TM 11-6625-700-10

DEPARTMENT OF THE ARMY TECHNICAL MANUAL

OPERATOR'S MANUAL

DIGITAL READOUT,

ELECTRONIC COUNTER
AN/USM-207

HEADQUARTERS, DEPARTMENT OF THE ARMY

Operator's Manual
 DIGITAL READOUT, ELECTRONIC COUNTER
 AN/USM-207
 (NSN 6625-00-911-6368)

```
TM 11-6625-700-10, 5 October 1966, is changed as follows:
The title of this manual is changed as shown above.
Page \(A-1\). Paragraphs \(A-1, A-2\), and \(A-3\) are superseded as follows
Iications and Blank Forms) and forwarded direct to Commander, US Army Electronics Command, ATTN: DRSEL-MA-Q, Fort Monmouth, NJ 07703 .
Paragraphs A-4, A-5, and \(A-6\) are added after paragraph A-3.
```


A-1. Indexes of Publications

a. DA Pam 310-4. Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes, or additional publications pertaining to the equipment
b. DA Pam 310-7. Refer to DA Pam 310-7 to determine whether there are modification work orders (MWO's) pertaining to the equipment.

A-2. Forms and Records

a. Reports of Maintenance and Unsatisfactory Equipment. Maintenance forms, records, and reports which are to be used by maintenance personnel at all maintenance levels are listed in and prescribed by TM 38-750.
b. Report of Packaging and H andling Deficiencies. Fill out and forward DD Form 6 (Packaging Improvement Report) as presecibed in AR 700$58 / \mathrm{NAVSUPINST} 4030.29 / \mathrm{AFR} 71-13 / \mathrm{MCO}$ P4030.29A, DSAR 4145.8 .
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as Prescribed in AR 55-38/NAVSUPINST 4610.33A/AFR 7518/MCO P4610.19B, and DSAR 4500.15.

A-3. Reporting of Errors

Report of errors, omissions, and recommendations for improving this publication by the individual user is encouraged. Reports should be submitted on DA Form 2028 (Recommended Changes to Pub-

A-4. Administrative Storage

Administrative storage of the equipment issued to and used by Army activities shall be in accordance with TM 740-90-1.

A-5. Destruction of Army Electronics Materiel

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

A-6. Reporting Equipment Improvement Recommendations (EIR)

```
E|R will be prepared using DA Form 2407
```

(Maintenance Request). Instructions for prepar-
ing EIR's are provided in TM 38-750 (The Army
Maintenance Management System (TAMMS)).
ElRs should be mailed direct to Commander, US
Army Electronics Command, ATTN: DRSEL-
MA-Q, Fort Monmouth, NJ 07703. A reply will be
furnished direct to you.

Page 1-1. Paragraph $1-4$ is superseded as follows:

1-4. Operating Precautions

```
To prevent damage when connecting signals to
the BNC connectors on the counter, be sure that
the amplitudes of the voltages to be measured do
not exceed the values listed in the last column of
table 1-1. To prevent attenuator damage when
making measurements on channel A, set the
SENSITIVITY switch to the lo0V position before
```

[^0]

1-4.1. Items Comprising an Operable Digital Readout, Electronic Counter AN/ USM-207

NSN Qty
Nomenclature, part No., and mfr code

6625-00-911-6368		Counter, Electronic, Digital Readout AN/USM-207 consisting of: NOTE
		The part number is followed by the applicable 5-digit Federal Supply Code for Man ufacturer's (FSCM) identified in SB 708-42 and used to identify manufacturer distributor, or Government agency, etc.
5935-00-149-3814	2	Adapter, Connector: UG-255/U; 81349
5935-00-149-3534	2	Adapter, Connector: UG-273/U; 81349
5935-00-683-7892	2	Adapter, Connector: UG-274B/U; 81349
5935-00-807-3895	2	Adapter, Connector UG-1035/U; 81349
6625-00-930-9643	1	Cable Assembly, Power, Electrical: MP1330065; 02979
6625-00-933-9151	1	Cable Assembly, Radiofrequency: MP1330068; 02979
6625-00-933-9149	2	Cable Assembly, Radiofrequency: MP1330070; 02979
6625-00-933-9150	1	Cable Assembly, Radiofrequency: MP1350003; 02979
6625-00-948-0182	1	Converter, Frequency, Electronic: CV-1921/USM-207
6625-00-954-1941	1	Counter, Electronic, Digital Readout: CP-814/USM-207
6625-00-954-1964	1	Cover, Counter CW-801/USM-207
6625-00-954-1980	1	Oscillator, Radiofrequency 0-1267/USM-207

Page B-1. Appendix B is superseded as follows:

APPENDIX B
 BASIC ISSUE ITEMS LIST (BIIL) AND ITEMS TROOP INSTALLED OR AUTHORIZED LIST (ITIAL)

Section I. INTRODUCTION

B-1. Scope

This appendix lists only items troop installed or authorized required by the crew/operator for installation, operation, and maintenance of Digital Readout, Electronic Counter AN/USM-207.

B-2. General

```
This Basic Issue Items and Items Troop Installed
or Authorized List is divided into the following
sections:
    a. Basic Issue Items List - Section II. Not ap-
plicable.
    b. Items Troop Installed or Authorized List -
Section lll.A list, in alphabetical sequence, of
items which, at the discretion of the unit com-
mander, may accompany the end item, but are not
subject to be turned in with the end item.
```


B-3. Explanation of Columns

The following provides an explanation of columns found in the tabular listings:
a. National Stock Number. Indicates the National stock number assigned to the item and will be used for requisitioning purposes.
b. Part Number. Indicates the primary number used by the manufacturer (individual, company, firm, corporation, or Government activity), which controls the design and characteristics of the item by means of its engineering drawings, specifications standards, and inspection requirements, to identify an item or range of items.
c. Federal Supply Code for Manufacturer (FSCM). The FSCM is a 5 -digit numeric code used to identify the manufacturer, distributor, or Government agency, etc., and is identified in SB 70842.

```
    d. Description. Indicates the Federal item name phabetical abbreviation, (e.g., ea, in, pr, etc.). When
and a minimum description required to identify
the item.
    e. Unit of Measure (U/M). Indicates the standard
of basic quantity of the listed item as used in per-
forming the actual maintenance function. This
measure is expressed by a two-character al
the unit of measure differs from the unit of issue,
the lowest unit of issue that will satisfy the re-
quired units of measure will be requisitioned.
    f. Quantity Authorized (Items Troop Installed or
Authorized Only). Indicates the quantity of the
item authorized to be used with the equipment
```


Section III. ITEMS TROOP INSTALLED OR AUTHORIZED LIST

(1) National stock number	(2) Part number	$\begin{gathered} \text { (3) } \\ \text { FSCM } \end{gathered}$	\{4) Description	(5) Unit of meas	(6) Qty auth
$\begin{aligned} & 6625-00-401-9675 \\ & 6625-00-401-9673 \end{aligned}$	MP06-51512 M P 1250587	$\begin{aligned} & 02979 \\ & 02979 \end{aligned}$	$\begin{array}{lll} \text { EXTENDER, PRINTED CIRCUIT BOARD } \\ \text { EXTRACTOR, PRINTED CIRCUIT BOARD } \end{array}$	$\begin{aligned} & \text { E A } \\ & \text { E } A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

By Order of the Secretary of the Army:

Official:

PAUL T. SMITH
Major General, United States Army The Adjutant General

Distribution:
Active Army:
USASA
Instl (2) except
Fort Gillem (10)
Fort Gordon (10
TSG (1)
Fort Huachuca (10)
USAARENBD (1)
Fort Carson (5)
Ft Richardson (ECOM) (2)
LBAD (14)
SAAD (30)
TOAD (14)
SHAD (3)
Sig FLDMS (1)
USAERDAA (1)
USAERDAW (1)
DPG (2)
Units org under fol TOE (1 cy each unit):

7	$29-134$
$7-100$	$29-136$
$11-97$	$29-245$
$11-98$	$29-247$
$11-117$	$32-56$
$11-127$	$32-57$
$11-302$	$32-67$
$11-500(\mathrm{AA}-\mathrm{AC})$	$32-77$
$29-16$	$32-78$
$29-36$	$32-500$
$29-41$	$44-2$
$29-85$	$44-12$
$29-105$	$44-568$
$29-109$	$55-405$

NG: None.
USAR: None.
For explanation of abbreviations used, see AR 310-50.

DAROOM (1)
TRADOC (2)
OS Maj Comd (4)
LOGCOMDS (3)
MIOOM (2)
TECOM (2)
TARCOM (2)
USAFABD (2)
USASAPAC (2)
USACC (4)
MDW (1)
Armies (2)
Corps (2)
Svc Colleges (1)
USASIGS (5)
USAADS (2)
USAFAS (2)
USAARMS (2)
USAIS (2)
USAES (2)
USAICS (3)
MAAG (1)
USARMIS (1)
USACC-EUR (2)
USAOC-PAC (2)
$44-568$ 55-405

BERNARD W. ROGERS
General, United States Army Chief of Staff

$29-134$	$55-406$
$29-136$	$55-407$
$29-245$	$55-458$
$29-247$	$57-100$
$32-56$	67
$32-57$	$77-100$

Contents
Illustrations NAVSHIPS 0969-028-4020 FRONT MATTER
table of contents
Paragraph Page
SECTION A. GENERAI
A-1. Index of Publication A-1
A-2. Forms and Records A-1SECTION 1-OPERATION
1-1. Functional Operation 1-1
1-2. Preparation for Use 1-1
1-3. Description of Controls, Connectors, and Indicators 1-1
1-4. Operating Precautions 1-1
1-5. Operating Suggestions for MeasuringFrequency, Frequency Ratio, forTotalizing, and scaling1-9
1-6. Test Applications 1-9
1-7. Operating Procedures 1-10
1-8. Connection of Frequency Standard 1-10
1-9. Operator's Maintenance 1-21
1-10. Operating Checks and Adjustments 1-21
1-11. Preventive Maintenance 1-21
1-12. Emergency Maintenance 1-21SECTION 2-PREVENTIVE MAINTENANCE INSTRUCTIONS
2-1. Scope of Maintenance 2-1
2-2. Preventive Maintenance 2-1
2-3. Operator's Preventive Maintenance Checks and Services Periods 2-1
2-4. Operator's Daily Retentive Maintenance Checks and Services Chart 2-2
2-5. Cleaning 2-3
APPENDIXES
A. REFERENCES A-1
B. BASIC ISSUE TEMS LIST B-1

```
A-1. Index of Publications
    Refer to the latest issue of DA Pam 310-4 to determine whether
there are new editions, changes, or additional publications pertaining
to the equipment. Department of the Army Pamphlet No. 310-4 is a
current index of technical manuals, technical bulletins, supply
manuals, (types 7, 8, and 9), supply bulletins, lubrication orders,
and modification work orders available through publication supply
channels. The index lists the individual parts (-10, -20, -35P, etc)
and the latest changes to and revisions of each equipment publication.
A-2. Forms and Records
a. Reports of Maintenance and Unsatisfactory Equipment. Use
equipment forms and records in accordance with instructions in
TM \(38-750\).
    b. Report of Damaged or Improper Shipment. Fill out and forward
DD Form 6 (Report of Damaged or Improper Shipment) as prescribed in
AR 700-58 (Army), NAVSANDA Publication 378 (Navy), and AFR 71-4
(Air Force).
\begin{tabular}{rl} 
c. Reporting of Equipment Manual Improvements. & The direct \\
reporting of errors, omissions, and recommendations for improving
\end{tabular}
this equipment manual by the individual user is authorized and
encouraged. DA Form 2028 will be used for reporting these improvements.
This form may be completed by using pencil, pen, or typewriter. DA
Form 2028 will be completed by the individual using the manual and
forwarded direct to Commanding Officer, U. S. Army Electronics
Command, ATTN: AMSEL-MR-NMP-AD, Fort Monmouth, New Jersey 07703.
```


1. FUNCTIONAL OPERATION.

Digital Readout Electronic Counter AN/USM-207 is a portable electronic counter providing directreading indication of frequency and period of a cyclic electrical signal, the frequency ratio between two signals, and the time interval between two points on two signals or on the same signal, and the total number of electrical impulses. The counter also provides various standard frequency outputs and signals having irequencies equal to an input frequency divided (or scaled) by known factors.

The counter consists primarily of circuits which generate accurate timing signals of various durations, a series of electronic counting units, a gate for controlling the counting time, and frequency multiplying circuits and mixer for heterodyne frequency measurement. The controlling signals for the gate, timing, and counting circuits can be derived from various external sources, and the circuits are interconnected In various ways to permit the instrument to make a wide variety of time, frequency, and ratio measurements.

The counter also contains amplifiers to increase the magnitude and to shape the incoming count and control signals, an oscillator and multiplier to generate the timing signals, a chain of dividers to permit variations in count and control signal rates, display circuits for controlling the readout indications, and necessary power supplies.

1-2. PREPARATION FOR USE.

Before attempting to operate the counter, familiarize yourself with the function of all the front and rear panel controls and connectors, as referenced in paragraph $1-3$ read the operating precaut ions given In paragrano $-1-4$ and the operating su estions in paragraph $1-3$ Then refer to table 13 for the initial turn- on and operating procedure.

1-3. DESCRIPTION OF CONTROLS, CON-

 NECTORS, AND INDICATORS.The controls, connectors, and Indicator of the counter which are normally used by the operator are shown in figures 3-1 and 3-2 and are described in table 3-2. The numbers on the figure relate each item to the descriptive text in table 3-2 and do not indicate a preferred order of operation.

1-4. OPERATING PRECAUTIONS.

To prevent damage when connecting signals to the BNC connectors on the counter be sure that the amplitudes of the voltages do not exceed the values listed in the last column of table I-1. To obtain rated accuracylisted in TM 11-6625-700-25, the minimum input voltage must be as specified in that $\mathbf{\varepsilon} \mathrm{m}$

Figure 1-1. Counter Front Panel Controls, Connectors, and Indicators

TABLE 1. VOLTAGE INPUTS

CONNECTOR	FIGURE	$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	MINIMUM INPUT	MAXIMUM SAFE VOLTAGE
FREQ. A	1-1	1	0.1 volt rms	a. ± 600 volts peak. b. 300 volts rms from 1.0 cps to 10 mc , except 150 volts rms when SENSITIVITY switch is set to the . 1 position. c. 100 volts rms from 10 mc to 100 mc .
$\begin{aligned} & \mathrm{B}, \mathrm{AC} \text { and } \\ & \mathrm{C}, \mathrm{AC} \end{aligned}$	$1-1$	$\begin{aligned} & 27 \\ & 23 \end{aligned}$	0.1 volt rms	a. ± 600 volts peak. b. 425 volts rms, except 150 volts rms when MULTIPLIER switch is set to the 1 position.
$\begin{aligned} & \mathrm{B}, \mathrm{DC} \text { and } \\ & \mathrm{C}, \mathrm{DC} \end{aligned}$	\square When mod PLIER sw either of t PLIER sw 150 volts	selector ches is lo B conne ch is set ss and to	0.1 volt rms witch is set to COM ver determines the tors; i. e., if B MU o. 1 the maximum the B, DC connecto	± 600 volts peak, except ± 210 volts peak when MULTIPLIER switch is set to the 11 position. ichever position of the B or C MULTImum allowable voltage applied to PLIER switch is set to 1 anc C MULTIable input to the B, AC connector is 10 volts peak.
Converter INPUT	$1-1$	9	0.01 volt rms	a. ± 600 volts peak. b. 10 volts rms with both attenuator switches set to the right; 2 volts rms with one attenuator set to the right and one set to the left; 0.3 volt rms with both attenuator switches set to the left.
100 KC OR 1 MC INPUT	1-2	4	0.5 volt rms	a. ± 600 volts peak. b. 10 volts rms.

$\begin{aligned} & \text { FIGURE } \\ & \text { no. } \end{aligned}$	$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	DESCRIPTION AND FUNCTION
1-1	1	FREQ. A input connector. Accepts an external signal for frequency and frequency-ratio measurements, for totalizing, and for obtaining scaled outputs at STD FREQ OR SCALE OUT connector when FUNCTION switch is set to SCALE A.
1-1	2	SENSITIVITY switch. Selects source of input signal in frequency, frequency ratio (numerator) and totalizing modes of operation. In positions. 1 V through 100 V , the input signal connected to the FREQ. A input connector is attenuated in decade steps, and applied to the channel A. Maximum attenuation is obtained in the 100 V position; minimum rms voltage that triggers the counter is equal to the switch-position marking (. 1 V , $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$). In PLUG-IN position, the input signal connected to the converter INPUT connector is routed through the converter to channel A. In FREQ. C position, the input signal connected to either the C AC or C DC connector (separate mode) or B DC or B AC connector (common mode) is applied to channel C and counted. In TEST position, self-test of the counter is performed.

$\begin{gathered} \text { FIGURE } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$	DESCRIPTION AND FUNCTION
1-1	3	Digital display. Indicates mumerical results of measurement with automatically positioned decimal point, and includes an annunicator that indicates units of measurement ($\mu \mathrm{S}, \mathrm{MS}, \mathrm{SEC}, \mathrm{MC}$, and KC).
1-1	4	LEVEL METER. Indicates in green area when level of signal applied to the converter INPUT connector is sufficient to provide a valid digital readout. Indicates in red area when input signal level is questionable, is incorrectly attenuated by settings of attemator switches, or if mixing frequency selector switch is set to a position that provides an invaltd digital readout.
1-1	5	DIRECT-HETERODYNE switch. Selects routing of signal connected to the converter INPUT connector. When set to DIRECT, signal is measured directly, and the sensitivity of the counter for signals between 35 mc and 100 mc is increased to 0.01 volt. When set to HETERODYNE, signal is mixed with frequency selected by the mixing frequency selector switch.
1-1	6	Mixing frequency selector switch. Selects mixing frequency of $100,150,200,250,300$, $350,400,450$ or 500 mc in electronic frequency converter for heterodvne frequency measurement. Operates with LEVEL METER.
1-1	$\begin{gathered} 7 \\ \text { and } \\ 8 \end{gathered}$	Converter attenuator switches. When both switches are set to the left, signal input to converter INPUT connector for heterodyne frequency measurement should not exceed 0.3 volt rms. When upper switch is set to left and lower switch is set to the right, the signal input should not exceed 2 volts rms. When both switches are set to the right, signal input should not exceed 10 volts rms. Maximum attenuation occurs when switches are both set to right; minimum attenuation occurs when both switches are set to the left.
1-1	9	Converter INPUT connector. Accepts an external signal (85 mc to 500 mc) for heterodyne frequency measurement, or an external signal of 35 mc to 100 mc for direct frequency measurement, for frequency ratio measurement, for totalizing, and for scaling. To measure the input signal applied to this connector, SENSITIVITY switch must be set to PLUG-IN.
1-1	10	Thumbscrew. Fastens electronic frequency converter to counter.
1-1	11	POWER switch. When set to OFF by first depressing the PUSH button, all power is removed from the counter circults. When set to STBY, power is applied to the radio frequency oscillator only. When set to TRACK, power is applied to all counter circuits and the digital display shows a continuous display of the changing count. When set to STORE, power is applied to all counter circuits and the digital display remains constant during the count and changes only when the final count changes after any gate period.
1-1	12	POWER lamp (red). Indicates application of 115 -volt ac power to counter when POWER switch is set to STBY, TRACK, or STORE.
1-1	13	PUSH button and bar. When button is depressed, POWER switch can be set to OFF. The bar ensures that power is not unintentionally removed.
1-1	14	OVEN lamp (yellow). Indicates that cryatal oven heater in radio irequency oscillator is energized when POWER switch is set to STBY, TRACK, or 8TORE.
1-1	15	DISPLAY control. Increases length of time that count is displayed as control is rotated from the MIN. position clockwise. The measurement automatically recycles after the

```
TABLE 1-2. (Continued)
```


c. Selects SCALER RATIO of $10,10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7}$ and 10^{8} by which frequency of signal applied to FRIQ̧A input connector is divided when FUNCTION switch is set to SCALE A. (10^{-}and 1 positions are not used.) Scaled signal is a vailable at STD FREQ OR SCALE OUT connector.
d. Selects frequency ratio measurement when set the 10^{8} position and with the FUNCTION switch set to $1,10,10^{2}, 10^{3}, 10^{4}$ and 10^{5}.
The time base switch in conjunction with the FUNCTION switch position selects the unit of measurement and decimal point that are displayed in frequency, period, and timeinterval measurements.

1-1	20	FUNCTION switch. Selects measurement or scaling mode of operation in conjunction with positions of SENSITIVITY switch and time base switch 28 follows:			
		FUNCTION SWITCH POSITION	TIME BASE SWITCH POSITION	SENSITIVITY SWITCH POSITION	MEASUREMENT OR SCALING MODE
		$\begin{aligned} & \text { PERIOD } \\ & \text { B x M } \\ & 10^{5} \\ & 10^{4} \\ & 10^{3} \end{aligned}$	CLOCK FREQ (CPS) 10^{4} thru 10^{7} 10^{3} thru 10^{7} 10^{2} thru 10^{7}	---	Period of input B signal.

TABLE 1-2. (Continued)

$\begin{gathered} \text { FIGURE } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { INDEX } \\ & \text { NO } \end{aligned}$	DESCRIPTION AND FUNCIION			
1-1	$\begin{gathered} 20 \\ \text { (cont) } \end{gathered}$	FUNCTION SWITCH POSITION	TIME BASE SWITCH POSITION	SENSITIVITY SWITCH POSITION	MEASUREMENT OR SCALING MODE
		$\begin{aligned} & \text { PERIOD } \\ & \mathrm{BxM} \\ & 10^{2} \\ & 10 \\ & 1 \end{aligned}$	CLOCK FREQ (CPS) 10 thru 10^{7} 1 thru 10^{7} 1 thru 10^{7}	--*	Period of input B signal.
		$\begin{aligned} & \text { PERIOD B x M } \\ & 10^{5}, 10^{4}, 10^{3}, \\ & 10^{2}, 10.1 \end{aligned}$	RATIO $\frac{A}{B} \times M$ (10^{8} position)	$\begin{aligned} & 100 \mathrm{~V}, 10 \mathrm{~V} ; 1 \mathrm{~V}, \\ & \text { or } .1 \mathrm{~V} \end{aligned}$	Ratio of signal A frequency to signal B Irequency.
				PLUG-IN	Ratio of converter input signal frequency to signal B frequency.
				FREQ. C	Ratio of signal C frezuency to signal B trequency.
		TIME B - C	CLOCK FREQ (CPS) 1 thru 10^{7}	---	Time inter val from input B to input C.
			10^{8}	$\begin{aligned} & 100 \mathrm{~V}, 10 \mathrm{~V}, 1 \mathrm{~V}, \\ & \text { or. } 1 \mathrm{~V} \end{aligned}$	Number of input A pulses between B and Σ inputs (time interval with external clock).
		SCALE A	SCALER RATIO 10 thru 10^{8}		Sicale signal A irequency.
				PLUG-IN	Scale converter inputsignal frequency.
				FREQ. ${ }^{\text {C }}$	Scale signal C requency.
		MAN START MAN STOP	-*-	1	itart and stop signal Σ totalizing.
				$\begin{aligned} & 100 \mathrm{~V}, 10 \mathrm{~V}, 1 \mathrm{~V}, \\ & \text { or } .1 \mathrm{~V} \end{aligned}$	itart and stop signal 1 totalizing.
				PLUG-IN	itart and stop conrerter input-signal otalizing.
		FREQ	GATE TDE $\left(\mathrm{SEC}^{-1}\right)$	$\begin{aligned} & 100 \mathrm{~V}, 10 \mathrm{~V}, 1 \mathrm{~V}, \\ & \text { or . } 1 \mathrm{~V} \end{aligned}$	Trequency of input A iignal.
			10^{-1} thru 10^{6}	TEST	ielf-test; measures $.0-\mathrm{mc}$ test signal.

TABLE 1-2. (Continued)

$\begin{aligned} & \text { FIGURE } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$	DESCRIPTION AND FUNCTION			
1-1	$\stackrel{20}{(\text { cont })}$	FUNCTION SWITCH POSITION	TIME BASE SWITCH POSITION	$\begin{aligned} & \text { SENSITIVITY } \\ & \text { SWITCH POSITION } \end{aligned}$	MEASUREMENT OR SCALING MODE
		FREQ	$\begin{aligned} & \text { GATE TLME } \\ & \left(\mathrm{SEC}^{-1}\right) \\ & 10^{-1} \text { thru } 10^{6} \end{aligned}$	PLUG-IN	Frequency measurement of signal applied to converter INPUT connector.
				FREQ.C	Frequency measurement of signal applied to input B or C connector.
1-1	21	Channel C DC connector. Accepts an external signal for frequency measurement, frequency-ratio measurement, totalizing, or scaling.' When the mode selector switch is set to SEP, the signal applied to this receptacle is coupled directly to channel C. For pulsating dc signals the dc level is added to the ac level to provide the exact triggering point; i.e., if the ac signal is riding on a 3 -volt dc level, then subtract 3 volts from the product of the settings of the C TRIGGER VOLTS control and C MULTIPLIER switch to determine the ac component of the input C trigger level.			
1-1	22	Channel C MULTIPLIER switch (black): Selects multiplier for setting of channel C TRIGGER VOLTS control. Switch position is the number (. $1, .3,1,3,10,30,100$) which is under the number " 0 " of the scale of the channel C TRIGGER VOLTS control. Maximum signal attenuation is obtained with the MULTIPLIER switch set to 100 ; this position should be used first when the C (or B if mode selector switch is set to COM) input sigpal is of an unknown amplitude. To determine the exact amplitude that will trigger channel C, multiply the setting of the C TRIGGER VOLTS control by the setting of the C MULTIPLIER switch. In operation with a sine-wave input, the MULTIPLIER switch is set as follows:			

TABLE 1-2. (Continued)

$\begin{aligned} & \text { FIGURE } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { MDEXEX } \\ \text { NO. } \end{gathered}$	DESCRIPTION AND FUNCTION			
1-1	$\stackrel{26}{(\text { cont })}$	stop signal. Provides direct coupling to all signals. When connected to pulsating dc signals, the dc level ts added to the ac level to provide the exact triggering point; i. e. , if the ac signal is riding on a 3-volt dc level, then subtract 3 volts from the product of :he B TRIGGER VOLTS and B MULTIPLIER settings to determine the ac component of ;he trigger level.			
1-1	27	Channel B AC connector. Accepts an external signal for period, frequency-ratio, and :ime-interval measurements. In frequency-ratio measurement, the frequency of the signal serves as the denominator; in time-interval measurement, the signal serves as ibe start signal and when the mode selector switch is set to COM, also serves as the stop signal. This connector provides capacitive coupling.			
1-1	28	Channel B TRIGGER VOLTS control (red). Selects any voltage point from +6 volts to -6 volts which when multiplied by the setting of the channel B MULTIPLIER control setermines the exact triggering point of the channel B input signal. When set to zero, the triggering point will be the zero voltage point.			
1-1	29	Channel B MULTIPLIER switch (black). Selects attenuation factor for channel B input signal. Switch position is selected by rotating the switch to the number (. 1, . 3, 1, 3, $10,30,100$) which is under the number " 0 " of the scale of the channel B TRIGGER VOLTS control. Maximum signal attenuation is obtained with the MULTIPLIER switch set to 100; this position should be used first for unknown-amplitude signals. The switch position number is the minimum rms amplitude of the signal applied to the channel B input connector that will trigger the counter. The MULTIPLIER switch position is multi plied by the setting of the channel B TRIGGER VOLTS control to determine the exact voll age amplitude of the input B signal that will trigger the counter. In operation, the MULTIPLIER switch is normally set as follows:			
		INPUT VOLTS (RMS)	SWITCH SETTING	INPUT VOLTS (RMS)	$\begin{aligned} & \text { SWITCH } \\ & \text { SETTING } \end{aligned}$
		$\begin{aligned} & 0.1 \text { to } 0.3 \\ & 0.3 \text { to } 1 \\ & 1 \text { to } 3 \\ & 3 \text { to } 10 \end{aligned}$	$\begin{aligned} & .1 \\ & i^{3} \\ & i^{3} \end{aligned}$	10 to 30 30 to 100 100 to 425	10 30 100
1-1	30	Channel C SLOPE switch. Selects either positive (+) or negative (-) slope of input B or C signal for triggering of channel C. Signal B is connected when the mode selector switch is set to the COM position, and signal C is selected when that switch is set to the SEP position.			
1-1	31	Channel B SLOPE switch. Selects either positive (+) or negative (-) slope of channel B input signal for triggering of counter to provide start and stop signals in period and Irequency-ratio measurements and to provide start signals in time-interval (TIME B-C measurement.			
1-2	1	1 MC OUT connector. Supplies 1 -mc signal to external equipment when POWER switch is set to STANDBY, TRACK, or STORE.			
1-2	2	PRINTER connector. Supplies signals representing the digital data output of the measurement including the decimal-point position in four-line binary-coded decimal form. Included in the output are control signals for the operation of printers, other data recorders, or control devices, and a reset inhibit line to prevent reset of the counter during data recording (see TMit-66 $25-70$ © - 2 5).			

Figure 1-2, Counter Rear Panel Controls and Connectors
TABLE 1-2 (Continued)

$\begin{gathered} \text { Figure } \\ \text { no. } \end{gathered}$	$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$	DESCRIPTION AND FUNCTION
1-2	3	STD FREQ OR SCALE OUT connector. a. Supplies $0.1 \mathrm{cps}, 1 \mathrm{cps}, 10 \mathrm{cps}, 100 \mathrm{cps}, 1 \mathrm{kc}, 10 \mathrm{kc}, 100 \mathrm{kc}, 1 \mathrm{mc}$, and 10 mc as set by STD FREQ OUT switch when FUNCTION switch is set to TIME B \rightarrow C, MAN START, MAN STOP, or PERIOD BxM- 1. b. Supplies scaled frequencies of the signal applied to either the FREQ.A input connector, C AC input \&onnector, C DC input connector, or converter INPUT connector, as selected by the SENSITIVITY ${ }^{\circ}$ ivitch. Scale factor is selected by the time base switch, and ranges from 10 to $10^{3} \mathrm{in}$ decade steps.
1-2	4	Time base INPUT connector. Accepts $100-\mathrm{kc}$ or 1 -mc as time-base signal for counter when REF FREQ 100 KC OR 1 MC switch is set to EXT.
1-2	5	REF FREQ 100 KC OR 1 MC switch. When set to INT, the 1 -mc oscillator in the internal radio frequency oscillator serves as the standard time base frequency for the counter. When set to EXT, a $100-\mathrm{kc}$ or 1-mc signal applied to the time base INPUT connector serves as the standard frequency.
1-2	6	POWER connector. Connects to ac power cable.
1-2	7, 8	Thumbscrews. Fasten radio frequency oscillator to counter.

1-5. OPERATING SUGGESTIONS FOR MEASURING FREQUENCY, FREQUENCY RATIO, FOR TOTALIZING, AND SCALING.

These measurements can be performed by following one of three procedures. In the first set of procedurest(tabies - $5,1-9,1-14$, and 1-20) the input signal (numerator signal when frequency ratio is measured) is connected to the FREQ. A input connector and switched to channel A. In the second procedure (taibies 1-6, 1-10, 1-15, and 1-21) the input signal is connected to the input C connector and switched to channel C. In the third procedure (tabies 1-1 1-11, 1-16, 1-17, 1-18, and 1-22) input signal is connected to the converter INPUT connector and switched through the converter to channel A. The choice as to which procecure to follow depends on input signal characteristics such as repetition rate, pulse shape, and amplitude. The capabilities of the counter can best be utilized as follows:
a. INPUT SIGNAL FREQUENCY BELOW 10 CPS. - Connect input signal to the C DC input connector and follow the instructions in tabies-6,1-6, 1-10, or 1-15.
b. INPUT SIGNAL FREQUENCY BETWEEN 10 CPS AND 1 MC. - When the input pulses are symmetrical, connect input signal to the FREQ. A input connector, and follow the instructions in thole 1-5 1-8 or 1-14. When the input pulses are not symmetrical, connect input signal to the applicable input C connector, and follow the instructions intaibie 1-6, 1-10, or 1-15.
c. INPUT SIGNAL BETWEEN 1 MC AND 35 MC . - Connect the input signal to the FREQ. A input connector, and follow the instruct fons intabie 1-3, 1-9, or 1-14
d. INPUT SIGNAL BETWEEN 35 MC AND 100 MC . - When the input signal amplitude is between 10 millivolts and 100 millivolts, connect input signal to the converter INPUT connector, and follow the instructions intabie' 1-7, 1-11, or 1-16. When the input signal amplitude is 100 milli volts or greater, connect input signal to the FREQ. A input connector, and follow the instructions inthoie 1-5, 1-9, or 1-14.
e. INPUT SIGNAL BETWEEN 85 MC AND 500 MC (FREQUENCY MEASUREMENT ONLY). - Input sIgnals in this frequency range are applied to the converter INPUT connector and measured by the use of the heterodyne principle; i. e. , the unknown input signal frequency is beat with a known mixing frequency, and the resultant difference frequency is measured. The procedure for heterodyne frequency measurement is given in cabies 1-1] and 1-18. In addition to the desired difference frequency, heterodyning produces other, undesired frequencies. In some instances an undesired frequency may attain amplitudes sufficient to be registered by the counter, producing a seemingly valid readout. Unless the approximate input frequency is known, the validity of all readouts obtained by the heterodyne method must be tested.

Signal levels which are indicated in the red zone of the LEVEL METER may possibly be of a sufficient amplitude for a valid measurement. Such s'gnals usually produce consistent readouts in position 100 or in two or three positions of the mixing frequency selector switch. Before rejecting a readout produced
by a signal which indicates in the red zone, test its validity.

The validity of any readout is tested by complementing; i. e., two measurements are performed on the same input frequency and the relationship between the two readouts is noted. In one measurement, a mixing frequency is selected which is from 5 mc to 60 mc below the frequency of the input signal. In the other measurement a mixing frequency is selected which is from 5 mc to 60 mc above the frequency of the input signal. The readouts of the two measurements are added and compared with the two mixing frequencies. If the sum of the two readouts is equal to the difference between the two mixing frequencies, the measurement is valid. The available mixing frequencies range from 100 mc to 500 mc in $50-\mathrm{mc}$ increments, and are selected by the mixing frequency selector switch. Depending on the input frequency, complement tests are performed one of two ways. Examples and procedures for complement tests are as follows:
(1) Consistent readouts are obtained in three adjacent positions of the mixing frequency selector switch or in two positions which are 100 mc apart. Record the number displayed at the highest and lowest of the switch positions and add the two numbers. If the sum is equal to 100 mc , it is a valid measurement. The unknown frequency is the readout obtained in the lowest of the switch positions plus that switch position in mc.

For example, assume that the lowest switch position is 200, and the readout in that position is 57.8 mc . Also assume that the highest switch position is 300 , and the readout in that position 1 s 42.2 mc . The sum of 57.8 and 42.2 is 100 , and the unknown frequency ts 57.8 mc plus 200 mc or 257.8 mc .
(2) Consistent readouts are obtained only in the 100 position of the mixing frequency selector switch. Record the readout in that position; then set the DIRECT/HETERODYNE switch to DIRECT, record the new readout, and add it to the first readout. If the sum is equal to 100 mc , it is a valid measurement, and the unkncwn frequency is that obtained in the DIRECT position.

6 TEST APPLICATIONS

Examples of applications of the counter are as follows:
a. FREQUENCY MEASUREMENT. - Applications are included in NAVSHIPS 900, 000. 103, Electronics Installation and Maintenance Book Test Methods and Practices.
b. PERIOD AND MULTIPLE PERIOD MEASUREMENT. - Low-frequency input signals can be measured with a high degree of accuracy. In frequency measurement, the inherent inaccuracy due to gating error is ± 1 count. Expressed as a percentage, this ± 1 count ambiguity may become an appreciable error. For example, when the frequency of a $10-\mathrm{cps}$ input signal is measured with a 10 -second gate time (longest gate time available in the instrument), the inherent inaccuracy due to gating error is ± 1 percent. Measuring the period of the same 10 -cps input signal, the inherent inaccuracy due to gating error can be reduced to ± 0.0001 percent by selecting a $10-\mathrm{mc}$
clock frequency. When measuring multiple period, this error can be further reduced by factors of 10 , $100,1,000,10,000$, and 100,000 . As a general rule, the dividing line between frequency measurement and period measurement is $\mathbf{1 k c}$; measure frequency when the input signal is above 1 kc , and measure period when the input signal is below 1 kc .
c. FREQUENCY-RATIO MEASUREMENT. -

The counter can test and calibrate frequency multipliers and frequency dividers. For example, when calibrating a frequency multiplier with a known multiplying factor, the input and output frequencies of the multiplier are applied to the counter, and their ratio is measured. The frequency multiptier is then adjusted for the proper readout.
d. TIME INTERVAL MEASUREMENT. - To measure relay delay time, the coll-energizing voltage triggers the start channel; and a set of normally closed contacts, through a voltage source, triggers the stop channel. Delay time can be measured with a maximum resolution of 100 nanoseconds.
e. TIME INTERVAL MEASUREMENT WITH AN EXTERNAL STANDARD. - This measurement applies when calibrating search radar equipment. Transmissions are made at a target placed at a known distance from the radar equipment. A clock frequency of approximately 16.4 mc is connected to channel A of the counter. The transmitted pulse triggers the start channel of the counter, and the received echo triggers the stop channel. Distance is read in 100 -yard increments.
f. TOTALIZING. - All types of non-periodic pulses, such as those generated by a nuclear particle detector, can be counted.
g. SCALING THE STANDARD FREQUENCY. The scaled frequencies can be supplied to instruments and systems requiring precise time standard.
h. SCALING THE INPUT FREQUENCY. - The low-frequency output signals can supplement the output of a vhf signal generator. For example, when the available signal generator covers the frequency range from 10 mc to 100 mc , its output is applied to channel A of the counter. Then, by use of the scale function, the frequency range is extended to cover any frequency from 1 cps to 100 mc .

1-7. OPERATING PROCEDURES.

Procedures for turning on the counter, testing counter performance, performing the measurement functions, and obtaining the signal outputs are given in tadies 1-3 through 1-24. Perform the procedure of table 1-3 prior to any of the other procedures in those tables.

All measurement and signal-output functions can be performed with the frequency converter and radio frequency oscillator installed.

All functions except heterodyne frequency measurement, and direct frequency measurement to 100 mc can be performed with the frequency converter removed.

Totalizing and frequency-ratio measurements can be performed with the radio frequency oscillator removed.

All functions except use of the 1 MC OUT connector can be performed when an external reference frequency standard is connected as described in raragraph

1-8. CONNECTION OF FREQUENCY STANDARD.

When the radio frequency oscillator is to be the reference frequency standard, set REF FREQ 100 KC OR 1 MC switch on rear panel to INT.

To connect an external 1 mc or 100 kc signal as the frequency standard, first set RE F FREQ 100 KC OR 1 MC switch on the rear panel to EXT. Then, connect the 1 mc or 100 kc signal to the time base INPUT connector on the rear panel.

$$
\begin{gathered}
\text { TABLE } 1-3 \text { PROCEDURE FOR } \\
\text { TURNING ON COUNTER }
\end{gathered}
$$

STEP	ACTION
1	Set POWER switch to STBY, and observe that POWER lamp is lit, and that OVEN lamp is lit (when radio frequency oscil- lator is installed).
2	Allow at least five minutes for warm-up, except no warm-up time is required for totalizing, frequency-ratio measurement, or with an external reference frequency standard.
3	Set POWER switch to TRACK. Numeral should be displayed on all eight digits of the display.

STEP	ACTION
1	Perform turn-on procedure described in table:-3
2	Set SENSITIVITY switch to TEST.
3	Set time base switch to 10^{6} (CPS).
4	Rotate DISPLAY control to MIN, and set POWER switch to STORE.
5	Set FUNCTION switch to FREQ.
6	Rotate time base switch counterclockwise, one position at a time, and observe digital display. Displays should be as shown below, ± 1 count.
	TIME BASE SWITCH POSITION DISPLAY
	$10^{6} \quad 00000010 . \mathrm{MC}$
	$10^{5} \quad 0000010.0 \mathrm{MC}$
	$10^{4} \quad 000010.00 \mathrm{MC}$
	$10^{3} \quad 00010000 . \mathrm{KC}$
	$10^{2} \quad 0010000.0 \mathrm{KC}$
	10 010000.00 KC
	10000.000 KC
	$10^{-1} \quad 0000.0000 \mathrm{KC}$

```
\begin{tabular}{lll} 
AN/USM-207 & NAVSHIPS 0969-028-4020 Table \\
OPERATION
\end{tabular}
```

TABLE 1-5. PROCEDURE FOR FREQUENCY measurement, with the input signal APPLIED TO CHANNEL A

STEP	ACTION
1	Perform turn-on procedure described in chale
2	Set DISPLAY control for desired display time.
3	Set SENSITIVITY switch to 100 V .
4	Set time base switch to GATE TIME (SEC-1)-104.
5	Set FUNCTION switch to FREQ.
6	Connect input signal to the FREQ. A input

Press RESET 8witch and observe digital display. If display remains at zero or readout is erratic (evidence of weak input signal), turn SENSITIVITY switch counter clockwise to the first position at which consistent readouts are displayed.

If display is desired to remain constant except when measurement result changes, set POWER switch to STORE.

Numerical display is the frequency of the input signal in ke with the decimal point position as indicated. To obtain a readou In mc, set time base switch to a more clockwise GATE TIME (SEC- ${ }^{1}$) position. To obtain higher resolutions (up to 0.1 cps set time base switch to a more counterclockwise position.

TABLE 1-6 PROCEDURE FOR FREQUENCY MEASUREMENT, WITH THE INPUT SIGNAL
APPLIED TO CHANNEL C

Note

Follow this procedure only when the input signal does not exceed 1 mc .

STEP	ACTION
1	Perform turn-on procedure described in teible $1-3$,
2	Set DISPLAY control for desired display time. 3
Set SENSITIVITY switch to FREQ.C.	

TABLE 1-6, (Continued)

STEP	ACTION
4	Set time base switch to GATE TIME (SEC-1)-10 ${ }^{4}$.
5	Set FUNCTION switch to FREQ.
6	Set C MULTIPLIER switch to 100.
7	Set C TRIGGER VOLTS control to 0.
8	Connect input signal to the applicable input C connector.
9	Press RESET switch.
10	Turn C TRIGGER VOLTS control slowly in both directions, and, if necessary, change setting of C SLOPE switch, until consistent readouts are displayed. If display stays at zero or readout is erratic (evidence of weak input signal), turn C MULTIPLIER switch clockwise to the first position at which consistent readouts afe displayed.
11	If display is desired to remain constant except when measurement result changes, set POWER switch to STORE.
12	Numerical display is the frequency of the input signal in kc, with the decimal point position as indicated. To obtain a readout in mc, set time base switch to 2 more clockwise GATE TIME (SEC-1) position. To obtain higher resolutions (up to 0.1 cps) set time base switch to a more counterclockwise position.

```
TABLE 1-7, PROCEDURE FOR DIRECT FRE-
    QUENCY MEASUREMENT, WITH THE
        INPUT SIGNAL APPLIED TO THE
        CONVERTER INPUT CHANNEL
```


Note

Follow this procedure only when the input signal frequency falls between 35 mc and 100 mc .

STEP	ACTION
1	Perform turn-on procedure described in 2
3	Set SENSITIVITY switch to PLUG-IN.
4	Set FUNOTION switch to FREQ.
	Set time bage switch to GATE TDME
	(SEC-1)-10,

```
Table

TABLE 177 (Continued)
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 5 & Set DISPLAY control for desired display time. \\
\hline 6 & Set both converter attenuator switches to the right ( 10 V MAX position). \\
\hline 7 & Set DIRECT-HETERODYNE switch to DIRECT. \\
\hline 8 & Connect input signal to the converter INPUT connector. \\
\hline 9 & Observe LEVEL METER. If it reads in the green zone, proceed to step 12. Otherwise, proceed to step 10. \\
\hline 10 & Set upper attenuator switch to the left (2. 0 V MAX position) and observe LEVEL METER. If it reads in the green zone, proceed to step 12. Otherwise, proceed to step 11. \\
\hline 11 & Set lower attenuator switch to the left (0. 3 V MAX position) and observe LEVEL METER. If it reads in the green zone, proceed to step 12. If it does not read in the green zone, input level is too low for a valid measurement. \\
\hline 12 & If display is desired to remain constant except when measurement result changes, set POWER switch to STORE. \\
\hline 13 & Observe digital display. Frequency is read directly in mc , with a resolution of 1 mc . To obtain readings with a higher resolution, set time base switch to a more counterclockwise position (up to 1). \\
\hline
\end{tabular}

TABLE 1-8. PROCEDURE FOR
MEASURING PEROID
\begin{tabular}{|c|l|}
\hline STEP & \multicolumn{1}{|c|}{ ACTION } \\
\hline 1 & \begin{tabular}{l} 
Perform turn-on procedure described in \\
Lable \(1-3\)
\end{tabular} \\
2 & \begin{tabular}{l} 
Set FUNCTION switch to PERIOD B x M-1. \\
3
\end{tabular} \\
4 & \begin{tabular}{l} 
Set time base switch to CLOCK FREQ \\
(CPS)-107.
\end{tabular} \\
5 & \begin{tabular}{l} 
Set DISPLAY control for desired display \\
time.
\end{tabular} \\
Set B TRIGGER VOLTS control to 0.
\end{tabular}

TABLE 1. 8 (Continued)
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 6 & Set B MULTIPLIER switch to 100. \\
\hline 7 & Connect input signal to the applicable input B connector. \\
\hline 8 & Turn B MULTIPLIER switch clockwise until GATE lamp cycles on and off. Adjust B TRIGGER VOLTS control until consistent readouts are displayed. To obtain this, it may be necessary to change the setting of the B SLOPE switch. \\
\hline 9 & If display is desired to remain constant except when measurement result changes, set POWER switch to STORE. \\
\hline 10 & Numerical display is one period of the input signal in microseconds, with a re solut ion of 0.1 microsecond. To obtain a readout in milliseconds or seconds, or if overflow occurs, set time base switch to a more counterclockwise CLOCK FREQ (CPS) position. \\
\hline 11 & For greater measurement accuracy, set the FUNCTION switch to a more clockwise position (up to \(10^{5}\) ), and measure the average of \(10,10^{2}, 10^{3}, 10^{4}\), or \(10^{5}\) periods of the input signal. The accuracy of the period measurement increases in proportion to the period multiplier (M). Automatic decimal-point positioning compensates for the period multiplier, so that the numerical display always represents a single period. \\
\hline
\end{tabular}

TABLE 1-9 PROCEDURE FOR MEASURING FREQUENCY RATIO, WITH NUMERATOR SIGNAL APPLIED TO CHANNEL A
\begin{tabular}{|c|l|}
\hline STEP & \multicolumn{1}{|c|}{ ACTION } \\
\hline \(\mathbf{1}\) & \begin{tabular}{l} 
Perform turn-on procedure described in \\
taitut \(1-3\)
\end{tabular} \\
2 & Set time base switch to (A/B) \(\times\) M- \(10^{8}\). \\
3 & \begin{tabular}{l} 
Set DISPLAY control for desired display \\
time.
\end{tabular} \\
4 & Set FUNCTION switch to MULTIPLIER-1 \\
5 & Set SENSITIVITY switch to 100 V. \\
6 & Set B TRIGGER VOLTS control to 0. \\
\hline
\end{tabular}

TABLE 1. 9 (Continued)
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 7 & Set B MULTIPLIER switch to 100. \\
\hline 8 & Connect input signal with the higher frequency to the FREQ.A input connector. \\
\hline 0 & Connect input signal with the lower frequency to the applicable input \(B\) connector \\
\hline 10 & Observe GATE lamp. If it goes on and off in a continuous cycle, proceed to step 13. Otherwise, proceed to step 12. \\
\hline 11 & Adjust B TRIGGER VOLTS control and/or set B MULTIPLIER switch to the first clockwise position at which the GATE lamp cycles on and off. \\
\hline 12 & Press RESET switch and observe digital display. If display remains at zero, or if repeated readouts are not consistent, turn SENSITIVITY switch to the first counterclockwise position at which consistent readouts are displayed. \\
\hline & Note \\
\hline \multicolumn{2}{|l|}{An alternate method for adjusting the input A and B controls (steps 11 and 12) is to perform the procedures of tables 3-5 and 3-6 and then perform all steps of table 3-7 except steps 5 thru 12.} \\
\hline 13 & If display is desired to remain constant except when measurement result changes, set POWER switch to STORE. \\
\hline 14 & The numerical display is the ratio of input A signal frequency to the input B signal irequency, with a resolution of 0. 1. To obtain higher resolution, turn FUNCTION switch to a more clockwise position ( \(10,10^{2}, 10^{3}, 10^{4}\), or \(10^{5}\) ). \\
\hline
\end{tabular}
```

TABLE 1-10. PROCEDURE FOR MEASURING
FREQUENCY RATIO, WITH NUMERATOR
SIGNAL APPLIED TO CHANNEL C

```

\section*{Note}

Follow this procedure only when the numerator signal does not exceed 1 mc .



TABLE 1-12 (Continued)
\begin{tabular}{|l|l|}
\hline STEP & \multicolumn{1}{c|}{ ACTION } \\
\hline 10 & \begin{tabular}{l} 
Set C MULTIPLIER switch and C TRIG- \\
GER VOLTS control so that the product \\
of their settings equals the amplitude and \\
polarity at which end of time inter val is \\
to occur and so that the GATE lamp is \\
periodically extinguished and consistent \\
readouts are displayed. If readouts are \\
inconsistent, perform steps 8 and 10 until \\
consistent readouts are obtained at the \\
voltage levels equal to the desired start \\
and stop signals.
\end{tabular} \\
\multicolumn{1}{|c}{\(\quad\) Note }
\end{tabular}

TABLE 1-13. PROCEDURE FOR MEASURING time Interval, with external clock
\begin{tabular}{|c|l|}
\hline STEP & \multicolumn{1}{|c|}{ ACTION } \\
\hline 1 & \begin{tabular}{l} 
Perform turn-on procedure described in \\
table /-3.
\end{tabular} \\
2 & \begin{tabular}{l} 
Set DISPLAY control for desired display \\
time.
\end{tabular} \\
3 & \begin{tabular}{l} 
Set SENSITIVITY switch to 100 V. \\
4
\end{tabular} \\
\(\mathbf{5}\) & \begin{tabular}{l} 
Set time base switch to GATE TIME \\
(SEC-1)-104. \\
Set FUNCTION switch to FREQ.
\end{tabular} \\
\hline
\end{tabular}

TABLE 1-13. (Continued)
\begin{tabular}{|l|c|}
\hline STEP & \multicolumn{1}{c|}{ ACTION } \\
\hline \multicolumn{1}{c|}{ Note (cont) } \\
\begin{tabular}{l} 
not, adjust B MULTIPLIER switch and B \\
TRIGGER VOLTS control until lamp lights, \\
and/or adjust C MULTIPLIER switch and C
\end{tabular} \\
\begin{tabular}{l} 
TRIGGER VOLTS control until lamp repeat- \\
edly goes off, and until repeated readouts are \\
consistent. Determine the trigger points by \\
the product of the MULTIPLIER and TRIGGER \\
VOLTS settings.
\end{tabular} \\
16 & \begin{tabular}{l} 
If display is desired to remain constant \\
except when measurement result changes, \\
set POWER switch to STORE.
\end{tabular} \\
17 & \begin{tabular}{l} 
Numerical display is the number of cycles \\
of the signal applied to the FREQ. A input \\
connector that occur between the B and C \\
input trigger points.
\end{tabular} \\
\hline
\end{tabular}

> TABLE 1-14. PROCEDURE FOR TOTALIZING, WITH THE INPUT SIGNAL APPLIED TO CHANNEL A
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 1 & Perform turn-on procedure described in table 1-3 \\
\hline 2 & Set SENSITIVITY switch to 100 V . \\
\hline 3 & Set DISPLAY control to \(\infty\). \\
\hline 4 & Set time base switch to 108 \\
\hline 5 & Set FUNCTION switch to MAN START, and note that GATE lamp goes on. \\
\hline 6 & Connect input signal to the FREQ. A input connector. \\
\hline 7 & Press RESET switch and observe digital display. If display advances numerically from zero, proceed to step 9. If display remains at zero (evidence of weak input signal), proceed to step 8. \\
\hline 8 & Turn SENSITIVITY switch counterclockwise, one position at a time; leave SENSITIVITY switch in the first position at which display advances numerically from zero in accordance with the number of input pulses. \\
\hline 9 & Press RESET switch. Totalizing starts automatically when RESET switch is released. Stop totalizing by setting \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { TABLE 1-15. PROCEDURE FOR TOTALIZING, } \\
& \text { WITH THE INPUT SIGNAL APPLIED } \\
& \text { TO CHANNEL C } \\
& \text { Note } \\
& \text { Follow this procedure only when the input sig- } \\
& \text { nal does not exceed } 1 \mathrm{mc} \text {. }
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 1 & Perform turn-on procedure described in table \\
\hline 2 & Set SENSITIVITY switch to FREQ. C. \\
\hline 3 & Set DISPLAY control to \(\boldsymbol{\infty}\). \\
\hline 4 & Set time base switch to 108. \\
\hline 5 & Set mode selector switch to COM. \\
\hline 6 & Set FUNCTION switch to MAN START, and note that GATE lamp goes on. \\
\hline 7 & Set C MULTIPLIER switch to 100. \\
\hline 8 & Set C TRIGGER VOLTS control to 0. \\
\hline 9 & Connect input signal to the applicable input C connector. \\
\hline 10 & Observe digital display. If display advances numerically in accordance with the number of input pulses, proceed to step 12. If display does not advance, proceed to step 11. \\
\hline 11 & Turn C TRIGGER VOLTS control slowly in both directions, and, if necessary, change the setting of the C SLOPE switch, until display advances numerically in accordance with the number of input pulses. If display does not advance (evidence of weak input signal), turn C \\
\hline
\end{tabular}

TABLE 1-15, (Continued)
\begin{tabular}{|c|l|}
\hline STEP & \multicolumn{1}{c|}{ ACTION } \\
\hline 11 & \(\begin{array}{l}\text { MULTIPLIER switch clockwise to the } \\
\text { (cont) }\end{array}\) \\
12 & \(\begin{array}{l}\text { first position at which the advance occurs. } \\
\text { Press RESET switch. Totalizing starts } \\
\text { automatically when RESET switch is } \\
\text { released. Stop totalizing by setting } \\
\text { FUNCTION switch to MAN STOP. Note } \\
\text { that GATE lamp goes off and the accumu- }\end{array}\) \\
lated count is displayed.
\end{tabular}\(\}\)\begin{tabular}{l} 
To start another totalizing measurement, \\
first press RESET switch to erase the \\
previcus count, then set FUNCTION \\
switch to MAN START. Re sults of two or \\
more measurements may be added by not \\
pressing the RESET switch.
\end{tabular}

TABLE 1-16. PROCEDURE FOR TOTALIZING, WITH THE INPUT SIGNAL APPLIED TO the converter channel

\section*{Note}

Follow this procedure only when the input frequency falls between 35 mc and 100 mc .
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 1 & Perform turn-on procedure described in trible \\
\hline 2 & Set SENSITIVITY switch to PLUG-IN. \\
\hline 3 & Set DISPLAY control to \(\boldsymbol{\infty}\). \\
\hline 4 & Set time base switch to \(10^{8}\). \\
\hline 5 & Set FUNCTION switch to MAN START, and note that GATE lamp goes on. \\
\hline 6 & Set both converter attenuator switches to the right ( 10 V MAX position). \\
\hline 7 & Set DIRECT-HETERODYNE switch to DIRECT. \\
\hline 8 & Connect input signal to the converter INPUT connector. \\
\hline 0 & Observe LEVEL METER. If it reads in the green zone, proceed to step 12. Otherwise, proceed to step 10. \\
\hline 10 & Set upper attenuator switch to the left (2.0 V MAX position) and observe LEVEL METER. If it reads in the green zone, proceed to step 12. Otherwise, proceed to step 11. \\
\hline
\end{tabular}

TABLE I-16 (Continued)
\begin{tabular}{|c|l|}
\hline STEP & \multicolumn{1}{|c|}{ ACTION } \\
\hline 11 & \begin{tabular}{l} 
Set lower attenuator switch to the left \\
(0. 3 V MAX position) and observe LEVEL \\
METER. If it reads in the green zone, \\
proceed to step 12. If it does not read in \\
green zone, input level is too low for a \\
valid measurement.
\end{tabular} \\
12 & \begin{tabular}{l} 
Press RESET switch. Totalizing starts \\
automatically when RESET switch is \\
released. Stop totalizing by setting \\
FUNCTION switch to MAN STOP. Note \\
that GATE lamp goes off and the accu- \\
mulated count is displayed.
\end{tabular} \\
13 & \begin{tabular}{l} 
To start another totalizing measurement, \\
first press RESET switch to erase the \\
previous count, then set FUNCTION \\
switch to MAN START. Results of two \\
or more measurements may be added by \\
not pressing the RESET switch.
\end{tabular} \\
\hline
\end{tabular}

TABLE 1-17 PROCEDURE FOR HETERODYNE FREQUENCY MEASUREMENT ( 85 MC TO \(500 \mathrm{MC)}\) WHEN APPROXIMATE INPUT FREQUENCY IS KNOWN
\begin{tabular}{|c|c|}
\hline 3TEP & ACTION \\
\hline 1 & Perform turn-on procedure described in tibie 1-3 \\
\hline 2 & Set SENSITIVITY switch to PLUG-IN. \\
\hline 3 & Set FUNCTION switch to FREQ. \\
\hline 4 & Set time breeswitch to GATE TIME (SEC-1)-10. \\
\hline 5 & Set DISPLAY control for desired display time. \\
\hline 6 & Set both converter attenuator switches to the right ( 10 V MAX position). \\
\hline 7 & Set DIRECT- HETERODYNE switch to HETERODYNE. \\
\hline 8 & Connect input signal to the converter INPUT connector. \\
\hline 9 & Set mixing frequency selector switch to any applicable position as indicated below: \\
\hline
\end{tabular}

CABLE 1-17, (Continued)
\begin{tabular}{|c|c|c|}
\hline STER & \multicolumn{2}{|c|}{ACTION} \\
\hline 9 & & UNKNOWN \\
\hline (cont) & & FREQUENCY \\
\hline & & IS MLXING \\
\hline IF INPUT & SET MLXING & FREQUENCY \\
\hline FREQUENCY & FREQUENCY & SELECTOR \\
\hline IN MC IS & SELECTOR & SWITCH \\
\hline BETWEEN & SWITCH TO & POSITION IN MC \\
\hline 85-95 & 100 & - digital display \\
\hline 90-145 & 150 & - digital display \\
\hline 105-160 & 100 & + digital display \\
\hline 140-195 & 200 & - digital display \\
\hline 155-210 & 150 & + digital display \\
\hline 190-245 & 250 & - digital display \\
\hline 205-260 & 200 & + digital display \\
\hline 240-295 & 300 & - digital display \\
\hline 255-310 & 250 & + digital display \\
\hline 290-345 & 350 & - digital display \\
\hline 305-360 & 300 & + digital display \\
\hline 340-395 & 400 & - digital display \\
\hline 355-410 & 350 & + digital display \\
\hline 390-445 & 450 & - digital display \\
\hline 405-460 & 400 & + digital display \\
\hline 440-495 & 500 & - digital display \\
\hline 455-500 & 450 & + digital display \\
\hline
\end{tabular}

Observe LEVEL METER. If it reads in the green zone, proceed to step 14. Otherwise, proceed to step 11.

11
Set upper attenuator switch to the left (2.0 V MAX position) and observe LEVEL METER. If it reads in the green zone, proceed to step 14. Otherwise, proceed to step 12.

12

Observe digital display. If readout is zero or erratic, input signal level is too low for a valid measurement. If display is a consistent number, test its validity by complementing, as described in paragraph 3-5e.

14 Observe digital display. Determine unknown frequency as described in step 9.

15
If display is to remain constant except when the measurement result changes, set POWER switch to STORE.
16
To obtain increased resolution, turn time base switch counterclockwise (up to 1).
TABLE 1 -18 PROCEDURE FOR HETERODYNE
FREQUENCY MEASUREMENT (85 MC TO
500 MC) WHEN APPROXIMATE INPUT
FREQUENCY IS UNKNOWN
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 1 & \begin{tabular}{l} 
Perform turn-on procedure described in \\
table \(1-3\)
\end{tabular} \\
\begin{tabular}{c} 
A.
\end{tabular} \\
\hline
\end{tabular}

4 Set time base switch to GATE TIME (SEC-1)-106.

5 Set DISPLAY control for desired display time.

Set both converter attenuator switches to the right (10 V MAX position).

7 Set DIRECT- HETERODYNE switch to HETERODYNE.

Connect input signal to the converter INPUT connector.

Starting at 100 , turn mixing frequency selector switch clockwise, one position at a time, and observe LEVEL METER in each position. If LEVEL METER reads in the green zone in at least one switch position, proceed to step 12. Otherwise, proceed to step 10.

Set upper attenuator switch to the left (2.0 V MAX position) and repeat the procecure of step 9 . If LEVEL METER reads in the green zone in at least one switch position, proceed to step 12. Otherwise, proceed to step 11.

Set lower attenuator switch to the left (0.3 V MAX position) and repeat the procedure of step 9. If LEVEL METER reads in the green zone in at least one switch position, proceed to step 12. If LEVEL METER reads in the red zone in all switch positions and:
a. Readouts are zero or erratic. Input signal le vel is too low for a valid measurement.
b. Readouts are consistent in switch position 100 or in two or three switch positions. Test the validity of the measurement by complementing, as described in paragraph 1-5e

TABLE 1-18
(Continued)
\begin{tabular}{|c|c|c|}
\hline STEP & & ACTION \\
\hline \multicolumn{3}{|l|}{12 Observe digital display in each mixing frequency selector switch position where LEVEL METER reads in the green zone. Inter pret readout 28 follows:} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
SWITCH POSITIONS AT WHICH LEVEL METER READS IN \\
UNKNOWN \\
THE GREEN ZONE FREQUENCY IS
\end{tabular}} \\
\hline a. 100 & ly. & 100 mc - digital display. \\
\hline \multicolumn{3}{|l|}{b. 100 and 150 only and} \\
\hline & display at 100 plus display at 150 equals 50 m & \(100 \mathrm{mc}+\) digital display at 100 . \\
\hline & display at 150 ninus diaplay at 100 equals 50 m & \[
\begin{aligned}
& 100 \mathrm{mc} \text { - digital display } \\
& \text { at } 100 \text {. }
\end{aligned}
\] \\
\hline c. 1 & ly. & 150 mc - digital display. \\
\hline d. 100 & d 200 only. & \(100 \mathrm{mc}+\) digital display at 100. \\
\hline \[
\text { e. } 1
\] & \[
30 \text {, and } 200
\] & \[
\begin{aligned}
& 100 \mathrm{mc}+\text { digital display } \\
& \text { at } 100 .
\end{aligned}
\] \\
\hline 1. A & ree adjacent ons only. & Lowest position in mc + digital di splay at that position. \\
\hline g. & ) & \(450 \mathrm{mc}+\) digital display. \\
\hline h. & than three ons, of which are adjacent. & The reading in the nonadjacent position is not valld. The readings in the three adjacent positions are valid, and are interpreted as in " f ". \\
\hline 13 & If display is except when set POWER & red to remain constant surement result changes h to STORE. \\
\hline 14 & To obtain incr base switch co & sed resolution, turn time terclockwise (up to 1). \\
\hline
\end{tabular}

TABLE 1-19. PROCEDURE FOR OBTAINING STANDARD FREQUENCIES
\begin{tabular}{|c|l|}
\hline STEP & \multicolumn{1}{|c|}{ ACTION } \\
\hline 1 & \begin{tabular}{l} 
Perform turn-on procedure described in \\
figible \(1-3\)
\end{tabular} \\
2 & \begin{tabular}{l} 
Set FUNCTION switch to TIME B \(\rightarrow\) C, \\
MAN START, MAN STOP, or \\
PERIOD BxM-1.
\end{tabular} \\
\hline
\end{tabular}

TABLE 1-19. (Continued)
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline \multirow[t]{11}{*}{3} & Set STD FREQ OUT switch to obtain the desired output frequency as follows: \\
\hline & STD FREQ OUT
SWITCH POSITION \(\quad\) OUTPUT \\
\hline & \(10^{-1} \quad 0.1 \mathrm{cps}\) \\
\hline & 1 l \\
\hline & \(10 \quad 10 \mathrm{cps}\) \\
\hline & \(10^{2} \quad 100 \mathrm{cps}\) \\
\hline & \(10^{3} \quad 1 \mathrm{kc}\) \\
\hline & \(10^{4} \quad 10 \mathrm{kc}\) \\
\hline & \(10^{5} \quad 100 \mathrm{kc}\) \\
\hline & \(10^{6} \quad 1 \mathrm{mc}\) \\
\hline & \(10^{7} \quad 10 \mathrm{mc}\) \\
\hline 4 & Obtain standard frequencies at the rearpanel STD FREQ OR SCALE OUT connector across a 50 -ohm load. \\
\hline
\end{tabular}

TABLE 1-20. PROCEDURE FOR SCALING, WITH THE INPUT SIGNAL APPLIED TO CHANNEL A
\begin{tabular}{|c|c|}
\hline 3TEP & ACTION \\
\hline 1 & Perform turn-on procedure described in tajue 1-3 \\
\hline 2 & Set SENSITIVITY switch to 100 V . \\
\hline 3 & Set FUNCTION switch to SCALE A. \\
\hline 4 & Set time base gwith or desired SCALER RATIO ( \(10,10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7}\) ). The position of the switch determines the factor by which the frequency of the input signal will be divided. \\
\hline 5 & Connect signal to be scaled to the FREQ. A connector. \\
\hline 6 & Press RESET switch, and observe digital display. If display remains at zero, turn SENSITIVITY switch to the first counterclockwise position at which display changes from zero and the count advances at the frequency of the input signal. \\
\hline 7 & Obtain scaled output signal at the rearpanel STD FREQ OR SCALE OUT connector. \\
\hline
\end{tabular}


Follow this procedure only when the input signal frequency does not exceed 1 mc .
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 1 & Perform turn-on procedure procedure described inltable - -3 \\
\hline 2 & Set SENSITIVITY switch to FREQ. C. \\
\hline 3 & Set FUNCTION switch to SCALE A. \\
\hline 4 & Set time base switch for desired SCALER RATIO \(\left(10,10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7}\right.\) The position of the switch determines the factor by which the frequency of the input signal will be divided. \\
\hline 5 & Set C TRIGGER VOLTS CONTROL to 0. \\
\hline 6 & Set C MULTIPLIER switch to 100. \\
\hline 7 & Connect signal to be scaled to the applicable input C connector. \\
\hline 8 & Press RESET switch. \\
\hline 9 & Turn C TRIGGER VOLTS control slowly in both directions, and, if necessary, change setting of C SLOPE switch, until display advances numerically at the frequency of the input signal. If display does not advance (evidence of weak input signal), turn C MULTIPLIER switch to the first position at which readout advances numerically in a continuous cycle. \\
\hline 10 & Obtain scaled output signal at the rearpanel STD FREQ OR SCALE OUT connector. \\
\hline
\end{tabular}

TABLE 1-22 PROCEDURE FOR SCALING, WITH THE INPUT SIGNAL APPLIED TO THE CONVERTER CHANNEL

\section*{Note}

Follow this procedure only when the input signal frequency falls between 35 mc and 100 mc .
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 1 & Perform turn-on procedure described in Lable 1-3 \\
\hline 2 & Set SENSITIVITY switch to PLUG-IN. \\
\hline 3 & Set FUNCTION switch to SCALE A. \\
\hline
\end{tabular}

TABLE 1-22 (Continued)
\begin{tabular}{|c|c|}
\hline STEF & ACTION \\
\hline 4 & Set both converter attenuator switches to the right ( 10 V MAX position). \\
\hline 5 & Set DIRECT-HETERODYNE switch to DIRECT. \\
\hline 6 & Set time base switch for desired SCALER RATIO ( \(10,10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7}\) ). The position of the switch determines the factor by which the frequency of the input signal will be divided. \\
\hline 7 & Connect signal to be scaled to the converte INPUT connector. \\
\hline 8 & Observe LEVEL METER. If it reads in the green zone, proceed to step 11. Other wise, proceed to step 9. \\
\hline 9 & Set upper attenuator switch to the left (2.0 V MAX position) and obser ve LEVEL METER. If it reads in the green zone, proceed to step 11. Otherwise, proceed to step 10. \\
\hline 10 & Set lower attenuator switch to the left (0.3 V MAX position) and observe LEVEL METER. If it reads in the green zone, proceed to step 11. If it does not read in the green zone, input level is too low for a valid measurement. \\
\hline 11 & Obtain scaled output signal at the rearpanel STD FREQ OR SCALE OUT connector. \\
\hline
\end{tabular}

TABLE 1-23 PROCEDURE FOR OBTAINING STANDARD I-MC OUTPUT SIGNAL
\begin{tabular}{|c|c|}
\hline STEP & ACTION \\
\hline 1 & Set POWER switch to STBY, TRACK or STORE, and allow a 5 -minute warm-up. \\
\hline 2 & Obtain standard \(1-\mathrm{mc}\) output signal at the rear pane 11 MC OUT connector on the radio frequency oscillator. \\
\hline TAB & ble 1-24 procedure for turning COUNTER OFF \\
\hline STEF & ACTION \\
\hline 1 & Remove all external connections from the counter. \\
\hline 2 & If the counter is temporarily not in use, bui it is necessary to leave it turned on for instant service, set POWER switch to STBY. Otherwise, press and hold PUSH button, and set POWER switch to OFF. \\
\hline
\end{tabular}

\section*{OPERATOR'S MAINTENANCE.}

Maintenance by operating personnel is limited to cleaning the air filter and replacing fuses. The location of defective components within the instrument often requires technical skill and use of troubleshooting techniques. In many cases a calibration adjustment is required when a component is replaced. Therefore, only a qualified technician should attempt trouble shooting within the instrument.

\section*{1-10. OPERATING CHECKS AND ADJUSTMENTS.}

The test function of the counter serves to check the operation of the majority of the circuits within the instrument. The procedure in paragraph 3-4 should be used in periorming this check. The indications shown in table 3-4 should appear on the readout as the time base switch is rotated. The instrument is malfunctioning if the indications in table 3-4 are not obtained.

Adjustments to the counter other than normal operating adjustments should not be made by the operator.

\section*{1-11. PREVENTIVE MAINTENANCE.}

The air filter installed over the air intake on the rear panel prevents dust and dirt from entering the counter. The filter must be cleaned periodically so 28 not to restrict air flow into the instrument. For the cleaning procedure, see тM 11-6625-700-25. The fan motor is lubricated for life and should not require any preventive maintenance.

\section*{1-12. EMERGENCY MAINTENANCE.}

Emergency maintenance procedures are limited to replacing the power supply fuses. Both fuses are located on the interface panel behind the electronic frequency converter. Should fuse replacement become necessary, loosen the converter thumbscrew and pull the converter out of the counter. Replacement fuses are located in clips adjacent to the fuse holders on the counter bracket exposed by removal of the converter. Both fuses are identical 3-ampere plug-in types. Be sure to install a new spare fuse in the clip after the fuse is removed for replacement. See figure 5-36 for fuse location.
```

2-1. Scope of Maintenance
The maintenance duties assigned to the operator of the equipment
are:
a. Daily preventive maintenance checks and services (para 2-\&).
b. Cleaning प(para 2-b).
2-2. Preventive Maintenance
Preventive. maintenance is the systematic care, servicing, and
inspection of equipment to prevent the occurrence of trouble, to
reduce downtime, and to assure that the equipment is serviceable.
a. Systematic care. The procedures given ir paragraph 2-5
cover routine systematic care and cleaning essential to proper upkeep
and operation of the AN/USM-207.
b. Preventive Maintenance Checks and Services. The preventive
maintenance checks and services chart (para 2-4) outlines functions
to be performed daily. These checks and services are to maintain
Army electronic equipment in a combat-serviceable condition; that is,
in good general (physical) condition and in good operating condition.
To assist operators in maintaining combat serviceability, the chart
indicates what to check, how to check, and the normal conditions;
the References column lists the illustrations, paragraphs, or
manuals that contain detailed repair or replacement procedures. If
the defect cannot be remedied by performing the corrective action
indicated, higher category maintenance or repair is required. Records
and reports of these checks and services must be made in accordance
wlththe requirements set forth in TM 38-750.
2-3. Operatorts Preventive Maintenance Checks and Services Periods
Operator preventive maintenance checks and services of the
equipment are required daily. Paraqraph 2-4 specifies the checks and
services that must be accomplished daily (or at least once each week
If the equipment is maintained in standby condition).

```

2-4. Operator's Daily Preventive Maintenance Checks and Services Chart
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Sequence } \\
& \text { No. }
\end{aligned}
\] & Item to be inspected & Procedure & Reference \\
\hline 1 & Completeness ............. & See that the equipment is complete (appx B). & None . \\
\hline 2 & Exterior surfaces ....... & Clean the exterior surfaces, including the panel (para 2-5). Check the meter glass for cracks. & None. \\
\hline 3 & Connectors ............... & Check the tightness of all connectors.. & None . \\
\hline 4 & Controls and indicators. & While making the operating checks (item 5), observe that the mechanical action of each switch and control is smooth and free of external or internal binding, and that there is no excessive looseness. & None. \\
\hline 5 & Operation ................. & During operation, be alert for any unusual performance or condition. & None. \\
\hline
\end{tabular}

\section*{2-5. Cleaning}

Inspect the exterior of Digital Beadout Electronic Cometor A1/0SM-207. The exterior eurfaces mast be free of dust, greace, and fingue.
s. Remove dunt and loose dirt with a clean aloth.

Mroings Cleaning compome is flamable and its fures are toric. Provide adequate ventilaticn. DO not use near a flame. Aroid contaot with the aldin; wash off any that spills on your hands.
h. Pancve araase, Imagus, and groond-in dirt frem tho case and cover of the test set. Dee a oloth dampened (not wet) with Cleming Compornd (FBi 7930-395-9542).
A. Bomove dust or dirt from plage and jacke with a bruch.
d. Clean the froat panel and control hobs with a soft, clean eloth. If dixt is difficuit to ramove, darpen the cloth with mators use inild conp if nocesenry.

\section*{REFERENCES}
Following is a list of references that are available to the
operator of Digital Readout, Electronic Counter AN/USM-207.

A-1

\section*{Section I. INTRODUCTION}
B-1. General

(1) Source code, column 1a. The selection status and source for the listed item is noted here. The source code used is:

\section*{Code Explanation}

P

> Applies to repair parts which are stocked in or supplied from the GSA/DSA, or Army supply system, and authorized for use at indicated maintenance categories.
(2) Maintenance code, column lb. The lowest category of maintenance authorized to install the listed item is noted here. The maintenance code used is as follows:

Code Explanation

ㅇ
Organizational maintenance
(3) Recoverability code, column lc. The information in this column indicates whether unserviceable items should be returned for recovery or salvage. Recoverability codes and their explanations are as follows:

Note: When there is no code indicated in the recoverability column, the part will be considered expendable.
```

 Code Explanation
 R
 applies to repair parts and
 assemblies that are economically
 repairable at DSU and GSU
 activities and are normally
 furnished by supply on an exchange
 basis.
    ```

```

 h. Illustration, Column 8.
 (1) Figure number,column 8a. Not used.
 (2) Item or symbol number,column 8b. The call out number
 used to reference the item in the illustration appears
 in this column.
 B-3. Federal Supply Codes
This paragraph lists the Federal supply code with the associated
manufacturer's name.
Code Manufacturer
02979 Computer Measurements Co.,
Division of Pacific
Industries Inc.
81349
Military Specifications
B I I L
ESC-FM 2720 - 66

```

SECTION II. BASIC IBsus ITEMS LIST


B-3



\section*{HEADQUARTERS}

DEPARTMENT OF THE ARMY
Washington, D.C., 5 October 1966
TM 11-6625-700-10 (a reprint of Navy publication NAVSHIPS 0969-028-4020) is pub lished for the use of Army personnel.

By Order of the Secretary of the Army:

Official:
```

HAROLD K. JOHNSON,
General, United States Army,
Chief of Staff.

```
KENNETH G. WICKHAM,
Major General, United States Army,
The Adjutant Gewizl.

Distribution:
Active Army:
\begin{tabular}{|c|c|c|}
\hline USASA (2) & USAARMS (2) & 7-100 \\
\hline CNGB (1) & USAIS (2) & 11-7 \\
\hline OCC-E (7) & USAES (2) & 11-57 \\
\hline Dir of Trans (1) & USASA Ting Cen \& Sch (5) & 11-97 \\
\hline CofEngrs (1) & USAADS (5) & 11-98 \\
\hline TSG (1) & USATC Armor (2) & 11-117 \\
\hline CofSpts (1) & USATC Engr (2) & 11-155 \\
\hline USAARENBD (2) & USATC Inf (2) & 11-157 \\
\hline USAAESWBD (5) & USASTC (5) & 11-158 \\
\hline USAAVNTBD (5) & WRAMC (1) & 11-500 (AA-AC) \\
\hline USACDC Agcy (1) & Army Pic Cen (2) & (KA, RO, RR) \\
\hline USAMC (5) & USACDCEC (10) & 11-687 \\
\hline USCONARC (5) & Instl (2) except & 11-592 \\
\hline ARADCOM (5) & Ft Gordon (10) & 11-597 \\
\hline ARADCOM Rgn (2) & Ft Huachuca (10) & 17 \\
\hline OS Maj Comd (4) & WSMR (5) & 29-1 \\
\hline LOGCOMD (2) & Ft Carson (25) & 29-15 \\
\hline USAMICOM (4) & Ft Knox (12) & 29-16 \\
\hline USASTRATCOM (4) & Army Dep (2) except & 29-21 \\
\hline USASTRATCOM-EUR (5) & LBAD (14) & 29-25 \\
\hline USASTRATCOM-SO (5) & SAAD (30) & 29-26 \\
\hline USAESC (85) & TOAD (14) & 29-35 \\
\hline MDW (1) & LEAD (7) & 29-36 \\
\hline Armies (2) & NAAD (5) & 29-75 \\
\hline Corps (2) & SVAD (5) & 29-76 \\
\hline USAC (3) & ATAD (10) & 29-79 \\
\hline 507th USASA Gp (5) & ERAD (5) & 29-105 \\
\hline 508th USASA Gp (5) & GENDEPS (2) & 29-109 \\
\hline 318th USASA Bn (5) & Sig Sec GENDEPS (5) & 32-56 \\
\hline 319th USASA Bn (5) & Sig Dep (12) & 32-57 \\
\hline 1st, 2nd 3rd, 4th & Sig FL.DMS (2) & 32-67 \\
\hline 5th, 9th, 12th, & AMS (5) & 32-77 \\
\hline 13th, 14th and & USAERDAA (2) & 32-78 \\
\hline 15th USASA FId & USAERDAW (13) & 32-500 (BN, EL, HN) \\
\hline Stations (5) & USACRREL (2) & 37 \\
\hline Sve Colleges (2) & Detroit Arsenal (5) & 37-100 \\
\hline USASESCS (5) & Units org Under fol TOE: & 44-568 \\
\hline USAADS (2) & (2 cys each) & 57-100 \\
\hline USAAMS (2) & 7 & \\
\hline
\end{tabular}
\(N G:\) None.
USAR : None.
For explanation of abbreviations used, see AR 320-50.```


[^0]:    *This change supersedes C 1, 14 February 1974.

