathrm{J} / 16$ to $\mathrm{J} / 36$.

Go to step 6b.
Replace C21, $\mathrm{Ll}, \mathrm{C} 22$, C23 or receive amplifier.

Go to step 7d.

Replace U9, U12, Q10,
UII, Q1, Q2, Q3 or Q4.

Replace C31 or R22.

Replace UI8 or its surrounding components.

Replace U9, U12 or U5.

Replace R18, C33 or send amplifier.

Go to step 10t
Go to step 10 c .

Replace QII, RA4 or U3.
Replace C20 or T2.

Replace crystal CY, Cl or Ul .

Go to step 8 b .

Go to step 8c.

Replace U4.

Replace Q12, RA2 or U3.

Replace VR5 or C40.
Replace VR6, Q19. C41, Q18, Q20.
Q21 or RA10.

Table 4-4.1 Circuit Card Troubleshooting for Telephone Set TA-838A/TT-Continued

	Procedure	Required results	Correction action if results are	
Step			Correct	Incorrect
11.	2 WIRE RING Set MODE SELECT switch to 2W/DC/LB. Set PSI to 4.4 v . Apply 90 v RMS at 20 Hz to XMT terminals TP1 and TP2. Set RING VOLUME control midway and go on-hook. Perform the following: With a scope, observe $\mathrm{J} 2 / 15$.	Square wave 20 Hz .	Replace Ul.	Replace U21. U2 or RA5.
12.	2 WIRE RECEIVE CIRCUIT LOSS Set MODE SELECT switch to $2 W / D C / L B$. Set PSI to 4.4 v . Apply 0.5 v RMS at 1000 Hz to XMT terminals TP1 and TP2. Go off-hook. Perform the following: With an AC voltmeter measure J1/34.	5.0mv RMS $\pm 20 \%$.	Replace C24, recieve amplifier, L2, C22 or C23.	Replace RA13, C35 or Tl .

Test poins	Digit preased				
	None	1	5	9	P
U3-13	1	0	1	1	1
U3-14	1	1	0	1	1
U3-15	1	1	1	0	1
U3-16	1	1	1	1	0
U3-17	1	0	1	1	1
U3-31	0	0	0	0	0
U3-34	1	1	1	1	0
U3-35	1	1	1	0	1
U3-36	1	0	1	1	1
U4-2	1	0	1	1	1
U4-3	1	1	0	1	1
U4-4	1	1	1	0	1
U4-5	1	1	1	1	0
U4-20	1	0	1	1	1
U4-21	1	1	0	1	1
U4-22	1	1	1	0	1
U4-23	1	1	1	1	0

Note: $1=+4.4 \mathrm{vdc} \pm 10 \%, 0=0 \pm 0.1 \mathrm{vdc}$

Table 4-5. Required Test Equipment

Description	Qty	Test setup designation
Multimeter ME-301 /U	3	VTVM-1, -2, -3
Counter, Electronic, Digital Readout AN/USM-207A	2	EC-1,-2
Power Supply, PP-351/U	1	PS-1
		PS-2, -3
Oscilloscope AN/USM-281	1	S
Test Set TS-402	1	DA
Generator. Signal TX-421	1	OSC
Analyzer, Spectrum TS-723A	1	WA
Interrupter, Ringing, Telephone KY-834/U.	1	
Multimeter, AN/USM-223-Used as ammeter.	1	A
Digital Voltmeter, AN/GSM-64.	1	DVM
Transformer (1:1) SM-D-751237, North Electric Co.	2	T1, T2
Balance Transformer, C-161.	1	T3
Light Emitting Diode SM-C-790693, North Electric Co.	1	DS2
Keyset SM-D-790799, North Electric Co.	1	
Ringer SM-A-790701, North Electric Co.	1	
Mode Switch SM-A-790680, North Electric Co.	1	S1
Toggle Switch 6PDT ('Hookswitch")	1	S2
Connector (54 Pin) SM-C-790736. North Electric Co.	1	J1
Fiesistor, 470-ohm $1 / 2 \mathrm{~W}, 5 \%$	1	R1
Resistor. $600 \mathrm{ohm} 1 / 4 \mathrm{~W} .1 \%$	5	R4.5.11.17.19
Resistor, 150-ohm 1/4 W. 1%	2	R2, 3
Resistor, 1 K -ohm $1 / 4 \mathrm{~W}, 5 \%$	4	R7. 8, 9, 10
Resistor, 10-ohm 1W, 1\%	1	R12
Resistor, 275-ohm $1 / 2 \mathrm{~W}, 1 \%$	2	R13.14
Resistor, 475 ohm $1 / 2 \mathrm{~W}, 1 \%$	2	R15. 16
Resistor, 1200-ohm $1 / 4$ W. 5%	1	R18
Resistor. 270 - ${ }^{\text {Rm }} 1 / 2 \mathrm{~W} .1 \%$	1	R20
Resistor, 2700-ohm 1 1/4 W, 1\%	1	R21
Choke, 9 H @ 1 KHz	2	L1, 2
Japacitor, 300-uf, 60-V, Polarized	2	C1. 2
AC Isolation Plugs	As required	
Capacitor, 2.2 uf, 200V. Non-Polarized	1	C4

4-14. Removal of Circuit Card Components

The tools and equipment required when performing removal or replacement procedures on Telephone Set TA-838/TT are listed in the maintenance allocation chart, To remove components from circuit card A1, perform steps a through f below,
a. Insert the printed circuit board in the vise so that the component side is facing downward,
b. Remove the conformal coating from the component to release the component from the board.
c. With small iron and solder sucker or solder wick, carefully and quickly unsolder the component leads, one at a time.
d. With sharp knife, carefully lift any leads that are bent over on the board. Use the small iron, if necessary, to heat the lead and lift at the same time.

CAUTION

Be careful not to lift any of the printed traces from the board.
e. Check to see that all leads of the component are straight up whereby they can slide easily through the holes in the printed circuit board.

CAUTION

When using the resoldering tip, it is recommended not to have it any hotter than necessary. Do not leave it idling for a long time prior to use. Do not apply heat with tip any longer than necessary as the printed circuit board can be very easily burned.
f. For integrated circuits, use a resoldering tip, heat all leads at the same time, and with draw the integrated circuit from below.

NOTE

Integrated circuit boards should come out easily, leaving printed traces intact with holes open ready to receive the new integrated circuit.

4-15. Testing of Components (out-of-Circuit)
a. Checking Transistors and Capacitors. Check transistors with Transistor Test Set TS-1836C/U which has a highly limited current capability. Observe proper polarity for NPN to avoid error in measurement. For good transistors, the forward transistor resistance is low (from 1 to 100 ohms) but never ZERO; backward resistance is always much higher than the forward resistance, (well above $10,000 \mathrm{ohms}$). Resistance between transistor collector and emitter, in either direction, varies with temperature; variation is greater for the forward direction resistance. Do not assume trouble is eliminated when only one part is replaced. This is especially true when one transistor fails, causing other transistors to fail. Replacing only one transistor and
turning power on, before checking for additional defective components, could damage the replaced component.

NOTE

When soldering semi-conductor devices, hold the lead being soldered with a pair of pliers placed between the device and the solder joint to provide an effective heatsink. Refer to TB SIG-222 for additional information. When checking capacitors, the leakage resistance obtained from a simple resistance check is not always an indication of a faulty capacitor. Only a dead short is a true indication of a shorted capacitor.
b. Rectifiers. Open rectifiers produce Iow output supply voltage with a significant increase in ripple amplitude, while shorted units usually cause a power line fuse to blow.
c. Diodes. Diodes should be tested in both directions. A high resistance reading should be obtained in one direction and a low resistance reading in the the other. If this is not obtained the diode is bad.
d. Integrated Circuits. The ultimate test of an integrated circuit is in its performance in its circuit application with input and output signals within operational parameters. Out-of-circuit testing of integrated circuits is not applicable.

4-16. Replacement of Circuit Card Components

The replacement of components onto the printed circuit board are to be performed in accordance with TB SIG-222 requirements. After the component has been installed, the area must be conformalcoated. Conathane CE-1155 polyurethane coating may be applied in either the spray, dip, or brush techniques, and cured at either room or elevated temperatures.

4-17. Post Repair Inspection

The following inspection should be performed after repairs have been made to the printed circuit board or the telephone set:
a. Become familiar with all inspection information pertaining to the material to be inspected.
b. Soldered connections should be checked as follows:
(1) Acceptable connections: Clean, shiny, rouded, smooth and approximate outline of the window and terminal. Clearance between connection and other parts greater than $1 / 16$ inch,
(2) Unacceptable connections: Charring, burning, or other damage from heat. Splattering of flu or solder. Excess solder (greater than 50 percent of
the wire thickness). Cold solder joint (rough, chalky, lusterless, uneven). Disturbed connection (movement of lead or terminal while hot, causing insufficient bonding). Rosin connection (flux
separating lead from terminal). Solder ground (grounding or shorting because of excess solder). Sharp point on solder connection. Scars, holes, or depressions, perhaps containing oxide or impurities.
c. Perform mechanical examinations as follows:

NOTE

In the following procedures, care should be exercised to avoid bending the lead to the point of separation. A faulty connection can generally be determined in three or four movements.
(1) Method 1. Apply pressure sideways with a soldering aide at the point of connection. If there is any movement of the wire relative to the terminal, the joint shall be considered faulty.
(2) Method 2. Connect a low-range ohmmeter across the soldered connection. If the reading is intermittent while moving the wire, the connection shall be considered faulty.
d. Check components for values, tolerances, polarities, sizes and compliance with specifications and standards. Check the following:
(1) Lead length is at least $3 / 16$ inch from component to solder joint.
(2) Terminals have no more than 3 wires per terminal.
(3) Minimum conductor width is 0.025 .
(4) Conductors contain no exterior corners with angles less than 90°.
(5) Components weighing more than $1 / 2$ ounce (e.g., capacitor A2C1) are supported with bracket or clamp.
(6) Components having conductive exteriors crossing near any conductor are properly insulated,
(7) Replacement or removal is possible without disturbing any other component.
(8) Nicked wires caused by stripping.
(9) All plated holes or eyelets have only one lead connected and are filled with solder.
(10) Workmanship components, board, and chassis are free of all foreign materials.
(11) Flexible conductors have enough slack for at least two replacements of any mechanical termination.
(12) Wire insulation is closer than $1 / 8$ inch from solder connection.
e Check the printed circuit board for processing defects as follows:
(1) Loose circuitry (any portion of the printed wiring that is not firmly attached to the boards).
(2) Broken circuitry (any break in the printed wiring).
(3) Loose hardware (any terminal, stud, eyelet, etc that is loose under light finger pressure).
(4) Damaged circuitry (crushed terminal shanks or eyelets are rollover; any damaged or missing circuitry).
(5) Delamination or blistering between circuitry or in close proximity to circuitry.
(6) Excessive rollover penetration (rollover penetration that causes damage to base lamination).
(7) Cracked eyelets.
f. Sign off accepted printed circuit board on the shop card and inspection report, and return to stock.
g. Perform a final assembly examination as follows:
(1) Check that screws and bolts in tapped parts, other than nuts, engage for a distance at least equal to the diameter of the screw or bolt.
(2) All parts should be assembled in the proper sequence with no missing, inoperative, defective, bent, broken, or otherwise damaged parts which could cause malfunction or become inoperative or unsafe for service.
(3) All threaded parts or devices should be of the proper type, class, and size with no crossed threads, or burred or mutilated heads. All screws in tapped parts should engage for a distance at least equal to the diameter of the screw. There should be no evidence of loose lockwashers or warpage or distortion of mating parts.
(4) Screws secured by nuts or other retaining devices, which permit projection beyond the retaining device, shall be of such length to permit a minimum projection of $11 / 2$ threads and a maximum of $1 / 8$ inch plus $11 / 2$ threads for screws up to and including 1 inch and $1 / 4$ inch plus $11 / 2$ threads for screws over 1 inch.
(5) Parts provided with pigtail leads (resistors, capacitors, etc) shall be secured between soldertype terminals on part mounting boards with the marking on the component visible. The clearance between the soldered connection and the body of the part shall not be less than $3 / 16$ inch.
(6) All surfaces of the equipment should be free of corrosion.
(7) All hardware finishes should be of the proper color and should extend evenly throughout the finished area with no debris, burrs, blisters, gouge marks, checks, pits, or residuals of corrosive processing agents.
(8) Sign off accepted fabricated parts on the shop card and inspection report, and return to stock.

APPENDIX A

REFERENCES

AFR 66-1	Maintenance Management
AFR 900-4	Air Force Suggestion Program
	Reporting of Transportation Discrepancies in Shipments
AR 735-11-2/ AFR 400-54/MCO 4430.3F	Reporting of Item and Packaging Discrepancies
DA PAM 310-1	Consolidated Index of Army Publications and Blank Forms.
DA PAM 738-750	The Army Maintenance Management System (TAMMS).
FM 21-11	Artificial Respiration
TB SIG-222	Solder and Soldering.
TM 750-244-2	Procedures for Destruction of Electronics Material to Prevent Enemy Use.
TM 11-5805-650-20P	Organization Maintenance Repair Parts and Special Tools List for Telephone Set TA-838/TT and Telephone Set TA-838A/TT (NSN 5805-00-234-8676 and 5805-01-125-5976).
TM 11-5805-650-34P	Direct Support and General Support Maintenance Repair Parts and Special Tools List for Telephone Set TA-838/TT and Telephone Set TA-838A/TT (NSN 5805-00-234-8676 and 5805-01-125-5976).
TM 11-6625-539-14-3	Operator, Organizational, Direct Support, and General Support Maintenance Manual, Including Repair Parts and Special Tools List; Test Set, Transistor TS1836C/U (NSN 6625-00-159-2253).
TM 40-90-1	Administrative Storage.
TO 00-5-1	Air Force Technical Order System.

APPENDIX B

DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE REPAIR PARTS AND SPECIAL TOOLS LIST

Section I. INTRODUCTION

B-1. Scope.

This appendix lists repair parts required for the performance of direct support and general support maintenance of the TA438/TT.

B-2. General.

This Repair Parts and Special Tools List is divided into the following sections:
a. Section II—Repair Parts List. A list of repair parts authorized for use in the performance of maintenance. The list also includes parts which must be removed for replacement of the authorized parts. Parts lists are composed of functional groups in ascending numerical sequence, with parts in each group listed in figure and item number sequence.
b. Section III-Special Tools List. Not applicable.
c. Section IV—National Stock Number and Part Number Index. A list, in National item identification number (NIIN) sequence, of all National stock numbers (NSN) appearing in the listing, followed by a list in alphanumeric sequence of all part numbers appearing in the listings. National stock numbers and part numbers are cross-referenced to each illustration figure and item number appearance.

B-3. Explanation of Columns

The following provides an explanation of columns found in the tabular listings:
a. Illustration. This column is divided as follows:
(1) Figure number. Indicates the figure number of the illustration in which the item is shown.
(2) Item number. The number used to identify each item called out in the illustration.
b. Source, Maintenance, and Recoverability Codes (SMR).
(1) Source code Source codes are assigned to support items to indicate the manner of acquiring
support items for maintenance, repair, or overhaul of end items. Source codes are entered in the first and second position of the Uniform SMR Code format as follows:

Code Definition
PA - Item procured and stocked for anticipated or known usage.
PB - Item procured and stocked for insurance purpose because essentiality dictates that a minimum quantity be available in the supply systems.
XA - Item is not procured or stocked because the requirements for the item will result in the replacement of the next higher assembly.
XB - Item is not procured or stocked. If not available through salvage, requisition.
XD - A support item that is not stocked. When required, item will be procured through normal supply channels.

NOTE

Cannibalization or salvage may be used as a source of supply for any items source-coded above, except those coded XA, XD, and aircraft support items as restricted by AR 700-42.
(2) Maintenance code. Maintenance codes are assigned to indicate the levels of maintenance authorized to USE and REPAIR support items. The maintenance codes are entered in the third and fourth positions of the Uniform SMR Code format as follows:
(a) The maintenance code entered in the third position will indicate the lowest maintenance level authorized to remove, replace, and use the support item. The maintenance code entered in the third position will indicate one of the following levels of maintenance:
Code Definition
O - Support item is removed, replaced, used at the orga-
nizational level.

F -| Support item is removed, replaced, used at the direct |
| :---: |
| support level. |

H -| Support item is removed, replaced, used at the gen- |
| :--- |
| eral support level. |

(b) The maintenance code entered in the fourth position indicates whether the item is to be repaired and identifies the lowest maintenance level with the capability to perform complete re-
pair (i.e., all authorized maintenance functions). This position will contain one of the following maintenance codes:

Code Definition

F -- The lowest maintenance level capable of complete repair of the support item is the direct support level.
D - The lowest maintenance level capable of complete repair of the support item is the depot level, performed by depot, mobile depot, or specialized repair activity.
L - Repair restricted to designated specialized repair activity.
Z — Nonreparable. No repair is authorized.
(3) Recoverability code. Recoverability codes are assigned to support items to indicate the disposition action on unserviceable items. The recoverability code is entered in the fifth position of the Uniform Code format as follows:

$$
\begin{array}{ll}
\text { Recoverability } & \text { Definition } \\
\text { Code } & \text { Definition }
\end{array}
$$

Z- Nonreparable item. When unserviceable, condemn and dispose at the level indicated in position 3.
F - Reparable item. When uneconomically reparable, condemn and dispose at the direct support level.
H -- Reparable item. When unecomically reparable, condemn and dispose at the general support level.
D - Reparable item. When beyond lower level repair capability, return to depot. Coondemnation and dis-
e. National Stock Number. This column indicates the National stock number assigned to the item and will be used for requisitioning purposes.
d. Part Number. Indicates the primary number used by the manufacturer (individual, company, firm, corporation, or Government activity), which controls the design and characteristics of' the item by means of its engineering drawings, specificaions standards, and inspection requirements, to identify an item or range of items.

NOTE

When a stock-numbered item is requisitioned, the repairpart received may have a different part number than the part being replaced.
e. Federal Supply Code for Manufacturer (FSCM). The FSCM is a 5-digit numeric code listed in SB 708-12 which is used to identify the manufacturer, distributor, or Government agency, etc.
f. Description. This column indicates the Federal item name and, if required, a minimum description to identify the item. When the part to be used differs between serial numbers of the same model, the effective serial numbers are shown as the last line of the description.
g. Unit of Measure (U/M). Indicates the standard of the basic quantity of the listed item as used in performing the actual maintenance function. This measure is expressed by a two-character alphabetical abbreviation (e.g., ea, in., pr, etc). When the unit of measure differs from the unit of issue, the lowest unit of issue that will satisfy the required units of measure will be requisitioned,
h. Quantity Incorporated in Unit. Indicates the quantity of the item used in the breakout shown on the illustration figure, which is prepared for a functional group. A "V" appearing in this column in lieu of a quantity indicates that definite quantity cannot be indicated (e.g., shims, spacers, etc).

B-4. Special Information

(Not applicable)

B-5. How to Locate Repair Parts

a. When Nationa stock number or part number is unknown:
(1) First. Using the table of contents, determine the functional group. This is necessary since illustrations are prepared for functional groups, and listings are divided into the same groups,
(2) Second. Find the illustration covering the functional group to which the repair part belong-s.
(3) Third. Identify the repair part on the illustration and note the illustration figure and item number of the repair part.
(4) Fourth. Using the Repair Parts Listing, find the figure and item number noted on the illustration.
b. When National stock number or part number is known:
(1) First. Using the Index of National Stock Numbers and Part Nummbers, find the pertinent National stock number or part number. This index is in ascending NSN sequence, followed by a list of part numbers in ascending alphanumeric sequence, cross-referenced to the illustration figure number and item number.
(2) Second. After finding the figure and item number, locate the figure and item number in the repair parts list.

B-6. Abbreviations

(Not applicable)

(Next printed page is B-5.)

TO 31W2-2TT-12						TM11-5805-650-34\&P		
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)
ILLU	TRATI	SMR	NATIONAL	PART	FSCM	DESCRIPTION	UNIT	QTY
(A)	(B)	CODE	Stock	NUMBER			OF	INC
FIG	ITEM		NUMBER			USABLE ON	MEAS	IN
No.	No.					CODE		UNIT
						GROUP OO: TELEPHONE SET TA-838/TT		
B-1	1	PAOZZ	5340-01-014-9442	SMB790810	80063	BRACKET, SPRING RETAINER	EA	1
B-1	2	PAOZZ	5305-00-054-6652	MS51957-28	96906	SCREW, MACHINE	EA	2
B-1	3	PAOZZ	5310-00-929-6395	MS35338-136	96906	WASHER LOCK	EA	2
B-1	4	PAOZZ	5305-00-722-5998	MS15795-805	96906	WASHER, FLAT	EA	2
B-1	5	PAOZZ	5340-01-015-1258	SMC790718	80063	STRAP, TIEDOWN	EA	1
B-1	6	PAOZZ	5305-01-016-2297	SMB790719	80063	SCREW, SHOULDER	EA	1
B-1	7	PAOZZ	5310-00-933-8118	MS 35338-135	96906	WASHER, LOCK	EA	1
B-1	8	XDOZZ		SMB790688	80063	RETAINER, LOOP	EA	2
B-1	9	PAOZZ	5305-00-054-6667	MS51957-42	96906	SCREW, MACHINE	EA	2
B-1	10	PAOZZ	5305-00-054-6669	MS51957-44	96906	SCREW, MACHINE	EA	2
B-1	11	PAOZZ	5310-00-880-5978	MS15795-807	96906	WASHER, FLAT	EA	4
B-1	12	PAOZZ	5340-01-015-1254	SMC790702	80063	SLING, CARRYING	EA	1
B-1	13	PAOZZ	5360-01-017-9236	SMC790713	80063	SPRING, DOUBLE TORSION	EA	1
B-1	14	XDOZZ		SMB790703	80063	LOOP, STRAP FASTENER	EA	1
B-1	15	PAFFF	5965-01-060-6943	SMD 790665	80063	HANDSET ASSEMBLY	EA	1
B-1	16	PAFZZ	5305-00-958-2918	MS 24693 C 26	96906	SCREW MACHINE	EA	2
B-1	17	XBFZZ		SMB790807	80063	BRACKET, DOUBLE	EA	2

TO 31W2-2TT-12						TM11-5805-650-12\&P		
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)
ILLU	TRATIOA	SMR	NATIONAL	PART	FSCM	DESCRIPTION	UNIT	QTY
(A)	(B)	CODE	STOCK	NUMBER			OF	INC
FIG	ITEM		NUMBER			USABLE ON	MEAS	IN
NO.	NO.					CODE		UNIT
						GROUP 01 - BASE ASSEMBLY	EA	1
B-2	1	PBFZZ	5305-01-019-1011	SMB790720	80063	SCREW, EXTERNALLY RELIEVED	EA	10
B-2	2	PAFZZ	5310-00-933-8119	MS35338-137	96906	WASHER, LOCK	EA	10
B-2	3	PAFZZ	5310-00-880-5978	MS15795-807	96906	WASHER, FLAT	EA	10
B-2	4	PBFZZ	5330-00-079-4578	MS9068-006	96906	PACKING, PREFORMED	EA	10
B-2	5	PAFZZ	5330-01-015-1237	SMC790674	80063	GASKET	EA	1
B-2	6	XBFZZ		SMD790673	80063	BASE, TELEPHONE	EA	1
B-2	7	PAFLD	5805-01-016-6974	SMD790711	80063	CIRCUIT CARD ASSEMBLY	EA	1
B-2	8	PAFZZ	5305-00-054-6652	MS51957-28	96906	SCREW, MACHINE	EA	8
B-2	9	PAHZZ	5310-00-929-6395	MS35338-136	96906	WASHER, LOCK	EA	8
B-2	10	PAHZZ	5310-00-880-5976	MS15795-806	96906	WASHER, FLAT	EA	8
						GRoup 0101 - CIRCUIT CARD ASSEMBLY		
B-3	1	PAHZZ	5961-00-951-8757	JAN2N2222A	81349	TRANSISTOR	EA	16
B-3	2	PAHZZ	5961-00-814-9532	JAN2N2484	81349	TRANSISTOR	EA	3
B-3	3	PAHZZ		SMA790803	80063	SEMICONDUCTOR DEVICE, DIODE	EA	1
B-3	4	PAHZZ		SMB790806	80063	PAD, MOUNTING	EA	1
B-3	5	PAHZZ		SMA 790768	80063	SEMICONDUCTOR DEVICE, DIODE	EA	4
B-3	6	PAHZZ		SMA798766	80063	TRANSISTOR	EA	1
B-3	7	PAHZZ	5961-00-938-1135	JAN1N4148	81349	SEMICONDUCTOR DEVICE, DIODE	EA	20
B-3	8	PAHZZ		SMA790746	80063	SEMICONDUCTOR DEVICE, DIODE	EA	1
B-3	9	PAHZZ		SMA790767	80063	TRANSISTOR	EA	1
B-3	10	XBHzZ		SMB790801	80063	HEAT SINK, ELECTRICAL	EA	1
B-3	11	PAHZZ	5961-00-925-3777	JAN2N2907A	81349	TRANSISTOR	EA	6
B-3	12	PAHZZ		SMA 790763	80063	SEMICONDUCTOR DEVICE, DIODE	EA	1
B-3	13	PAHZZ	5961-00-842-6181	JAN1N3018B	81349	SEMICONDUCTOR DEVICE, DIODE	EA	1
B-3	14	PAHZZ	5961-00-951-8757	JAN2N2222A	81349	TRANSISTOR	EA	3
B-3	15	PAHZZ	5961-00-929-3086	SMB751244	80063	PAD, MOUNTING	EA	29
B-3	16	PAHZZ	5961-00-850-9438	JAN1N3033B	81349	SEMICONDUCTOR DEVICE, DIODE	EA	1
B-3	17	PAHZZ	5961-00-702-3435	JAN1N3600	81349	SEMICONDUCTOR DEVICE, DIODE	EA	2
B-3	18	PAHZZ		SMA790745	80063	SEMICONDUCTOR DEVICE, DIODE	EA	1
B-3	19	PAHZZ	5961-00-107-4740	JAN1N5288	81349	SEMICONDUCTOR DEVICE, DIODE	EA	1
B-3	20	PAHZZ	5950-00-325-6110	MS75101-3	96906	COIL, RADIOFREQUENCY	EA	1
B-3	21	PAHZZ	5910-00-113-5499	M39014-02-1391	81349	CAPACITOR, FIXED	EA	8
B-3	22	PAHZZ	5905-01-014-6499	SMA790712-3	80063	RESISTOR NETWORK, FIXED	EA	1
B-3	23	PAHZZ	5910-01-003-8290	M39014-02-1389	81349	CAPACITOR, FIXED	EA	1
B-3	24	PAHZZ	5905-01-014-4526	SMA790712-6	80063	RESISTOR NETWORK, FIXED	EA	1
B-3	25	PAHZZ	5910-00-018-2911	CM07FD103F03	81349	CAPACITOR, FIXED	EA	2

T0 31W2-2TT-12						TM11-5805-650-12\&P			
(1)		(2)	(3)	(4)	(5)	(6)		(7)	(8)
ILLU	RATI	SMR	NATIONAL	PART	FSCM	DESCRIPTION		UNIT	QTY
(A)	(B)	CODE	STOCK	NUMBER				OF	INC
FIG	ITEM		NUMBER				USABLE ON	MEAS	IN
No.	No.						CODE		UNIT
B-3	26	PAHZZ	5962-01-016-6970	SMA790715	80063	MICROCIRCUIT, DIGITAL		EA	1
B-3	27	PAHZZ		SMA790712-13	80063	RESISTOR NETWORK, FIXED		EA	2
B-3	28	PAHZZ	5905-00-499-6755	RJ50CP203	81349	RESISTOR, VARIABLE		EA	1
B-3	29	PAHZZ		RNR60K1052FM	81349	RESISTOR, FIXED		EA	1
B-3	30	PAHZZ	5905-01-014-6479	SMA790712-1	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	31	PAHZZ	5905-00-572-7920	RLR05C102JM	81349	RESISTOR, FIXED		EA	1
B-3	32	PAHZZ	5805-01-016-6936	SMD 790744	80063	AMPLIFIER, AUDIO		EA	1
B-3	33	PAHZZ	5905-01-014-6498	SMA790712-2	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	34	PAHZZ	5961-00-410-3900	JAN1N3330B	81349	SEMICONDUCTOR DEVICE, DIODE		EA	1
B-3	35	PAHZZ	5310-00-582-5677	MS15795-810	96906	WASHER, FLAT		EA	2
B-3	36	PAHZZ		M39014-02-1383	81349	CAPACITOR, FIXED		EA	2
B-3	37	PAHZZ	5905-01-014-4530	SMA $790712-16$	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	38	PAHZZ	5910-00-007-3974	M39003-01-2271	81349	CAPACITOR, FIXED		EA	1
B-3	39	PAHZZ	5910-00-306-5980	M39006-09-6178	81349	CAPACITOR, FIXED		EA	1
B-3	40	PAHZZ		SMA790712-14	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	41	PAHZZ	5905-01-014-6501	SMA790712-5	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	42	PAHZZ		M39003-01-2466	81349	CAPACITOR, FIXED		EA	1
B-3	43	PAHZZ	5910-00-495-0042	M39003-01-2357	81349	CAPACITOR, FIXED		EA	2
B-3	44	PAHZZ	5905-01-014-4527	SMA790712-7	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	45	PAHZZ	5905-01-016-9578	SMA790712-8	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	46	PAHZZ	5950-01-016-6941	SMC790726	80063	TRANSFORMER, AUDIO-INPUT		EA	1
B-3	47	PAHZZ	5910-00-984-7588	CM05FD101J03	81349	CAPACITOR, FIXED		EA	2
B-3	48	PAHZZ	5962-01-016-6806	SMA790739	80063	MICROCIRCUIT, LINEAR		EA	2
B-3	49	PAHZZ	5910-00-154-0547	M39003-01-2313	81349	CAPACITOR, FIXED		EA	1
B-3	50	PAHZZ	5905-01-014-6500	SMA790712-4	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	51	PAHZZ	5905-00-106-3668	RCR07G220JS	81349	RESISTOR, FIXED		EA	1
B-3	52	PAHZZ	5905-01-014-4528	SMA790712-9	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	53	PAHZZ	5910-00-010-8160	M39003-01-3132	81349	CAPACITOR, FIXED		EA	1
B-3	54	PAHZZ	5910-00-954-5497	CM05FD201J03	81349	CAPACITOR, FIXED		EA	1
B-3	55	PAHZZ	5910-00-113-5689	M39003-01-2296	81349	CAPACITOR, FIXED		EA	1
B-3	56	PAHZZ	5950-01-017-7310	MS 75101-12	96906	COIL, RADIOFREQUENCY		EA	1
B-3	57	PAHzZ		M39014-02-1399	81349	CAPACITOR, FIXED		EA	1
B-3	58	PAHZZ	5962-01-016-6969	SMA790716	80063	MICROCIRCUIT, DIGITAL		EA	1
B-3	59	PAHZZ	5955-01-016-6920	SMA790714	80063	CRYSTAL UNIT, QUARTZ		EA	1
B-3	60	PAHZZ	5905-00-577-1995	RLR05C622JM	81349	RESISTOR, FIXED		EA	1
B-3	61	PAHZZ	5905-00-465-0333	RCR07G565JS	81349	RESISTOR, FIXED		EA	1
B-3	62	PAHzZ		SMA790712-11	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	63	PAHZZ	5910-00-223-0472	CM05ED820J03	81349	CAPACITOR, FIXED		EA	1

TO 31W2-2TT-12			TM11-5805-650-12\&P						
(1)		(2)	(3)	(4)	(5)	(6)		(7)	(8)
ILLU	TRATIO	SMR	NATIONAL	PART	FSCM	DESCRIPTION		UNIT	QTY
(A)	(B)	CODE	Stock	NUMBER				OF	INC
FIG	ITEM		NUMBER				USABLE ON	MEAS	IN
No.	NO.						CODE		UNIT
B-3	64	PAHZZ	5910-00-051-4612	CM05ED220J03	81349	CAPACITOR, FIXED		EA	1
B-3	65	PAHZZ		RWR 71 S 6811 FM	81349	RESISTOR, FIXED		EA	1
B-3	66	PAHZZ		RLR20C102JM	81349	RESISTOR, FIXED		EA	1
B-3	67	PAHZZ	5905-00-914-9256	RLR20C103JM	81349	RESISTOR, FIXED		EA	1
B-3	68	PAHZZ	5905-01-014-4529	SMA790712-10	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	69	PBHLH	5935-01-016-9621	SMC790734	80063	CONNECTOR, RECEPTACLE		EA	1
B-3	70	PBHZZ	5320-00-850-2272	MS 16535-157	96906	RIVET, TUBULAR		EA	2
B-3	71	PAHZZ	5950-01-016-6805	SMC790728	80063	INDUCTOR, SINGLE FREQUENCY		EA	1
B-3	72	PAHZZ	5910-00-611-3263	M39006-09-607C	81349	CAPACITOR, FIXED		EA	1
B-3	73	PAHZZ	5910-00-965-9441	CM0 6FD102J03	81349	CAPACITOR, FIXED		EA	2
B-3	74	PAHZZ	5905-00-128-6237	RCR07G3R3JS	81349	RESISTOR, FIXED		EA	1
B-3	75	PAHZZ		SMA790712-15	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	76	PAHZZ		M39003-03-0187	81349	CAPACITOR, FIXED		EA	1
B-3	77	PAHZZ		M39022--01-1149	81349	CAPACITOR, FIXED		EA	1
B-3	78	PAHzZ	5950-01-016-6942	SMC790727	80063	TRANSFORMER, AUDIO-OUTPUT		EA	1
B-3	79	PAHZZ		SMA790712-12	80063	RESISTOR NETWORK, FIXED		EA	1
B-3	80	PAHZZ	5910-00-227-6378	CM05FD111J03	81349	CAPACITOR, FIXED		EA	1
B-3	81	PAHZZ		SMB751245	80063	PAD, MOUNTING		EA	54
						GROUP:02-HANDSET ASSEMBLY			
B-4	1	XBFZZ	5805-01-014-9595	SMD 790668	80063	CAP, RECEIVER, HANDSET		EA	1
B-4	2	PAFZZ	5965-00-549-0220	TA235PT	80058	EARPHONE ELEMENT		EA	1
B-4	3	XBFZZ		SMD 790667	80063	CAP, TRANSMITTER, HANDSET		EA	1
B-4	4	XAFZZ		SMB790742	80063	RETAINING RING		EA	1
B-4	5	PAFZZ	5965-01-177-9138	SMA790705	80063	MICROPHONE, DYNAMIC		EA	1
B-4	6	PAFZZ	5330-01-015-1241	SMB751253	80063	GASKET, RUBBER		EA	1
B-4	7	PAFZZ	5965-01-628-8436	SMC790732	80063	ADAP TER		EA	1
B-4	8	PAFZZ	5330-01-015-1240	SMC790687-3	80063	GASKET, LOUDSPEAKER		EA	1
B-4	9	XAFZZ		SMD 790666	80063	HANDLE, HANDSET		EA	1
B-4	10	PAFZZ	5995-01-014-9442	SMC790738	80063	CORD ASSEMBLY		EA	1
B-4	11	PAFZZ	5340-00-956-4436	SMB751281-2	80063	CLAMP, LOOP		EA	2
B-4	12	PAFZZ	5905-00-054-5649	MS51957-15	96906	SCREW, MACHINE		EA	2
B-4	13	PAFZZ	5310-00-933-8118	MS35338-135	96906	WASHER, LOCK		EA	2
B-4	14	PAFZZ	5310-00-595-6211	MS15795-803	96906	WASHER, FLAT		EA	2
B-4	15	XBFZZ		SMC790809	80063	COVER		EA	1
B-4	16	PAFZZ	5305-00-225-6400	MS24693C3	96906	SCREW, MACHINE		EA	2
						GROUP: 03 -SHELL ASSEMBLY			
B-5	1	PAHDD	5940-01-016-9595	SMC790770	81349	TERMINAL BOARD ASSEMBLY		EA	1
B-5	2	PAHZZ	5305-00-054-6650	MS51957-26	96906	SCREW, MACHINE		EA	2
B-5	3	PAHZZ	5310-00-929-6395	MS35338-136	96906	WASHER, LOCK		EA	8

TO 31W2-2TT-12						TM11-5805-650-12\&P			
(1)		(2)	(3)	(4)	(5)	(6)		(7)	(8)
illu	tration	SMR	NATIONAL	PART	FSCM	Description		UNIT	QTY
(A)	(B)	CODE	stock	NUMBER				OF	Inc
FIG	Item		NUMBER				USABLE ON	meas	
no.	No.						CODE		UNIT
B-5	4	PAFZZ	5310-00-595-6211	MS15795-803	96906	WASHER, FLAT		EA	8
B-5	5	PAFZZ	5910-00-315-3449	M39022-01-1161	81349	CAPACITOR, FIXED		EA	1
B-5	6	PAHzZ		SM-D-790799	80063	SWITCH, PUSH, TELEPHONE		EA	1
B-5	7	PAHzZ	5310-00-934-9761	MS35649-264	96906	Nut, Plain, hex		EA	6
B-5	8	PAFZZ	5930-01-016-6930	SMD 790752	80063	SWITCH, PUSH		EA	1
B-5	9	XBFZZ		SMD 790676	80063	HORN, LOUDSPEAKER		EA	1
B-5	10	XAFZZ		SMC790682	80063	GRILL, METAL		EA	1
B-5	11	PAFZZ	5330-01-015-1238	SMC790684	80063	GASKET, HORN		EA	1
B-5	12	PAFZZ	5305-00-546-6669	MS51957-44	96906	SCREW, MAChine		EA	8
B-5	13	PAFZZ	5310-00-933-8119	MS35338-137	96906	WASHER, LOCK		EA	8
B-5	14	PAFZZ	5310-00-880-5978	MS15795-807	96906	WASHER, FLAT		EA	8
B-5	16	XBFZZ		SMC790686	80063	BRACKET, LOUDSPEAKER		EA	1
B-5	16	PAFZZ	5330-01-014-9446	SMC790687-1	80063	GASKET, LOUDSPEAKER		EA	1
B-5	17	PAFZZ	5965-01-016-6913	SMA790701	80063	EARPHONE ELEMENT		EA	1
B-5	18	PBFZZ	5330-01-015-1239	SMC790687-2	80063	GASKET, LOUDSPEAKER		EA	1
B-5	19	PAFZZ		MS24655-221	96906	SWITCH, TOGGLE		EA	1
B-5	20	PAFZZ	5310-01-016-9347	SMB790707	80063	WASHER, FLAT		EA	1
B-5	21	PBFZZ	5355-00-057-7794	MS91528-0C1B	96906	KNOB, CONTROL		EA	1
B-5	22	PAFZZ	5905-01-017-8657	RV6SAYSA 253A	81349	RESISTOR, VARIABLE		EA	1
B-5	23	PBHzZ	6210-01-015-1226	SMC790693	80063	LIGHT, INDICATOR		EA	1
B-5	24	PAHzZ	5310-01-015-1245	SMB790760	80063	WASHER, RUBBER		EA	1
B-5	25	PAHZZ	5310-00-945-0528	MS9321-11	96906	WASHER, FLAT		EA	1
B-5	26	PAHzZ	5310-00-087-2855	MS25082B5	96906	nut, PLAIN, HEX		EA	1
B-5	27	PAHZZ	5930-01-019-8949	SMA790680	80063	SWITCH, ROTARY		EA	1
B-5	28	PAFZZ	5905-01-015-1232	SMB790683	80063	SCREW, EXTERNALLY Relieved		EA	1
B-5	29	XBHZZ	5805-01-164-0840	SMD 790675	80063	COVER, BATtERY		EA	1
B-5	30	PAFZZ	5330-01-019-1022	SMC790689	80063	GASKET, COVER		EA	1
B-5	31	PAFZZ	5999-01-027-4859	SMC790678	80063	CONTACT, ELECTRICAL		EA	2
B-5	32	PAFZZ	5310-00-595-6211	MS15795-803	96906	WASHER, FLAT		EA	4
B-5	33	PAFZZ	5310-00-933-8118	MS 35338-135	96906	WASHER, LOCK		EA	4
B-5	34	PAFZZ	5305-00-054-5648	MS51957-14	96906	SCREW, MACHINE		EA	2
B-5	35	XBHzZ		SMB790685	80063	PIN, STRAIGHT		EA	1
B-5	36	PBFZZ	5940-00-681-9771	257B5	81349	BOARD, TERMINAL		EA	1
B-5	37	PAFZZ	5305-00-054-5651	MS51957-17	96906	SCREW, MAChine		EA	2
B-5	38	PAFZZ	5940-00-937-5237	PB08NA01	81349	POST, BINDING BLK		EA	2
B-5	39	PAFZZ	5940-00-926-8162	PB08NA02	81349	POSt, BINDING Red		EA	2
B-5	40	PAFZZ	5310-00-934-9765	MS 35650-304	96906	nut, Plain hex		EA	4
B-5	41	PAFZZ	5310-00-543-5933	MS35333-73	96906	WASHER, LOCK		EA	4
B-5	42	PAFZZ	5310-00-934-9761	MS35649-264	96906	nut, Plain hex		EA	4
B-5	43	PAFZZ	5310-00-616-3555	MS35333-71	96906	WASHER, LOCK		EA	2
B-5	44	PAFZZ	5310-00-722-5998	MS15795-805	96906	WASHER, FLAT		EA	4
B-5	45	PAFZZ	5330-01-019-1023	SMC790704	80063	GASKET, CONTACT ASSEMBLY		EA	1
B-5	46	PAFZZ	5999-01-016-6949	SMC790699	80063	CONTACT ASSEMBLY		EA	1

Figure B-1. Telephone Set TA-838/TT.

EL 5805-650.34-TM. 15
Figure B-2. Base assembly.

Figure B-3. Circuit card assembly.
B-12 Change 1

Figure B-4. Handset assembly.

Figure B-5 (1) . Shell assembly (sheet 1 of 2).

Figure B-5 (2) . Shell assembly (sheet 2 of 2).

STOCK	SECTION IV. FEDERAL STOCK NUMBER AND PART NUMBER INDEX (CONTINUED)				
	FIG.	ITEM	STOCK	FIG.	ITEM
NUMBER	NO.	NO.	NUMBER	NO.	NO.
5305-00-054-5648	B-5	34	5910-00-954-5497	B-3	54
5305-00-054-5651	B-5	37	5910-00-965-9441	B-3	73
5305-00-054-6650	B-5	2	5910-00-984-7588	B-3	47
5305-00-054-6652	B-1	2	5940-00-681-9771	B-5	36
5305-00-054-6652	B-2	8	5940-00-926-8162	B-5	39
5305-00-054-6667	B-1	9	5940-00-937-5237	B-5	38
5305-00-054-6669	B-1	10	5950-00-325-6110	B-3	20
5305-00-057-7794	B-5	21	5961-00-107-4740	B-3	19
5305-00-958-2918	B-1	16	5961-00-410-3900	B-3	34
5305-00-225-6400	B-4	16	5961-00-702-3435	B-3	17
5305-00-546-6669	B-5	12	5961-00-814-9532	B-3	2
5305-00-722-5998	B-1	4	5961-00-842-0181	B-3	13
5310-00-087-2855	B-5	26	5961-00-850-9438	B-3	16
5310-00-543-5933	B-5	41	5961-00-925-3777	B-3	11
5310-00-582-5677	B-3	35	5961-00-929-3086	B-3	15
5310-00-595-6211	B-4	14	5961-00-938-1135	B-3	7
5310-00-595-6211	B-5	4	5961-00-951-8757	B-3	1
5310-00-595-6211	B-5	32	5961-00-951-8757	B-3	14
5310-00-616-3555	B-5	43	5965-00-549-0220	B-4	2
5310-00-722-5998	B-5	44	5305-01-016-2297	B-1	6
5310-00-880-5976	B-2	10	5305-01-019-1011	B-2	1
5310-00-880-5978	B-1	11	5310-01-015-1245	B-5	24
5310-00-880-5978	B-2	3	5310-01-016-9347	B-5	20
5310-00-880-5978	B-5	14	5330-01-014-9446	B-5	16
5310-00-929-6395	B-1	3	5330-01-015-1237	B-2	5
5310-00-929-6395	B-2	9	5330-01-015-1238	B-5	11
5310-00-929-6395	B-5	3	5330-01-015-1239	B-5	18
5310-00-933-8118	B-1	7	5330-01-015-1240	B-4	8
5310-00-933-8118	B-4	13	5330-01-015-1241	B-4	6
5310-00-933-8118	B-5	33	5330-01-019-1023	B-5	45
5310-00-933-8119	B-2	2	5340-01-014-9442	B-1	1
5310-00-933-8119	B-5	13	5340-01-015-1254	B-1	12
5310-00-934-9761	B-5	7	5340-01-015-1258	B-1	5
5310-00-934-9761	B-5	42	5360-01-017-9236	B-1	13
5310-00-934-9765	B-5	40	5805-01-014-9595	B-4	1
5310-00-945-0528	B-5	25	5805-01-016-6936	B-3	32
5320-00-850-2272	B-3	70	5805-01-016-6974	B-2	7
5330-00-079-4578	B-2	4	5905-01-014-4526	B-3	24
5340-00-956-4436	B-4	11	5905-01-014-4527	B-3	44
5905-00-054-5649	B-4	12	5905-01-014-4528	B-3	52
5905-00-106-3668	B-3	51	5905-01-014-4529	B-3	68
5905-00-128-6237	B-3	74	5905-01-014-4530	B-3	37
5905-00-465-0333	B-3	61	5905-01-014-6479	B-3	30
5905-00-499-6755	B-3	28	5905-01-014-6498	B-3	33
5905-00-572-7920	B-3	31	5905-01-014-6499	B-3	22
5905-00-577-1995	B-3	60	5905-01-014-6500	B-3	50
5905-00-914-9256	B-3	67	5905-01-014-6501	B-3	41
5910-00-007-3974	B-3	38	5905-01-015-1232	B-5	28
5910-00-010-8160	B-3	53	5905-01-016-9578	B-3	45
5910-00-018-2911	B-3	25	5905-01-017-8657	B-5	22
5910-00-051-4612	B-3	64	5930-01-016-6930	B-5	8
5910-00-113-5499	B-3	21	5930-01-019-8949	B-5	27
5910-00-113-5689	B-3	55	5935-01-016-9621	B-3	69
5910-00-154-0547	B-3	49	5940-01-016-9595	B-5	1
5910-00-223-0472	B-3	63	5950-01-016-6805	B-3	71
5910-00-227-6378	B-3	80	5950-01-016-6941	B-3	46
5910-00-306-5980	B-3	39	5950-01-016-6942	B-3	78
5910-00-315-3449	B-5	5	5950-01-017-7310	B-3	56
5910-00-495-0042	B-3	43	5955-01-016-6920	B-3	59
5910-00-611-3263	B-3	72	5962-01-016-6806	B-3	48

STOCK
NUMBER

5962-01-016-6969
5962-01-016-6970
5965-01-016-6913
5965-01-060-6943
5999-01-016-6949
6210-01-015-1226

TM11-5805-650-34 \&P

SECTION IV. FEDERAL STOCK NUMBER AND PART NUMBER INDEX (CONTINUED)

FIG.	ITEM	STOCK	FIG.	ITEM
NO.	NO.	NUMBER	NO.	NO.

B-3 58
B-3 26

B-5 17
B-1 15
B-5 46
B-5 23

SECTION IV. FEDERAL STOCK NUMBER AND PART NUMBER INDEX (CONTINUED)

PART		FIG.	ITEM	PART	FIG.	ITEM
NUMBER	FSCM	NO.	NO.	NUMBER FSCM	NO.	No.
CM05ED220J03	81349	B-3	64	M39003-01-2: 81349	B-3	38
CM05ED820J03	81349	B-3	63	M39003-01-2: 81349	B-3	55
CM05FD101J03	81349	B-3	47	M39003-01-2: 81349	B-3	49
CM05FD111J03	81349	B-3	80	M39003-01-2: 81349	B-3	43
CM05FD201J03	81349	B-3	54	M39003-01-2.81349	B-3	42
CM06FD102J03	81349	B-3	73	M39003-01-3: 81349	B-3	53
CM07FD103F03	81349	B-3	25	M39003-03-0: 81349	B-3	76
JAN1N3018B	81349	B-3	13	M39006-09-6181349	B-3	72
JAN1N3033B	81349	B-3	16	M39006-09-6: 81349	B-3	39
JAN1N3330B	81349	B-3	34	M39014-02-1: 81349	B-3	36
JAN1N3600	81349	B-3	17	M39014-02-1: 81349	B-3	23
JAN1N4148	81349	B-3	7	M39014-02-1: 81349	B-3	21
JAN1N5288	81349	B-3	19	M39014-02-1: 81349	B-3	57
JAN2N2222A	81349	B-3	1	M39022-01-1: 81349	B-3	77
JAN2N2222A	81349	B-3	14	PB08NA01 81349	B-5	38
JAN2N2484	81349	B-3	2	PB08NA02 81349	B-5	39
JAN2N2907A	81349	B-3	11	RCR07G220JS 81349	B-3	51
MS15795-803	96906	B-4	14	RCR07G3R3JS 81349	B-3	74
MS15795-803	96906	B-5	4	RCR07G565JS 81349	B-3	61
MS15795-803	96906	B-5	32	RJ50CP203 81349	B-3	28
MS15795-805	96906	B-5	44	RLR05C102JM 81349	B-3	31
MS15795-806	96906	B-1	3	RLR05C622JM 81349	B-3	60
MS15795-806	96906	B-2	10	RLR20C102JM 81349	B-3	66
MS15795-807	96906	B-1	11	RLR20C103JM 81349	B-3	67
MS15795-807	96906	B-2	3	RNR60K1052Fl 81349	B-3	29
MS15795-807	96906	B-5	14	RV6SAYSA253: 81349	B-5	22
MS15795-810	96906	B-3	35	RWR71S6811FI 81349	B-3	65
MS16535-157	96906	B-3	70	SMA790680 80063	B-5	27
MS24655-221	96906	B-5	19	SMA790701 80063	B-5	17
MS24693C26	96906	B-1	16	SMA790705 80063	B-4	5
MS24693C3	96906	B-4	16	SMA790712-1 80063	B-3	30
MS25082B5	96906	B-5	26	SMA790-712-: 80063	B-3	68
MS35333-71	96906	B-5	43	SMA790712-1: 80063	B-3	62
MS35333-73	96906	B-5	41	SMA790712-1: 80063	B-3	79
MS35338-135	96906	B-1	7	SMA790712-1: 80063	B-3	27
MS35338-135	96906	B-4	13	SMA790712-1.80063	B-3	40
MS35338-135	96906	B-5	33	SMA790712-1! 80063	B-3	75
MS35338-136	96906	B-1	4	SMA790712-1.80063	B-3	37
MS35338-136	96906	B-2	9	SMA790712-2 80063	B-3	33
MS35338-136	96906	B-5	3	SMA790712-3 80063	B-3	22
MS35338-137	96906	B-2	2	SMA790712-4 80063	B-3	50
MS35338-137	96906	B-5	13	SMA790712-5 80063	B-3	41
MS35649-264	96906	B-5	7	SMA790712-6 80063	B-3	24
MS35649-264	96906	B-5	42	SMA790712-7 80063	B-3	44
MS35650-304	96906	B-5	40	SMA790712-8 80063	B-3	45
MS51957-14	96906	B-5	34	SMA790712-9 80063	B-3	52
MS51957-15	96906	B-4	12	SMA790714 80063	B-3	59
MS51957-17	96906	B-5	37	SMA790715 80063	B-3	26
MS51957-26	96906	B-5	2	SMA790716 80063	B-3	58
MS51957-28	96906	B-1	2	SMA790739 80063	B-3	48
MS51957-28	96906	B-2	8	SMA790745 80063	B-3	18
MS51957-42	96906	B-1	9	SMA790746 80063	B-3	8
MS51957-44	96906	B-1	10	SMA790763 80063	B-3	12
MS51957-44	96906	B-5	12	SMA790767 80063	B-3	9
MS75101-12	96906	B-3	56	SMA790768 80063	B-3	5
MS75101-3	96906	B-3	20	SMA790803 80063	B-3	3
MS9068-006	96906	B-2	4	SMA798766 80063	B-3	6
MS91528-0C1B	96906	B-5	21	SMB751244 80063	B-3	15
MS9321-11	96906	B-5	25	SMB751245 80063	B-3	81
MS9022-01-1161	81349	B-5	5	SMB751253 80063	B-4	6

TM11-5805-650-34\&P
SECTION IV. FEDERAL STOCK NUMBER AND PART NUMBER INDEX (CONTINUED)

PART		FIG.	ITEM	PART		FIG.	ITEM
NUMBER	FSCM	NO.	NO.	NUMBER	FSCM	NO.	NO.
SMB751281-2	80063	B-4	11				
SMB790683	80063	B-5	28				
SMB790685	80063	B-5	35				
SMB790688	80063	B-1	8				
SMB790703	80063	B-1	14				
SMB790707	80063	B-5	20				
SMB790719	80063	B-1	6				
SMB790720	80063	B-2	1				
SMB790742	80063	B-4	4				
SMB790760	80063	B-5	24				
SMB790801	80063	B-3	10				
SMB790806	80063	B-3	4				
SMB790807	80063	B-1	17				
SMB790810	80063	B-1	1				
SMC790674	80063	B-2	5				
SMC790682	80063	B-5	10				
SMC790684	80063	B-5	11				
SMC790686	80063	B-5	15				
SMC790687-1	80063	B-5	16				
SMC790687-2	80063	B-5	18				
SMC790687-3	80063	B-4	8				
SMC790693	80063	B-5	23				
SMC790699	80063	B-5	46				
SMC790702	80063	B-1	12				
SMC790704	80063	B-5	45				
SMC790713	80063	B-1	13				
SMC790718	80063	B-1	5				
SMC790726	80063	B-3	46				
SMC790727	80063	B-3	78				
SMC790728	80063	B-3	71				
SMC790732	80063	B-4	7				
SMC790734	80063	B-3	69				
SMC790738	80063	B-4	10				
SMC790770	81349	B-5	1				
SMC790809	80063	B-4	15				
SMD 790665	80063	B-1	15				
SMD790666	80063	B-4	9				
SMD790667	80063	B-4	3				
SMD 790668	80063	B-4	1				
SMD 790673	80063	B-2	6				
SMD 790675	80063	B-5	29				
SMD790676	80063	B-5	9				
SMD 790678	80063	B-5	31				
SMD 790689	80063	B-5	30				
SMD 790711	80063	B-2	7				
SMD 790744	80063	B-3	32				
SMD 790799	80063	B-5	6				
SMD 790752	80063	B-5	8				
TA235PT	80058	B-4	2				
257B5	81349	B-5	36				

DEPARTMENT OF THE ARMY 11

Commander
US Army Electronics Command
ATTN: DRSEL-MA-Q
Fort Monmouth, New Jersey 07703

By Order of the Secretaries of the Army and the Air Force:

Official:
PAUL T. SMITH
Major General, United States Army
The Adjutant General

Official:
F. MICHAEL ROGERS, General, USAF

Commander, Air Force Logistics Command

FRED C. WEYAND
General, United States Army Chief of Staff

DAVID C. JONES, General, USAF Chief of Staff

Distribution:
Active Army:
USASA (2) USAIS (2)
COE (1)
USAES (2)
TSG (1)
USAARENBI) (1)
I)ARCOM (1)

TRAI)OC (2)
OS Maj Comd (4)
LOGCOMDS (3)
MICOM (2)
TECOM (2)
LSACC (4)
MI)W (1)

Armies (2)
Corps (2)
HISA (Ft Monmouth) (3.3)
Sve Colleges (1)
USASESS (5)
USAADS (2)
USAFAS (2)
USAARMS (2)
$N G$: None
USAR: None
For explanation of abbreviations used see, AR 310-50.
USAICS (3)
MAAG (1)
USARMIS (1)
Installations (2) except Fort Carson (5)
Fort Gillem (10)
Fort Gordon (10)
Fort Huachuca (10)
Ft Richardson (ECOM Ofc) (2)
LBAD (14)
SAAD (30)
TOAD (14)
SHAD (3)
SigFLDMS (1)
USAERDAA (1)
USAERDAW (1)
Units org under fol TOE: None

PLACEHOLDER

FIGURE\#

$$
\frac{\text { FO-1 thruFO-8 }}{13 \text { Foldouts }}
$$

TABLE\#

ILLUSTRATION \#

DRAWING \#

PAGE \#

PLACEHOLDER

Figure 4-3. Foldout Placeholder Page (Front)

Ear

 ,utwe Neme

 2: FOR CIRCUIT CARS ASSEMBLL SEE A3IR8334.

[^0]: Distribution authorized to the Department of Defense and DOD contractors only for official use or for administrative or operational purposes. This determination was made on 15 April 1990. Other requests for this document will be referred to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-LC-LM-LT, Fort Monmouth, NJ 07703-5007.

 DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of document.

