

INSTRUCTION BOOK

> for

RADIO RECEIVING EQUIPMENT

NAVY MODELS
RBB-5, RBB-6,
RBC-5 and RBC-6

RCA VICTOR DIVISION RADIO CORPORATION OF AMERICA

Camden, New Jersey, U. S. A.

Approved by BuShips: 2 July 1951

TABLE OF CONTENTS

SECTION I-GENERAL DESCRIPTION
Paragraph Page

1. General 1-1
2. Description $1-2$
a. Preselector Section 1-2
b. IF/AF Section 1.5
c. Rectifier Power Unit 1-6
3. Miscellaneous 1-6
SECTION 2-THEORY OF OPERATION
4. General Theory 2-1
5. Preselector Circuits 2-1
a. R-F Input Circuits 2.1
b. R-F Stages 2-2
(1) R-F Amplifier, RBB 2-2
(2) R-F Amplifier, RBC 2-3
(3) Oscillator 2-3
(4) First Detector 2-3
6. IF/AF Circuits 2-3
a. MOD Position, S304 2.5
b. MOD-AVC Position, S304 2-5
c. MOD-AVC-SIL Position, S304 2-8
d. CW Position, S-304 2.8
e. CW-OL Position, S304 $2-8$
f. I-F Circuits $2-8$
g. Second Detector 2.8
b. Noise Limiter 2-11
i. A-F Circuits 2.11
j. Agc Circuit 2-14
k. Silencer and O.L. Circuits 2-14
l. CW Oscillator 2-17
m. Meter Circuits 2-17
n. Cathode Follower 2.17
7. Power Unit Circuits 2.17
SECTION 3-INSTALLATION
8. Unpacking 3-1
9. Installation 3-1
a. Rack Mounting 3.1
b. Shelf Mounting 3-1
(1) Receiver $3 \cdot 1$
(2) Power Unit $3-1$
c. Link Connections 3.9
d. Cable Connections 3-11
10. Initial Adjustments 3-12

SECTION 4-OPERATION

Paragraph	
1. Routine Operation	Page

1. Routine Operation $4-1$
SECTION 5-OPERATOR'S MAINTENANCE
2. Routine Check Charts $5-1$
3. Emergency Maintenance 5-1
a. Notice to Operators $5-1$
b. Replacement of Tubes and Fuses 5-1
(1) Probable Fuse Failure 5-1
(2) Tube Locations 5-1
(3) Replacing Electron Tubes 5-1
SECTION 6-PREVENTIVE MAINTENANCE
4. Routine Maintenance Check Charts 6.0
5. Lubrication 6-0
SECTION 7-CORRECTIVE MAINTENANCE
6. General Maintenance 7-1
7. Voltages and Resistances 7.3
a. Power Unit 7-3
b. RBB/RBC Receiver 7.5
8. RBB/RBC Noise Level and Sensitivity 7.13
a. Noise Level 7-13
b. A-F, I-F, and R-F Sensitivity $7-13$
9. Circuit Alignment 7-18
a. IF/AF Section Alignment, RBB-RBC $7-18$
(1) I-F Alignment 7-18
(2) CW Oscillator Alignment 7.18
(3) Adjustment of Band-Pass Filter Pad R364 7-18
(4) Adjustment of Output Limiter Pad R362 $7-19$
b. Preselector Section Alignment, RBB/RBC $7-19$
(1) Heterodyne Oscillator Heater Adjustment, RBB/KBC 7-19
(2) Heterodyne Oscillator Alignment, RBB/RBC $7-19$
(3) Neutralization, Heterodyne Oscillator-RBC $7-23$
(4) R-F Amplifier Alignment, RBB/RBC 7.26
(5) Band Spread Adjustments, RBB 7-26
(6) I-F Rejection Adjustment, RBB 7-26
c. Input Meter Adjustments 7-26
d. Winding Data 7-28

Figure 2-14. Schematic Diagram, Rectifier Power Unit

Figure 4-1. RBB/RBC Receivers, Front View

SECTION 4

OPERATION

1. ROUTINE OPERATION.

Four tuning bands in the RBB and RBC units cover frequency ranges as follows:

$$
\begin{aligned}
& \text { RBB-0. } 50 \text { to } 4 \text { megacycles } \\
& \text { RBC-4 to } 27 \text { megacycles }
\end{aligned}
$$

With the exception of the frequency range, operation is identical for both models.

Features in the RBB/RBC unit include control of overall sensitivity and selectivity, choice of agc, silencer and noise limiter circuits, and control of audio response. These featuers are utilized in varying combinations and degrees depending on local conditions and whether voice, mcw , or cw transmission is being received. In general, the RECEPTION switch controls selection of the specialized circuits. The various panel components and their purpose are listed in Table 4-1. Numbers in Table 4-1 refer to items similarly numbered on the RBB/RBC panel view, Figure 4-1.

For proper operation of the RBB/RBC receiver the significance of each panel component in Table 4.1 should be clearly understood. Of the items listed, only five controls are operative in (or have functions applicable to) certain receiving conditions as selected by the RECEPTION switch. Particular note should be made of these five controls; items $9,12,17,18$, and 19 in Table 4.1.

In any emergency, where one Rectifier Power Unit fails as part of a two-unit arrangement, it is possible to operate two receivers from the one operative power unit. To effect the emergency arrangement, disconnect the output cable from the disabled power unit. Remove the receptacle cap from the unused output

TABLE 4-1. RBB/RBC PANEL COMPONENT IDENTIFICATION

NO. (FIG. 4-1)	COMPONENT	FUNCTION
1	ANT COMP capacitor	Facilitates reception of distant stations. Should be readjusted on each band for difficult receiving conditions, as specified in operating instructions.
2	Band chagge switch	Selects choice of bands as follows: $\begin{array}{cc}R B B & R B C \\ \text { 1. } 0.50-0.84 \mathrm{mc} & 4.00-6.45 \mathrm{mc} \\ \text { 2. } 0.84-1.41 \mathrm{mc} & 6.45 .10 .30 \mathrm{mc} \\ \text { 3. } 1.41 .2 .37 \mathrm{mc} & 10.30-16.50 \mathrm{mc} \\ \text { 4. } 2.37-4.00 \mathrm{mc} & 16.50-27.00 \mathrm{mc}\end{array}$
3	Tunins control	Selects frequency desired.
4	INPUT meter	Facilitates tuning by indicating input signal strength, but only when agc is selected.
5	ZERO SET control	Requires no adiustment during operation. Serting specified in Section 3, paragraph 3.

TABLE 4-1.-(Continued)

$\text { (FIG. }{ }_{\text {N-1) }}$	COMPONENT	FUNCTION
6	RADIO SELEC.	Controls selectivity in i-f stages. Setring should be at BROAD unless excessive noise requires MEDIUM or SHARP posicion. Opertaion of auxiliary equip. ment zuch as Frequency Shift Converter requires BROAD Converter requires BROAD setting.
7	OUTPUT meter	Indicates ourpur in decibels. Not required durint operation.
8	$\underset{\text { awitch }}{\text { ADD }}$ DEIBELS	Connecs OUTPUT meter and adjusts for varying levels during test and makintenance.
9	OUTPUT LEVEL control	Functions to control audio level when atse is selected and when output limiting (O. L.) is used during cw reception. Inoperative under other conditions. Substitutes for GAIN concrol.
10	D.C. VOLTS meter	Indicares preseace of plate volt. ase. approximately 200 volts. and thus whether power unit is operating.
11	Panel light	Illumination, and indirectly as indication of tube heater yoltage.
12	SILENCER control	Adjuss silencer eircuit to quiet receiver during intermitreat transmission by cutting off all signals below the level selected. Operative only in MOD.AVC. SIL position of RECEPTION switch.
13	NOISE LIMITER switch	Limita noise by blocking reception during noise peaks.
14	PHONES jack	For connecting headphones.
13	POWER switch	Controls input power to Rectifier Power Unic.
16	RECEPTION switch	
17	FREQUENCY VERNIER control	Adjusts piech of cw nose.
18	AUDIO SELEC. TIVITY	Used in SHARP position for restricted cw or maw audio reaponse. Otherwise used in BROAD positioa.
19	GAIN	Controls senaitivity when asce is not used; otherwise inopera. tive. Substicutes for OUTPUT LEVEL control.

NAVSHIPS 91469
OPERATION

TABLE 4-2. OPERATING INSTRUCTIONS

SEQUENCE	CONTROL AND POSITION	VOICE	MCW	cw	REmARKS
STARTING THE EQUIPMENT					
1	ADD DECIBELS to OFF	I	x	x	
2	RADIO SELECTIVITY to BROAD	\times	x	x	
3	OUTPUT LEVEL mo zero	x		I	
4	SILENCER to zero	x		\times	
5	NOISE LIMITER to ON	x	$\underline{1}$	x	
6	GAIN to zero		x	x	
7	AUDIO SELECTIVITY to BROAD	z	x	x	
8	$\begin{aligned} \text { RECEPTION: } & \text { MOD-AVC-SIL } \\ & \text { MOD.AVC } \\ & \text { MOD } \\ & \text { CW.OL } \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	I	$\frac{x}{x}$	For excessive interference or for intermittent reception. For local reception. Voice reception also possible. For excessive interference.
9	Band Switch to proper bund	x	\pm	x	
10	POWER switch to ON	Y	\pm	x	
OPERATING THE EQUIPMENT					
11	OUTPUT LEVEL	x			Rocate until background noise is heard.
12	Tuning knob to station	x			INPUT meter deflection should be maximum.
13	OUTPUT LEVEL	I			Readjust for desired level. For excessive noise, turn RADIO SELEC- TIVITY switch to MEDIUM. Retune as necessary. For distant stations use MOD-AVC-SIL setting of RECEPTION switch. After station is tuned disappears. R Retune as necessary. Until notting of the SILENCER control is critical: a division or two on the dial may cause loss of reception.
14	GAIN control		x		Rotate until background noise is heard.
15	Tuning knob to station		x		
16	GAIN control		x		Readjust for desired level. For excessive interference turn RADIO SELECTIVITY knob to MEDIUM or SHARP. Retune as necessary. For excessive noise, throw AUDIO SELECTIVITY switch to SHARP.
17	GAIN control			x	Rotate until background noise is heard.
18	Tuning knob to station			x	
19	GAIN control			x	Readjust for desired level.
20	FREQUENCY VERNIER			I	Adjust for loudest signal.
21	AUDIO SELECTIVITY to SHARP			I	
22	FREQUENCY VERNIER			x	Readjust for loudest signal. For excessive fading. use CW-OL searing of RECEPTION switch. Set OUTPUT LEVEL control to 100. Turn up GAIN until weak signal is heard. Decrease OUTPUT Tit crease. Leave control in that position.
23	ANT. COMP	x	x	x	For best distance reception on each band, tune in a signal at the extreme high-frequency end of the band and adjust the ANT. COMP. knob for greanest volume. If no signal is available, set the tuning dial at 860 for the RBB or at 870 for the RBC, and adjust for maximum noise output.
STOPPING THE EQUIPMENT					
24	POWER swich so OFF	x	x	x	

Figure 5-2. Tube Locations, RBC

SECTION 7

CORRECTIVE MAINTENANCE

1. TROUBLE SYMPTOMS AND CIRCUIT ANALYSIS.

First step in servicing of the RBB/RBC equipment should be to check the power unit fuses and make a visual inspection of the unit chassis. This inspection may reveal charred insulation or other evidence of abnormal operation. Resistors and capacitors should be inspected for discoloration or leakage. If components appear normal, tubes should be checked as specified in Section 6. When testing tubes remove them one at a time to insure replacement in the same socket.

This procedure will avoid the possibility of disturbing circuit alignment.

A fault in some part of the equipment may usually be associated with abnormal receiver output conditions, control settings, control operation, or operation of meters and pilot lamp. Any visible deviation from normal operation of the equipment usually will assist in localizing the source of trouble. Possible causes of troubles which might develop, and the symptoms by which they may be recognized, are described in Table 7-1.

TABLE 7-1. SYMPTOMS AND CAUSES

SYMPTOMS	causes
No Signal or Noise Output.	See that all knob sertings are correct. Defect in rectifier power supply. If pilot lamps do not light check input to power supply. If no indication on "D-C VOLTS" meter is obtained check rectifier tube V401 in Rectifier Power Unit. Check headphones and associated equipment. Check to see if receiver is totally inoperative in other positions of the band switch, If receiver is inoperative in one band switch position only, refer to Figures 7.64 and 7.65 , and check components in inoperative band switch position. Defective tubes (starting at audio end, check each rube). Check tube socket voltages and compare readings obtained with those given in Tables 7.2 to 7.8 .
Low Sensitivity.	See that all knob setzings are correct. Check for normal noise outpur readings on OUTPUT meter. If normal indications are obtained, refer to Figures 7.64 and $7-65$, and check components of antenna input stage. Defective tubes (aging cubes will cause a reduction in sensitivity). Measure inputs to various stages of receiver and compare results with those given in Paragraph 3. Check to see if a condition of low sensitivity exists on all positions of band switch. If sensitivity is low on one band switch position only, check components in band switch position where low sensitivity is evident.
Low Maximum Noiso Output and No Signal Output.	Defect in heterodyne oscillator circuit. Replace oscillator tube V103 (or V203) with one of known condition. Refer to Figures 7.64 and 7.65 , and check components of this circuit. Refer to Tables 7.9 and $7-10$ and check to see that resistance measurements obtained agree with those tiven.

(Continued)

TABLE 7-1.-(Continued)

SYMPTOMS	CAuses
Low Signal-to-Noise Ratio is Obtained with Normal Output Readings (see Paragraph 3).	Cheick the ANT COMP. knob setcing. Check the antenna circpits. Check, the external transmission line connections. Check the connections of other receivers to the same antenna. Check the receiver circuits preceding the grid of the first r-f tube V101 (or V201). Check that the condition is not due to external noise pick-up, or interference from local transmitters or othet electrical equipment. Check the antenna link connertions as shown in Figures 3-11 and 3-12. NOTE A condition of poor signal-to-noise ratio may be caused also by a noisy condition in the receiver circuits or failure of the r-f amplifer tubes and circuit. These conditions, however, may be detected usually by the use of Tables 7-13 and 7-14.
No Output or Low Sensitivity for Particular Control Settings.	Defect in circuit affected by particular control setting. Refer to Figures 7.64 and 7.65, and check components associated with the control. If faulty operation is obtained with the RECEPTION knob on CW or CW-OL, and the equipment operates normally on the MOD position of the switch, check the cw oscillator tube, V304, and its associated circuit. Normal operation of the cw oscillator is indicated by reception of cw signals, and by an increase in receiver noise output of approximately 6 db . when the RECEPTION knob is changed from MOD to the " CW " position. Check the contacts of the band switch by switching back and forth through affected band several times. If intermittent operation is evident check band switch contacts. If trouble is experienced with RADIO SELECTIVITY switch check input to various stages with the values given in Tables 7.15 to $7-18$. Abnormal operation when the NOISE LIMITER switch is placed in the ON position. may be due to defective noise limiter tube V306 or other components of the circuit. Normal operation of the a.g.c. system is indicated by the INPUT meter operation and by an essentially constant output from signals of widely different intensity. except the output of very weak signals. Fautty operation of the a.g.c. system may be evidenced by distortion of strong signals. Make certain that the OUTPUT LEVEL control is sufficiently retarded. Failure of the INPUT meter to operate indicates trouble in the meter circuit, firse i.f grid circuit V 301 or a.g.c. diode tube V 305 and associated circuits. If the. INPUT meter operates, but trouble is still evident in the a.g.c. system the grid circuits of the first a-f stage, second i-f stage, or first and second r.f stages should be investigated. Normal operation of the silencer circuit is indicated, if with the RECEPTION transfer switch in the MOD.AVC-SIL position, a high background noise is obtained with the SILENCER control at minimum and the OUTPUT LEVEL control sufficiently advanced. The noise output should remain constant as the SILENCER control is advanced to a setting of approximately 30 . At this setting the noise output should be reduced approximately 20 db and remain cur off as the SILENCER control is further advanced to maximum. A fault in the sitencer circuit is indicated by failuce of the silencing action, abnormal hum outpur in the silenced condition, and by wide deviations of the control setting at which silencing action occurs. Check the circuir bv reference to Paragraph 2. Normal operation of the output limiter citcuit (RECEPTION transfer switch in the CW-OL position) is indicated if this circuit holds the receiver output essentially constant for wide variations in signal' levet or GAIN control setting except for very weak signals. If faulty operation is obtained, the outpu limiser circuir should be amalyied by reference to Paragraph 2. Difficulty with operation of the AUDIO SELECTIVITY switch in the SHARP position would indicate a fault in the audio band-pass filter unit and associated circuit.
Selectivity Low and Interference High.	A faulty condition of selectivity of signal interference is diffrult to recognize since the strength of the interfering signal is usually unknown. An approximate measure of selectivity may be made, by noting approximate signal and interference input levels as indicated on the INPUT meter, and the frequency separation indicated by receiver tuning dial readings. Reduction in selectivity will be accompanied notmally by reduction in sensitivity. and the trouble may be analyzed in the manner described for low sensitivity conditions. Interference conditions from local transmitters may be attributed usually to fauley shiclding, poor ground connections, or line fles defects. The panel thumbscrews should be tiphtened and atl ground connections examined. Refer to Paragraph 5.

(Continued)

TABLE 7-1.—(Continued)

SYMPTOMS	CAUSES
Noisy Operation.	Should a condition of noisy operation arise, check the effecs of removing the antenna connection, to derermine whether the noise originates within the equipment. The trouble may be located in some cases by measurement of noise outputs with successive tubes removed (Paragraph 3). Loose connections, imperfect shielding, or noisy tubes may be located by tapping various suspected parts.

As a further aid in locating difficulties, Figure 7-2 is provided. Switch positions on this trouble-shooting chart are supplied as a guide only: circuits associated with a particular switch setting should be checked. Table 2.1 in Section 2 lists the band switch positions and contacts. RECEPTION switch S304 panel settings and contacts are as follows:

MOD-AVC-SIL	S304, contacts $6-12$
MOD-AVC	S304, contacts $5-11$
MOD	S304, contacts $4-10$
CW	S304, contacts $3-9$
CW-OL	S304, contacts $2-8$

The RADIO SELECTIVITY switches, S306, S307, and S308, are shown in the BROAD position on the if/af section schematic diagram, Figure 7-67.

In locating trouble, the servicing block diagram, Figure 7-63, should also be utilized.

CAUTION

To avoid shock due to charging current in the a-c line filter capacitors, the equipment should never be operated while ground connections are removed from the rectifier power or receiver unit cabinets. When a unit is operated out of its cabinet, an additional ground should be connected to the chassis.

Due to the many circuits involved in the five positions of S304, the servicing block diagram, Figure 7.63 , should be utilized when localizing trouble. Fig. ure 3-16, Section 3, is the primary power distribution diagram.

Only interconnection cable W401, between receiver and power unit, is supplied with the equipment. Details for cable $\mathbf{W} 401$ are shown on Figure 7.59. Other cables are shown on Figures 3-3 and 3-14 in Section 3.

2. VOLTAGES AND RESISTANCES.

Localizing a circuit fault is facilitated by checking the resistances and operating voltages throughout the equipment. A 20,000 ohms-per-volt meter such as Multimeter TS-352/U series is required for this purpose.
a. POWER UNIT.-Measurement of the power unit load voltages may be made at terminal board E301 or at the rear of receptacle J301. Values should be as listed in Table 7-2.

TABLE 7-2. RECTIFIER POWER UNIT, OUTPUT VOLTAGES

MEASUREMENTS AT E301	$\begin{gathered} \text { MEASUREMENTS } \\ \text { AT } \\ \text { J301 } \end{gathered}$	VOLTAGES
		$\begin{gathered} \text { LOAD- } 1 \text { REB OR } 1 \text { RBC } \\ \text { RECEIVER } \end{gathered}$
2 to 5	A to B	17 v. ac
7 to 8	C to D	6.3 v. ac
1 to 5	E to F	105 v . de
3 to 5	F co G	200 v. dc.
-	P so S	115 v. ac

Voltage tolerance, 20%.
No-load voltages from the power unit may be measured at the receiver end of cable W 401 by connecting a jumper between pins S and P on the plug. These voltages are tabulated in Table 7.3. Before connecting the jumper remove input supply plug $P 401$ from receptacle J401. Do not operate the power unit without load for more than a few minutes.

TABLE 7-3. RECTIFIER POWER UNIT, NO-LOAD OUTPUT VOLTACES

$\begin{aligned} & \text { MEASUREMENTS } \\ & \text { AT } \\ & \text { W401 } \end{aligned}$	VOLTAGES no-LOAD
A to B	18 v. ac
C to D	7.3 v. ac
\mathbf{E} to \mathbf{F}	108 v. ac
F to G	240 v. dc

Resistances in the power unit are listed in Table 7-4. As an additional check, Figure 7-3 lists the tube socket resistances. Power unit components are identified on Figures 7-4 and 7.5.

Figure 7-2. Trouble-Shooting Chart

TUBE SYMBOL No.	PIN NUMBERS							
	1	2	3	4	5	6	7	8
$\begin{aligned} & \text { Y401 } \\ & \text { V402 } \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	open open	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	open NC	NC open	open NC	$\mathrm{NC}_{\mathrm{NC}}$	open NC

Alt external cables disconnected.
All tubes in sockets.
All measurements made to ground.
Figure 7-3. Power Unit, Tube Socket Resistances

TABLE 7-4. RECTIFIER POWER UNIT, RESISTANCE MEASUREMENTS

MEASUREMENT POINTS	RESISTANCE
J401.2 to J403-S	1.63
J401-1 to T401-1	1.61
J401-1 to T401-2	2.68
J401-1 to T401.3	2.72
J401-1 to T401-4	2.75
J403-P to J401.1 (tink on 115 v.)	2.75
V401.2 to V401.8 (tube out)	0.07
J403.F to V401-4 or T401.7	43.6
J403-F to V401-6 or T401.5	43.6
J403.A to J403.B	0.52
J403.C to J403.D	0.11
J403-G to T401-12	200
J403.G to J403-E	3600

All external cables disconnected.
All tubes in sockets unless otherwise noted.
All resistances in ohms.
Tolerance 20%.

Figures 7.58 and 7.59 are the power unit connection and schematic diagrams, respectively.
b. RBB/RBC RECEIVER.-Tube layout and identification for the RBB/RBC units are indicated on Figure 7-6.

CAUTION

When removing first heterodyne oscillator tube V103 (or V203), turn off power or remove regulator tube V106 (or V206), to avoid overload of the heater-shunt potentiometer, R116 (or R219).

Table 7-5 lists the tube operating characteristics.
7-5

Figure 7-4. Power Unit Component Identification, Above Chassis

Figure 7-5. Power Unit Component Identification, Below Chassis

Figure 7-6. RBB/RBC, Tube Socket Layout and Identification

Figure 7-7. RBB/RBC Panel Component Identification

Figure 7-8. RBB/RBC Receptacle Identification, Rear View

Note

All tubes of a given type supplied with the equipment shall be consumed prior to employment of tubes from general stock.

To facilitate voltage and resistance measurements, the preselector section is shown separately from the if/af section. Tube socket voltages and resistances are given in the following tables:

Table 7.6-RBB preselector section, voltages Table 7-7-RBC preselector section, voltages Table 7-8-RBB/RBC if/af section, voltages Table 7-9-RBB resistances
Table 7-10-RBC resistances
Resistances at receptacles J301 and J302 are supplied in Tables 7-11 and 7-12, respectively. Tube operating currents are supplied along with the socket voltages.

TABLE 7-5. RATED TUBE CHARACTERISTICS

	$\begin{aligned} & \text { FILA- } \\ & \text { MENT } \\ & \text { VOLT- } \\ & \text { AGE } \\ & (V) \end{aligned}$	FILA. MENT CURRENT (A)	Plate VOLTAGE (V)	GRID BIAS (V)	$\begin{aligned} & \text { SCREEN } \\ & \text { VOLT- } \\ & \text { AGE } \\ & \text { IVI } \end{aligned}$	plate CURRENT (MA)	SCREEN CUR: RENT (MA)	A-C plate RESIST. ANCE (OHMS)	$\begin{aligned} & \text { VOLT- } \\ & \text { AGE } \\ & \text { AMPLI- } \\ & \text { FICA- } \\ & \text { TION } \\ & \text { FACTOR } \\ & \text { (MU) } \end{aligned}$	TRANSCONDUCTANCE (MICROMHOS)		EMIS3ION	
TUBE TYPE										NORMAL	MINIMUM	$i_{(\mathrm{MA})}$	TEST VOLTS
SU4-G	5.0	3.0										225	75
6AB7	6.3	0.45	300	-3	200	12.5	3.2	700,000	3,500	5,000	4,000	20	65
6H6	6.3	0.3	117			8						15	20
6K6-GT	6.3	0.4	250	-18	250	33	10	90,000	207	2,300	1,800	40	30
6SK7	6.3	0.3	250	-3	100	9.2	2.6	800,000	1,600	2,000	1,600	65	30
$6.88 \dagger$													
991			59*			2							
OC3/VR105			105**			5.40							

\dagger Amperite regulating tube, 6.8 volts, 0.5 ampere capacity.

- 67.87 volts starting.
** 115 volts starting.

TABLE 7-6. TUBE SOCKET VOLTACES-RBB PRESELECTOR

TUEEsYMBOL	$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	UNIT	PIN NUMBER								$\begin{aligned} & \text { GAIN } \\ & \text { CONTROL } \\ & \text { SETTING } \end{aligned}$
			1	2	3	4	5	6	7	8	
V101	6SK7	volcs ma voles ma	0 0 0 0	$\begin{aligned} & 6.1 \mathrm{ac} \\ & 6.1 \mathrm{ac} \end{aligned}$	$\begin{gathered} 0.76 \\ 0 \\ 18 \\ 0 \end{gathered}$	0 0 0 0	2.1 6.0 18 0.5	$\begin{gathered} 66 \\ 1.4 \\ 85 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 180 \\ 5.0 \\ 208 \\ 0.4 \end{gathered}$	$*_{\text {max }}$ *max. min. min.
V102	6SK7	volcs ma volta ma	0 0 0	$\begin{aligned} & 6.1 \mathrm{ac} \\ & 6.1 \mathrm{ac} \end{aligned}$	$\begin{gathered} 0.7 \\ 0 \\ 13.5 \\ 0 \end{gathered}$	0 0 0 0	2.0 3.7 13.5 0.34	$\begin{aligned} & 66 \\ & 1.3 \\ & 85 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 180 \\ 4.6 \\ 208 \\ 0.3 \end{gathered}$	$*_{\text {max }}$ *max. min. \min.
V103	6AB7	volts ma	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	6.3 ac	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 14 \end{array}$	$\begin{gathered} 90 \\ 3.7 \end{gathered}$	0	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	*max. *max.
V104	6AB7	volts ma	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 1.2 \end{aligned}$	$\begin{gathered} 160 \\ 0.2 \end{gathered}$	6.1 ac	$\begin{array}{r} 195 \\ 1.1 \end{array}$	max. max.
V106	6.8B	volcs	$6.3 \dagger$			$17 \mathrm{ac} \dagger$					

All voltages measured to ground.
All voltages dc unless otherwise noted. Variation 20%.
All measurements made on 20,000 ohms-per-volt meter, scale used having maximum range not more than three times value given.

* Grid must be grounded while measuring.
$\dagger 10$ volks ac between pins 1.4 of V106.
RECEPTION switch S304 at CW sectiog.

7 Section
Paragraph $2 b$
NAVSHIPS 91469
TABLE 7-8. TUBE SOCKET VOLTAGES-RBB/RBC IF/AF SECTION

TUBE SYMBOL	$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	UNIT	PIN NUMBER								CONTROL SETTINGS			
			1	2	3	4	5	6	7	8	GAIN	RECEPTION	SILENCER	OUTPUT LEVEL
V301	6SK7	volts ma volts ma	0 0 0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 4.5 \\ 03.5 \\ 0.5 \end{array}$	$\begin{aligned} & \mathbf{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 4.5 \\ 53.8 \\ 23.5 \\ 0.24 \end{gathered}$	$\begin{gathered} 95.0 \\ 1.35 \\ 120.0 \\ 0.04 \end{gathered}$	$\begin{aligned} & 6.1 \mathrm{ac} \\ & 6.1 \mathrm{ac} \end{aligned}$	$\begin{array}{r} 202 \\ 21.8 \\ 212.8 \end{array}$	* 央max. -min. *min.	CW		
V302	6SK7	volts ma volts ma	0 0 0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.5 \\ 0 \\ 23.5 \\ 0 . \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.5 \\ 5.8 \\ 23.5 \\ 0.27 \end{array}$	$\begin{gathered} 80.0 \\ 1.27 \\ 120.0 \\ 0.05 \end{gathered}$	$\begin{aligned} & 6.1 \mathrm{ac} \\ & 6.1 \mathrm{ac} \end{aligned}$	$\begin{gathered} 182 \\ 2.8 \\ 2.12 \\ 0.22 \end{gathered}$	${ }^{*}$ max. *max. ${ }_{*}{ }^{\min }$ min.	CW		
V303	6SK7	volts me volts ma	$\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 2.9 \\ 0.9 \\ 24.5 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 2.9 \\ 5.6 \\ 24.5 \\ 1.8 \end{array}$	$\begin{gathered} 70.0 \\ 1.25 \\ 170 \\ 0.35 \end{gathered}$	$\begin{aligned} & 6.1 \mathrm{ac} \\ & 6.1 \mathrm{sc} \end{aligned}$	$\begin{array}{r} 180 \\ 4.4 \\ 205 \\ 1.5 \\ \hline \end{array}$	max \min min. \max	CW		
V304	6AB7	volts ma	0	0	${ }^{125} 0.08$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 1.85 \end{aligned}$	$\stackrel{125}{0.34}$	6.1 mc	145	max max.	CW		
V305	6H6	voles ma	0	6.1_{0}^{ac}	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	30	-0.3		0	0.02	max. max.	MOD MOD	max. \max.	max. max.
V306	$6 \mathrm{H6}$	```volts ma voles ma```	0 0 0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.03 \\ & 0 \\ & 0.11 \end{aligned}$	$\begin{gathered} 60.0 \\ 0.03 \\ 0 \\ 0.11 \end{gathered}$	$\begin{gathered} -4.61 \\ 0 \\ -4.6 \\ 0 \end{gathered}$		$\begin{aligned} & 6.1 \mathrm{ac} \\ & 6.1 \mathrm{ac} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0 \\ & 0.2 \\ & 0 \end{aligned}$	min. min. max. max.	CW-OL CW.OL CW.OL CW.OL	\ldots \ldots \ldots	max. max. min. min.
V307	6SK7	voles ma	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.55 \\ & 1.45 \end{aligned}$	$\begin{gathered} 28.0 \\ 0.36 \end{gathered}$	6.1 ac	$\begin{array}{r} 68.0 \\ 1.1 \end{array}$	max max.	$\begin{aligned} & \text { MOD } \\ & \text { MOD } \end{aligned}$	$\begin{aligned} & \max . \\ & \max . \end{aligned}$
V308	6SK7	volts ma vola ma voles ma	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0.06 \\ & -0.2 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 0.32 \\ & 3.4 \\ & 0.7 \\ & 0 \\ & 0 \end{aligned}$	15.0 0.08 53.0 0.34 0 0	$\begin{aligned} & 6.1 \mathrm{ac} \\ & 6.1 \mathrm{ac} \\ & 6.1 \mathrm{ac} \end{aligned}$	$\begin{gathered} 60 \\ 0.25 \\ 7 \\ 0.38 \\ 180 \\ 0 \end{gathered}$	min. min. max. max. \max. max.	CW-OL CWF-OL MOD.AVCIL MOD.AVC-SIL MOD-AVC-SIL MOD.AVC-SIL	max. max. max. max. min. min.	

Section 7 Paragraph 26

TABLE 7-10. TUBE SOCKET RESISTANCES-_RBC (PRESELECTOR AND IF/AF SECTIONS)

TUEE SYMBOL	$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	PIN NUMBER								$\begin{aligned} & \text { RECEPTION } \\ & \text { SWITCH } \\ & \text { SETTING } \end{aligned}$
		1	2	3	4	5	6	7	8	
V201	6AB7	0	0.3	220	1,300,000	220	140,000	0	20,000	MOD
V202	6SK7	0	0.3	220	1,300,000	220	140.000	0	20,000	MOD
V203	6AB7	0	40	0	47,000	0.1	open*	0.15	open*	MOD
V204	6SK7	0	0	4,700	1,000,000	4,700	120.000	0.3	20.000	MOD
V206	6.88	4.5	no conn.	no conn.	open*					\cdots
V301	6SK7	0	0	680	220,000	680	11,000	0.3	15,000	MOD
V302	6SK7	0	0	470	100,000	470	21,000	0.3	20.000	MOD
V303	6SK7	0	0	470	1,500,000	470	115,000	0.3	20,000	MOD
V304	6AB7	0	0	140,000	68,000	1,950	140,000	0.3	\$2,000	CW
V305	6H6	0	0.3	700,000	7,800	540,000	no conn.	0	15.000	MOD
V306	6 H 6	0	0	open	25,000	270.000	no conn.	0.3	2,300,000	MOD
V307	6SK7	0	0	0	3,200,000	1,000	480,000	0.3	125.000	MOD
V308	6SK7	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 0	0	$\begin{array}{r} 50,000 \\ 2,700,000 \end{array}$	$\begin{aligned} & 3,900 \\ & 3,900 \end{aligned}$	$\begin{array}{r} 2,200,000 \\ 250,000 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 500,000 \\ & 500,000 \end{aligned}$	$\begin{gathered} \text { CW-OL } \\ \text { MOD-AVC-SIL } \end{gathered}$
V309	6H6	0	0	0	open	1,600,000	no conn.	0.3	1,100,000	MOD
V310	6AB7	0	0	0	50.000	950	500,000	0.3	125,000	MOD
V311	6K6-GT	no conn.	0	15,000	15,000	1,000,000	no conn.	0.3	680	MOD
V501	6AB7	0	0	0	1,000.000	470	20,000	0.3	20,000	. . .

* Open only when power unit is disconnected.

Alt resistances in ohms. Variation 20%.
All resistances measured to ground.
All cables disconnected.
Tube removed from socket under test; all other rubes in place.

TABLE 7-11. RESISTANCES, J301

TERMINAL		
	RBE	RESISTANCES
A	REC	
B	7	7
C	0	0
D	0	0
E	0.3	0.3
F	open	open
G	0	0
S	10.000	15,000
P	open	open
	open	open

All resistances in ohms. Variations 20%
Alf resistances measured to ground

7-12
ORIGINAL

Where servicing requires separation of the two receiver sections or where disassembly operations are required, reference should be made to paragraph 5 , "Mechanical Maintenance," in this section.

Components on the RBB/RBC chassis are identified on Figures 7-9 to 7-16.

Figures 7-60 and 7-61 are the RBB and RBC preselector connection diagrams while Figures 7-64 and 7.65 are the corresponding schematic diagrams.

The RBB/RBC if/af section connection and schematic diagrams are supplied on Figures 7-66 and 7.67

3. RBB/RBC NOISE LEVEL AND SENSITIVITY.

Curves on operation of the RBB/RBC are supplied as follows:

Figure 7-38 - Dial calibration, RBB/RBC
Figure 7-39 \quad Cw sensitivity, RBB/RBC
Figures $7-40$ to 7.43 - Selectivity, bands 1-4, RBB
Figures $7-44$ to $7-47$ - Selectivity, bands 1-4, RBC
Figure 7-48 - I-f selectivity, RBB/RBC
Figure 7-49 - Image selectivity, RBB/RBC
Figure 7-50 - Audio fidelity, RBB
Figure 7.51 - Audio fidelity, RBC
Figure 7.52 - Resonant overload, RBB
Figure 7.53 - Resonant overload, RBC
Figure 7-54 - Agc, RBB
Figure 7.55 - Agc, RBC
Figure 7.56 - Output limiter, RBB
Figure 7.57 - Output limiter, RBC
a. NOISE LEVEL.-To locate the source of excessive receiver noise, first disconnect the antenna. If noise is not reduced, tap suspected parts to check for loose connections, imperfect shielding, or noisy tubes. Power supply line filters may also be defective.

Normal receiver noise values are tabulated in Tables 7.13 and 7.14 for the RBB and RBC units, respectively. Values shown are indicated on the OUTPUT meter and require that the receiver input be disconnected from the antenna and terminated in a standard dummy antenna, such as Antenna Simulator SM-35/URM- 25 unit furnished with RF Signal Generator Set AN/URM-25. The GAIN control knob should be at maximum, the RADIO SELECTIVITY control knob in the BROAD position, and the RECEPTION knob in the MOD position. Considerable variation may be expected in the values given due to normal tube and circuit variations.

TABLE 7-13. NOISE OUTPUT VOLTACES-RBB
Noise Output in DB (Zero Level=60 Microwatts)

BAND	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	OVERALL NOISE	$\begin{gathered} \text { V101 } \\ \text { RE- } \\ \text { MOVED } \end{gathered}$	$\begin{gathered} \text { V102 } \\ \text { RE- } \\ \text { MOVED } \end{gathered}$	$\begin{aligned} & \text { V203 PLATE } \\ & \text { VOLTAGE } \\ & \text { REMOVED } \end{aligned}$
1	$0.5 . \mathrm{mc}$ $0.84 \mathrm{mc}$	$\begin{aligned} & 22 \\ & 30 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	$\begin{aligned} & 11 \\ & 14 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
2	$\begin{aligned} & 0.84 \mathrm{mc} \\ & 1.41 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 20 \\ & 26 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & 0 \end{aligned}$
3	$\begin{aligned} & 1,41 \mathrm{mc} \\ & 2,37 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 22 \\ & 29 \end{aligned}$	$\begin{aligned} & 15 \\ & 21 \end{aligned}$	11	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
4	$\begin{aligned} & 2,37 \mathrm{mc} \\ & 4.00 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 23 \\ & 31 \end{aligned}$	$\begin{aligned} & 16 \\ & 23 \end{aligned}$	$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$

TABLE 7-14. NOISE OUTPUT VOLTAGES_-RBC Noise Output in DB (Zero Level=60 Microwatts)

BAND	DIAL SETTING	OVERALL NOISE	$\begin{gathered} \text { V201 } \\ \text { RE- } \\ \text { MOVED } \end{gathered}$	$\begin{gathered} \text { V202 } \\ \text { RE- } \\ \text { MOVED } \end{gathered}$	$\begin{aligned} & \text { V203 PLATE } \\ & \text { VOLTAGE } \\ & \text { REMOVED } \end{aligned}$
1	$\begin{aligned} & 4.0 \mathrm{mc} \\ & 6.45 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 26 \\ & 28 \end{aligned}$	$\begin{aligned} & 18 \\ & 22 \end{aligned}$	$\begin{aligned} & 13 \\ & 20 \end{aligned}$	1
2	$\begin{gathered} 6.45 \mathrm{mc} \\ 10.3 \mathrm{mc} \end{gathered}$	$\begin{aligned} & 25 \\ & 28 \end{aligned}$	16	$\begin{aligned} & 11 \\ & 20 \end{aligned}$	1
3	$\begin{aligned} & 10.3 \mathrm{mc} \\ & 16.5 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 14 \\ & 27 \end{aligned}$	$\begin{aligned} & 11 \\ & 20 \end{aligned}$	17	1
4	$\begin{aligned} & 16.5 \mathrm{mc} \\ & 27.0 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$	$\begin{array}{r} 6 \\ 16 \end{array}$	16	1

b. A-F, I-F, AND R-F SENSITIVITY.-Standard RBB/RBC output or sensitivity is obtained when, with a 600 -ohm non-inductive load connected to J302 and the ADD DECIBELS switch in the +20 position, the OUTPUT meter indicates zero db . This reading is equivalent to 6 milliwatts signal input. Noise output must have previously been checked to insure the proper signal-to-noise ratio.

To check the response in the a-f, i-f, and r-f portions of the receiver, the following equipment is required:
R.F. Signal Generator Set AN/URM-25 or Navy Model LP.

Navy Model LAJ series Audio Oscillator Equipment.

Navy type 60107 DC Microammeter.
Multimeter ME-25/U series.
Signal application points and values are listed in Tables 7.15 to $7-18$. In all four tabulations the standard output, defined in the preceding paragraph, must be obtained or the equipment is not operating satisfactorily.

TABLE 7-15. A-F INPUTS FOR STANDARD OUTPUT-RBB/RBC

GENERATOR	GENERATOR OUTPUT CONNECTION POINT
V307, pin 4	AT 1,000 CYCLES
V310, pin 4	0.15 vols
V311, pin 5	0.8 volts

Conditions:
RECEPTION switch at MOD.
AUDIO SELECTIVITY swich at BROAD.

Figure 7-9. RBB Component Identification, Above Chassis

Figure 7-10. RBB Component Identification, Below Chassis

TABLE 7-16. I-F INPUTS FOR STANDARD OUTPUT-RBB/RBC

GENERATOR CONNECTION POINT	400 KC GENERATOR OUTPUT, MODULATED 30\% AT 1,000 CYCLES		
	RADIO SELECT. SWITCH AT BROAD	RADIO SELECT. SWITCH AT MED.	RADIO SELECT. SWITCH AT SHARP
$\begin{aligned} & \text { V104, (V204), pin } 4 \\ & \text { V301, pin } 4 \\ & \text { V302, pin } 4 \\ & \text { V303, pin } 4 \end{aligned}$	38 microvolts 190 microvolts 4,800 microvolts 115,000 microvolts	40 microvolts 10,290 microvolts 90,000 microvolts	25 microvola 220 microvoles $\mathbf{9 , 2 0 0}$ microvolts $\mathbf{8 4 , 0 0 0}$ microvolts

Conditions:
RECEPTION switch at MOD.
GAIN control at maximum.
Plate voltage removed from V103 (V203). Refer to Figure 7-11 or 7-14.

TABLE 7-17. R-F INPUTS FOR STANDARD OUTPUT-RBB

	$\begin{aligned} & \text { DIAL } \\ & \text { SET- } \\ & \text { TING } \end{aligned}$		GENERATOR OUTPUT VALUE AND CONNECTION POINTS			
EAND			V104. PIN 4	$\begin{aligned} & \mathrm{VIOL}_{4} \\ & \text { PIN } 4 \end{aligned}$	$\begin{aligned} & \text { V1014 } \\ & \text { PIN } \end{aligned}$	*DUMMY ANTENNA
1	$\begin{aligned} & 0.5 \\ & 0.84 \end{aligned}$	0.5 mc 0.84 mc	320 microvolts 1100 microvolts	100 microvoles 150 microvolts	-24 microvolts 28 microvoles	2.3 microvolits 3.2 microvolts
2	$\begin{aligned} & 0.84 \\ & 1.41 \end{aligned}$	$\begin{aligned} & 0.84 \mathrm{mc} \\ & 1.41 \mathrm{mc} \end{aligned}$	290 microvoles 670 microvoles	100 microvolts 100 microvoles	25 microvolts 28 microvolts	2.5 microvolts 3.1 microvolts
3	$\begin{aligned} & 1.41 \\ & 2.37 \end{aligned}$	1.41 mc 2.37 mc	360 microvolts 1000 microvolts	104 microvolts 130 microvolts	26 microvolts 37 microvolts	2.4 microvolts 4.9 microvolts
4	$\begin{aligned} & 2.37 \\ & 4.0 \end{aligned}$	2.37 mc 4.0 mc	460 microvolts 1200 microvolts	110 microvolts 120 microvolts	26 microvolts 28 microvoles	3.9 microvoles 5.3 microvolts

* 70 ohms shunt resistance. Signal applied through dummy antenna.

Conditions:
RECEPTION switch at MOD.
RADIO SELECTIVITY switch at BROAD.
GAIN control set to produce 60 microwates noise output. (In the DIRECT position of the ADD DECIBELS switch, zero db on the OUTPUT meter is equal to 60 microwatts.)

TABLE 7-18. R-F INPUTS FOR STANDARD OUTPUT-RBC

BAND	$\begin{aligned} & \text { DIAL } \\ & \text { SET- } \\ & \text { TING } \end{aligned}$	GENERATOR OUTPUT FREQUENCY MODULATED 30\% 1,000 CYCLES	generator output value and connection points			
			$\begin{aligned} & \text { P202 } \\ & \text { PIN } \end{aligned}$		$\begin{aligned} & \text { VIN } \\ & \text { PIN } \end{aligned}$	\#DUMMY ANTENNA
1	$\begin{aligned} & 4.0 \\ & 6.45 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.45 \mathrm{mc} \\ & \mathrm{mc} \end{aligned}$	111 microvolts 140 microvolts	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	microvoles microvoles	6.8 microvoits 7.0 microvolts
2	$\begin{gathered} 6.45 \\ 10.3 \end{gathered}$	$\begin{gathered} 6.45 \mathrm{mc} \\ 10.3 \mathrm{mc} \end{gathered}$	110 microvolts 160 microvoles	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	microvolts microvolts	7.2 microvolts 7.4 microvolts
3	$\begin{aligned} & 10.3 \\ & 16.5 \end{aligned}$	10.3 mc 16.5 mc	100 microvolts 150 microvolts	19	microvolts microvolts	8.8 microvoles 6.8 microvolts
4	${ }_{27}^{16.5}$	${ }_{27}^{16.5} \mathrm{mc}$	130 microvolts 95 microvolts	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	microvolts microvolts	8.4 microvolts 8.0 microvolts

* Signal applied through dummy antenna.

Conditions:
RECEPTION switch at MOD.
RADIO SELECTIVITY switch at BROAD.
GAIN control set to produce 60 microwatts noise output, (fn the DIRECT position of the ADD DECIBELS switch, zero db on the OUTPUT meret is equal to 60 microwatts.)

Note

Inputs to the first detector grid have been omitted from Table $7-18$ since the oscillator excitation is fed into the first detector grid
circuit. If a low-impedance generator output is applied to the first detector grid, the oscillator excitation is so reduced as to preclude measurement.

Figure 7-11. RBB Terminal Board Identification, Left Side—Shield Covers Removed

4. CIRCUIT ALIGNMENT.

Under normal operating conditions the RBB/RBC equipments will maintain adjustment over long periods of time. A periodic check, however, is advisable to insure realization of full-performance capabilities of the equipment. A recheck of circuit alignment and adjustment is advisable after replacements have been made in components or wiring. In most cases it will be necessary to readjust only the particular portions of the circuit affected by the replacements.

In general, the same alignment procedure is used for both the RBB and RBC preselector sections, variations occurring only in frequencies and components. However, in addition, a neutralizing step is necessary following adjustment of the RBC heterodyning oscillator, while the RBB unit requires bandspread and i-f rejection adjustments.
a. IF/AF SECTION ALIGNMENT, RBB/RBC.
(1) I-F ALIGNMENT.-An r-f signal generator capable of an unmodulated 400 kc output is required for alignment of the i-f stages. R.F Signal Generator Set AN/URM-25 or Navy Model LP is satisfactory. A 50 -microampere meter such as Navy Type 60107 or an electronic voltmeter such as Multimeter ME-25/U is also required.

Controls and switches should be set as follows:

POWER	- OFF
AUDIO SELECTIVITY	- BROAD
NOISE LIMITER	- OFF
FREQUENCY VERNIER	- zero
OUTPUT LEVEL	- zero
ANT. COMP.	- zero
SILENCER	- zero
ADD DECIBELS	- OFF
RADIO SELECTIVITY	- SHARP
GAIN	-95 (approx.)
RECEPTION	- MOD

Refer to Figure $\mathbf{7 - 1 1}$ or $7-14$, whichever is appropriate, and disconnect the oscillator plate supply lead, white wire with red-and-green tracer.

If using Navy Type 60107 microammeter, remove the link connector on terminal board E308 located between V310 and V311, and connect the microammeter in place of the link.
7-18

If using Multimeter M-25/U connect it between the junction of R347-R348 and the chassis (ground).

Connect the output of the signal generator to pin 4 of V104 (or V204). Adjust the generator for a signal output of $400 \mathrm{kc} \pm 0.1$ per cent.

Operate the receiver POWER switch to ON, and adjust the generator for a reading of seven microamperes on the microammeter or 2.1 volts on the multimeter.

In the order listed, adjust the top and bottom cores of T305, T304, T303, and T302 for maximum output, reducing the generator output as necessary to keep the meter reading at seven microamperes or 2.1 volts.

This completes the i-f alignment. Adjustment of the i-f transformers, in the MEDIUM and BROAD positions of the RADIO SELECTIVITY switch, is not required.
(2) CW OSCILLATOR ALIGNMENT. - To align the $\mathbf{c w}$ oscillator stage, V304, set all controls as specified for the i-f alignment in the preceding paragraph, except place the RECEPTION switch at CW. Only the r-f signal generator, as used for i-f alignment, is required for the cw oscillator adjustment.

Connect the signal generator to pin 4 of V104 (or V204). Adjust the generator for a signal output of $400 \mathrm{kc} \pm 0.1$ per cent.

Operate the POWER switch to ON.
Advance the generator output slightly and adjust the screw at the top of transformer T306 until an audible beat note of approximately 1000 cycles is heard.

When the note is audible, tutn the inductance adjustment screw of T306 in whichever direction is necessary to obtain zero beat. Zero beat is the setting from which an audible note will be heard when the adjustment screw is turned in either direction.

Now turn the adjusting screw clockwise until a note of approximately 1000 cycles is heard. When near 1000 cycles, throw the AUDIO SELECTIVITY switch to SHARP and turn the adjustment screw until the loudest signal is heard in the headphones.

CHANGE 1

This completes alignment of the $\mathbf{c w}$ oscillator.
If an accurate source of 400 kc input signal is not available, the input signal should first be accurately tuned to the center of the SHARP i-f band, with the AUDIO SELECTIVITY switch in the BROAD position. Then use the SHARP position of the AUDIO SELECTIVITY switch to determine the correct adjustment of T306 for a 1000 cycle output, as previously described.
(3) ADJUSTMENT OF BAND-PASS FILTER PAD R364.-Band-pass filter potentiometer, R364, is situated on the side of the if/af section, below the chassis. Location of R364 is indicated on Figures 7-15 and 7-17. An r-f signal generator is required capable
of supplying an unmodulated signal at any reception frequency.

Set the panel controis and switches as follows:

RECEPTION	- CW
AUDIO SELECTIVITY	- SHARP
NOISE LIMITER	- OFF
OUTPUT LEVEL	- zero
ANT. COMP.	- zero
FREQUENCY VERNIER	- zero
RADIO SELECTIVITY	- BROAD

Operate the POWER switch to ON. Holding the ADD DECIBELS switch in the DIRECT position, adjust the GAIN control for a zero reading on the OUTPUT meter.

Place the ADD DECIBELS switch in the +20 position.

Connect a signal generator to the receiver input receptacle, and apply an unmodulated r-f signal. Signal should be of a level sufficient to produce zero reading on the OUTPUT meter.

Throw the AUDIO SELECTIVITY switch to BROAD.

Loosen the lock nut on R364 and, with a screwdriver, adjust R364 for a reading 4 DB lower than that obtained under the SHARP condition.

Tighten the lock nut on R364.
(4) ADJUSTMENT OF OUTPUT LIMITER PAD R362.-Potentiometer R362, which sets the level to the output limiter circuit, may be adjusted as follows. This control is shown on Figures 7.14 and 7-16. A generator is required capable of supplying an unmodulated r-f signal, at any input frequency.

Adjust the panel controls to the following positions:

RECEPTION - CW
OUTPUT LEVEL - maximum
Operate the POWER switch to ON. Hold the ADD DECIBELS switch in the DIRECT position and adjust the GAIN knob for zero reading on the OUT. PUT meter.

Set the ADD DECIBELS switch to +20 .
Apply an unmodulated signal to the receiver input receptacle. Any frequency in the reception band is satisfactory. Signal level should be sufficient to produce a reading of +16 db on the OUTPUT meter.

Now operate the RECEPTION switch to CWOL. Loosen the lock nut on R362 and adjust the shaft for a reading four db higher than that obtained in the preceding paragraph.

Tighten the lock nut on R362.
b. PRESELECTOR SECTION ALIGNMENT, RBB/RBC.-The following instructions apply to both the RBB and RBC units except for band-spread, neutralization, and i-f rejection adjustments which are indicated as being applicable to a particular unit.
(1) HETERODYNE. OSCILLATOR HEATER ADJUSTMENT, RBB/RBC.-Potentiometer R116 (or R219) adjusts the voltage through regulator tube V106 (or V206) and thus functions to regulate the
heater voltage on oscillator tube V103 (or V203). Location of R116 (R219) is indicared on Figure 7-10 or 7-13. An a-c voltmeter is required for adjustment.

Connect the a-c voltmeter across the heater terminals of oscillator tube V103 (or V203). These terminals are numbers one and two of the terminal board on the oscillator coil box, shown on Figure $7-11$ or 7-14. Apply power to the receiver and adjust R116 (or R219) to obtain a 6.3 volt ± 5 per cent meter reading. Then vary the a-c line voltage plus and minus ten per cent by varying the link connections with Rectifier Power Unit and note the readings. Allow about five minutes for stabilization after each change, before taking readings.

Now vary the adjustment of R116 (or R219) to obtain as constant heater voltage as possible for the variations in the a-c supply voltage, keeping the heater voltage within the limits of 6.3 volts, ± 5 per cent.

If the line voltage variation was accomplished by changing the rectifier power unit link position, be sure to return it to its proper position.
(2) HETERODYNE OSCILLATOR ALIGNMENT, RBB/RBC.-An r-f signal generaior capable of 30% modulation at 1,000 cycles is required for align. ment of the heterodyne oscillator stage, V103 (V203). Generator frequencies are listed in Tables 7-19 and 7-20.

Panel controls should be adjusted as follows, after first placing the receiver so that it rests on the if/af side:

RECEPTION	- MOD
RADIO SELECTIVITY	- SHARP
GAIN	-95 (approx.)
ANT. COMP.	- zero
OUTPUT LEVEL	- zero
SILENCER	- zero
FREQUENCY VERNIER	- zero
NOISE LIMITER	- OFF
AUDIO SELECTIVITY	- BROAD
ADD DECIBELS	-+20

Throw the POWER switch to ON.
In the following procedure, each band should be aligned in succession, first at the high-frequency (HF) end, then at the low-frequency (LF) end, followed by a final adjustment at the high-frequency end.

Figure 7-12. RBC Component Identification, Above Chassis

Figure 7-13. RBC Component Identification, Below Chassis

Figure 7-14. RBC Terminal Board Identification, Left Side—Shield Covers Removed

TABLE 7-19. HETERODYNE OSCILLATOR ALIGNMENT DATA-RBB

BAND	$\begin{aligned} & \text { REC. PIAL } \\ & \text { GENAN NTOR } \\ & \text { FREQ. } \end{aligned}$	item adjusted
	0.984 mc	${ }_{\text {C14 }} \mathbf{C 1 4 3}$
$2\left\{_{\text {[}}^{\text {HF }}\right.$		${ }_{\text {C14 }} 114$
$3{ }^{(120}$	${ }_{1.41}^{2.37 \mathrm{mc}}$	C147
	${ }_{2}^{4.37} \mathbf{4} \mathbf{m c}$	C148

TABLE 7-20. HETERODYNE OSCILLATOR ALIGNMENT DATA-RBC

BAND	$\begin{aligned} & \text { REC. DIAL } \\ & \text { EENENDTOR } \\ & \text { FREQ. } \end{aligned}$	ITEM ADJUSTED
1 \{HF	$\begin{aligned} & 6.45 \mathrm{mc} \\ & 4.0 \mathrm{mc} \end{aligned}$	C253 T 213
2 \{ HF	$\begin{gathered} 10.3 \mathrm{mc} \\ 6.45 \mathrm{mc} \end{gathered}$	C254
3 \{ HF	16.5 me 10.3 mc	C25s
4 \{ HF	$\begin{array}{ll} 27.0 \\ 16.5 \mathrm{mc} \\ \mathrm{mc} \end{array}$	$\begin{aligned} & \text { C256 } \\ & \text { T216 } \end{aligned}$

It will be noted on Tables 7.19 and $7-20$ that the capacitor adjustments (HF) are above the chassis while the transformer core adjustments (LF) are below the chassis. Figures $7 \cdot 9,7 \cdot 10,7 \cdot 12$, and 7.13 indicate location of the components referenced.

Referring to Table $7-19$ or $7-20$, set the signal generator and the receiver dial to the high-frequency $(0.84 \mathrm{mc}$ or 6.45 mc) for Band 1. Adjust the generator for 1000 -cycle modulation and conncct the output to the antenna terminal. If the r-f system is misaligned it may be necessary to connect the generator output to the second \mathbf{r}-f box input terminal. This terminal is located above the chassis, adjacent to V102 (V202), and is the ceramic-mounted terminal nearest to the ANT. COMP. shaft.

Adjust the output of the signal generator until the OUTPUT meter indicates zero db .

Adjust capacitor C145 (or C253) until the OUTPUT meter reading starts to rise. If the reading starts to fall, reverse the rotation of the adjustment screw.

Readjust the output of the signal generator until the OUTPUT meter again indicates zero db .

Repeat the two preceding steps until the OUT. PUT meter indication fails to rise. Leave the indicator at zero db .

Set the signal generator and receiver tuning dial to the LF for Band 1, 0.5 megacycles (RBB) or 4.0 megacycles (RBC).

Adjust transformer T113 (or T213) until the OUTPUT meter reading starts to rise. If the reading starts to fall, reverse the rotation of the adjustment screw.

Readjust the output of the signal generator until the receiver OUTPUT meter again indicates zero db .

Repeat the two preceding steps until the OUTPUT meter indicator no longer rises.

Recheck alignment at the HF end of the band. This completes alignment of Band 1 in the oscillator stage.

In a similar manner align bands 2, 3, and 4, referring to the previously-mentioned illustrations and Tables 7.19 and $7-20$. While aligning the oscillator, note that two responses are obtainable, corresponding to oscillator frequency settings either 400 kc above or below the signal frequency. The higher frequency setting is correct and may be checked in the following manner: After setting the oscillator, increase the input signal level and vary the input frequency 800 kc above and below the alignment frequency to obtain the image response. If the oscillator setting is correct, the image should be found at 800 kc above the alignment frequency.
(3) NEUTRALIZATION, HETERODYNE OSCILLATOR, RBC.-Afrer aligning Band 4 in the RBC oscillator stage, a neutralizing adjustment is required. Panel control settings are the same as for oscillator alignment, except that the RECEPTION knob should be turned to CW and the RADIO SELECTIVITY switch to BROAD.

Throw the "POWER" switch to the ON position.

Apply an unmodulated, cw, 27-mc signal to the receiver antenna connection, of sufficient level to produce zero reading on the OUTPUT meter.

In the second r-f box, tune capacitor C252 through resonance, observing the output beat note variation.

Adjust $\mathbf{L 2 0 1}$ for minimum beat note variation. The core-adjusting screw of L201 is located on the side of the chassis, adjacent to termiral board E219, and is identified on Figure 7-14.

After completing this adjustment, realign the heterodyne oscillator for Band 4 , as described in the preceding instructions for oscillator alignment.

Paragraph 4 b (4)
(4) R-F AMPLIFIER ALIGNMENT, RBB/ RBC.-The following notes cover instructions for alignment of the antenna input components and the r-f amplifier stages. Components to be adjusted are located in the antenna box and the first and second r-f boxes. A d-c voltmeter and an r-f signal generator are required, the generator capable of 1,000 -cycle modulation at the frequencies specified in Tables 7.21 and 7-22.

Panel control settings for r-f amplifier alignment are as follows:

RECEPTION	- MOD
RADIO SELECTIVITY	- SHARP
FREQUENCY VERNIER	- zero
OUTPUT LEVEL	- zero
SILENCER	- zero
NOISE LIMITER	- OFF
AUDIO SELECTIVITY	- BROAD or
	SHARP
ANT. COMP.	- zero

Set the RBB and RBC antenna link board connections for single receiver operation from an antenna, as specified on Figure 3-11 or 3-12, in Section 3.

Operate the POWER switch to ON and, holding the ADD DECIBELS switch in the DIRECT position, adjust the GAIN control for zero reading on the OUTPUT meter. The GAIN setting should be approximately 95.

Now turn the ADD DECIBELS knob to $\mathbf{+ 2 0}$.
Apply an r-f signal, at 1,000 -cycle modulation, to the receiver input through a standard dummy antenna.

Adjust the generator output for zero reading on the OUTPUT meter.

Refer to Tables 7.21 and 7.22 and make the alignment adjustments listed. Location of items to be adjusted is shown on Figures 7-9 to 7-14.
(5) BAND-SPREAD ADJUSTMENTS, RBB.After aligning Band $1 \cdot$ in the RBB, set the generator output and the tuning dial to 0.5 mc .

Turn the adjusting screw of T105 clockwise until the receiver output is decreased 1 db .

Turn the adjustment screw T109 counterclockwise until the receiver output is decreased 1 db .

Realign capacitors C137 and C141 at 0.84 mc .
This procedure supplies the necessary band spread in the RBB.
(6) I-F REJECTION ADJUSTMENT, RBB.After the adjustments in preceding paragraphs (4) and (5) have been completed, the RBB i-f rejection adjustment should be made.

TABLE 7-21. R-F AMPLIFIER ALICNMENT DATA—RBB
(Make HF adjustment first, then LF, and final adjustment at HF)

BAND		$\begin{aligned} & \text { REC. DIAL } \\ & \text { AND } \\ & \text { GENER- } \\ & \text { ATOR } \\ & \text { FREQ. } \end{aligned}$	ITEM ADJUSTED				
		ANTENNA BOX	$\begin{aligned} & \text { IST R-F } \\ & \text { EOX } \end{aligned}$	$\begin{gathered} \text { 2ND R-F } \\ \text { EOX } \end{gathered}$			
		*ANTENNA *\%LINK					
1	\{ HF		$\begin{aligned} & 0.84 \mathrm{mc} \\ & 0.5 \mathrm{mc} \end{aligned}$	$\begin{aligned} & \text { Cl29 } \\ & \text { T101A } \end{aligned}$	$\begin{aligned} & \text { C133 } \\ & \text { T101B } \end{aligned}$	$\begin{aligned} & \text { C137 } \\ & \text { T105 } \end{aligned}$	$\begin{aligned} & \text { C141 } \\ & \text { T109 } \end{aligned}$
	\{ LF		1.41 mc 0.84 mc	$\begin{aligned} & \text { C130 } \\ & \text { T102A } \end{aligned}$	$\begin{aligned} & \text { C134 } \\ & \text { Ti02B } \end{aligned}$	$\begin{aligned} & \text { C138 } \\ & \text { T106 } \end{aligned}$	$\begin{aligned} & \text { C142 } \\ & \text { T110 } \end{aligned}$
3	$\left\{\begin{array}{l}\text { HF } \\ \text { LF }\end{array}\right.$	2.37 mc 1.41 mc	$\begin{aligned} & \text { C131 } \\ & \text { T103A } \end{aligned}$	$\begin{aligned} & \text { C135 } \\ & \text { T103B } \end{aligned}$	$\begin{aligned} & \text { C139 } \\ & \text { T107 } \end{aligned}$	$\begin{aligned} & \text { C143 } \\ & \text { T11 } \end{aligned}$	
4	\{ HF	4.0 mc 2.37 mc	$\begin{aligned} & \text { C132 } \\ & \text { T104A } \end{aligned}$	$\begin{aligned} & \text { C136 } \\ & \text { T104B } \end{aligned}$	$\begin{aligned} & \text { C140 } \\ & \text { T108 } \end{aligned}$	$\begin{aligned} & \text { C144 } \\ & \mathrm{T} 112 \end{aligned}$	

* Connect a 1,000 -ohm resistor in parallel with C149-B while making the "Antenna" adjustments. (Section "A" of C149 is furthest from panel.)
* Connect a 1,000 -ohm resis
the "Link" adjustments.
\dagger After aligning Band 1, a adjustments in the followd before aligning Band 2, perform the Adjustments, RBB."

TABLE 7-22. R-F AMPLIFIER ALIGNMENT DATA-RBC
(Make NF adjustment first, them LF, and final adiustment at MFI

BAND	$\begin{aligned} & \text { REC. DIAL } \\ & \text { AND } \\ & \text { GENER- } \\ & \text { ATOR } \\ & \text { FREQ. } \end{aligned}$	ITEM ADSUSTED			
		ANTENNA BOX		$\begin{aligned} & \text { IST R-F } \\ & \text { 80X } \end{aligned}$	$\begin{aligned} & \text { 2ND R-F } \\ & \text { BOX } \end{aligned}$
		ANTENNA	LINK		
1 \{ HP	$\begin{aligned} & 6.45 \mathrm{mc} \\ & 4.0 \mathrm{mc} \end{aligned}$	$\begin{aligned} & \text { C237 } \\ & \text { T201A } \end{aligned}$	C241	$\begin{aligned} & \text { C245 } \\ & \text { T205 } \end{aligned}$	$\begin{aligned} & \text { C249 } \\ & \text { T209 } \end{aligned}$
2 \{ HF	$\begin{array}{r} 10.3 \mathrm{mc} \\ 6.45 \mathrm{mc} \end{array}$	$\begin{aligned} & \text { C238 } \\ & \mathbf{T} 202 \mathrm{~A} \end{aligned}$	$\begin{gathered} \text { C242 } \\ \mathrm{T} 202 \mathrm{~B} \end{gathered}$	$\begin{aligned} & \text { C246 } \\ & \text { T206 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 250 \\ & \mathrm{~T} 210 \end{aligned}$
3 \{ HF	16.5 mc 10.3 mc	$\begin{aligned} & \mathrm{C} 239 \\ & \mathrm{~T} 203 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { C243 } \\ & \text { T203B } \end{aligned}$	$\begin{aligned} & \text { C247 } \\ & \text { T207 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 251 \\ & \mathrm{~T} 211 \end{aligned}$
4 \{ HF	$\begin{aligned} & 27.0 \mathrm{mc} \\ & 16.5 \mathrm{mc} \end{aligned}$	$\begin{aligned} & \text { C240 } \\ & \text { T204A } \end{aligned}$	$\begin{aligned} & \text { C244 } \\ & \text { T204B } \end{aligned}$	$\begin{aligned} & \mathrm{C} 248 \\ & \mathrm{~T} 208 \end{aligned}$	$\begin{gathered} \text { * C252 } \\ \mathbf{T} 212 \end{gathered}$

* For accurace alignmenc of C252, a d-c voltmeter should be connected from pin 5 of V204 to ground. Referring to Figure 7.14, remove the oscillator plate voltage. Apply a sufficient generator input to obtain a slight change in the indication on the volemeter. Adjust capacitor C252 until maximum indication is obtained on the voltmeter.

After checking that the panel control settings are as specified in paragraph (4), reset the receiver dial to 0.5 mc .

Apply a $400-\mathrm{kc}$ generator output, modulated 30% at 1000 cycles, to the receiver antenna input, through the dummy antenna. Generator output level should be approximately two volts.

Adjust the core of Ll01 for minimum output. Coil L101 is identified on Figure 7-11.

This completes the r-f amplifier alignment.
c. INPUT METER ADJUSTMENTS.-When the INPUT meter is used to measure signal input voltages, the meter adjustments should be checked frequently. Potentiometer R368, indicated on Figures 7.17 and 7.18 , is used to set the operating level of the meter. An unmodulated r-f signal, at any reception frequency, is required for meter adjustment.

Controls and switches on the panel should be set as follows:

Figure 7-17. RBB/RBC Component Identification, Right Side

RADIO SELECTIVITY	- SHARP
RECEPTION	- MOD-AVC
ANT. COMP.	- zero
FREQUENCY VERNIER	- zero
GAIN	- zero
SILENCER	- zero
OUTPUT LEVEL	zero
NOISE LIMITER.	- OFF
ADD DECIBELS	- OFF

Operate the POWER switch to ON.
Without a signal input, adjust the ZERO SET
knob (R321) for zero reading on the INPUT meter.
Connect an r-f signal generator to the antenna terminal, through a dummy antenna. Adjust the generator for a 10,000 -microvolt output at any reception frequency.

After unlocking the shaft nut on R368, Figure $7-17$, rotate the shaft for a deflection of 80 db on the INPUT meter. Tighten the lock nut.

Repeat the two preceding adjustments until the meter reading is correct at both points.

CHANGE 1

RBC Component Values (R,C)
 RBB/RBC Components (R and C)

RBC Component Values (R,C)

C-207	20 mmf ceramic	
C-208	24 mmf ceramic	
C-209	12 mmf ceramic	
$\mathrm{C}-210$	50 mmf mica	
$\mathrm{C}-211$	same as C-210	
$\mathrm{C}-212$	same as C-210	
$\mathrm{C}-213$	same as C-210	
C-214	same as C-202	
$\mathrm{C}-215$	not used	
$\mathrm{C}-216$	2 mmf ceramic	
C-217	100 mmf mica	
$\mathrm{C}-218$	2000 mmf mica	
$\mathrm{C}-219$	2700 mmf mica	
C-220	3000 mmf mica	
$\mathrm{C}-221$	same as C-218	
$\mathrm{C}-222$	same as C-112	
$\mathrm{C}-223$	same as C-112	
C-224	same as C-210	
C-225	same as C-115	
C-226	same as C-115	
C-227	same as C-115	
C-228	same as C-115	
C-229	same as C-115	
C-230	same as C-115	
C-231	same as C-115	
C-232	same as C-115	
C-233	same as $\mathrm{C}-123$	
C-234	same as $\mathrm{C}-115$	
C-235	same as C-115	
C-236	same as C-128	
C-237	same as $\mathrm{C}-129$	
C-238	same as $\mathrm{C}-129$	
C-239	same as C-129	
C-240	same as $\mathrm{C}-129$	
C-241	same as $\mathrm{C}-128$	
C-242	same as $\mathrm{C}-129$	
C-243	same as C-129	
C-244	same as $\mathrm{C}-129$	
C-245	same as $\mathrm{C}-129$	
C-246	same as C-128	
C-247	same as C-129	
C-248	same as $\mathrm{C}-129$	
C-249	same as C-129	
C-250	same as C-129	
C-251	same as C-128	
C-252	same as C-129	
C-253	same as C-129	
C-254	same as C-129	
C-255	same as C-129	
C-256	same as C-129	
C-257	13-142.2 mmf 5	variable
C-258	10000 mmf mica	
C-259	5000 mmf mica	
C-260	same as C-204	
C-261	same as C-204	
C-301	same as C-128	
C-302	3 mmf ceramic	comp.
C-303	same as C-217	

RBC Component Values (R,C)

C-304 7 mmf ceramic temperature comp.
C-305 same as C-105
C-306 same as $\mathrm{C}-217$
C-307 20 mmf mica
C-308 $\quad 1500 \mathrm{mmf}$ mica
C-309 same as $C-217$
C-310 same as $C-107$
c-311 same as C-107
C-312 same as $\mathrm{C}-107$
C-313 same as c-107
C-314 same as $C-107$
C-315 same as $C-107$
C-316 same as $C-107$
C-317 same as C-107
C-318 500 mmf mica
C-319 same as C-106
C-320 same as C -323
C-321 not used
C-322 same as C-115
$\mathrm{C}-323 \quad 2000 \mathrm{mmf}$ mica
C-324 same as $C-112$
C-325 same as C-112
C-326 same as $C-112$
C-327 same as $C-112$
C-328 same as C-115
C-329 same as $C-112$
C-330 same as $\mathrm{C}-115$
C-331 same as $\mathrm{C}-115$
C-332 same as $\mathrm{C}-115$
C-330 same as $\mathrm{C}-115$
C-331 same as $\mathrm{C}-115$
C-332 same as $C-115$
C-333 same as $C-115$
C-334 same as C-115
C-335 same as c-115
C-336 same as $C-115$
C-337 same as $C-115$
C-338 same as $C-115$
C-339 same as $C-123$
C-340 same as C-259
$\mathrm{C}-341 \quad 100000 \mathrm{mmf}$
$\mathrm{C}-342 \quad 50000 \mathrm{mmf}$
C-342A part of $\mathrm{C}-342$
$C-342 B$ part of $C-342$
$\mathrm{C}-343 \quad 125000 \mathrm{mmf}$
C-343A part of $C-343$
$C-343 B$ part of $C-343$
$\mathrm{C}-344 \quad 1 \mathrm{mf}$
C-345 same as C-344
C-346 same as $C-344$
C-347 same as C-344
C-348 same as $C-344$
C-349 same as C-115
C-350 same as C-344
C-351 same as $C-344$
C-352 same as C-344
C-353 same as $C-112$
C-354 same as C-112

2 section paper
2 section paper

2 section paper

2 section paper

RBC Component Values (R,C)

C-355 same as $\mathrm{C}-123$
C-356 same as $C-123$
C-357 same as $\mathrm{C}-115$
C-358 same as $C-115$
C-359 same as C-115
C-360 same as $C-115$
C-361 same as $C-115$
C-362 same as $C-115$
C-363 same as $C-115$
C-364 same as $C-115$
C-365 same as $C-115$
C-366 same as $C-115$
C-367 same as $C-115$
C-368 same as $C-112$
C-369 same as $C-112$
C-370 same as $\mathrm{C}-115$
C-371 same as $\mathrm{C}-106$
C-372 same as $C-115$
C-373 same as $C-343$
$\mathrm{C}-373 \mathrm{~A}$ part of $\mathrm{C}-373$
$C-373 B$ part of $C-373$
C-374 same as C-115
C-375 same as C-112
C-376 same as $C-106$
$\begin{array}{ll}\mathrm{C}-501 & 100 \mathrm{mmf} \\ \mathrm{C}-502 & 10000 \mathrm{~mm}\end{array}$
C-503 same as C-502
$\mathrm{C}-504 \quad 5100 \mathrm{mmf}$
$\mathrm{C}-505 \quad 10000 \mathrm{mmf}$
C-506 same as C-504
R-101
100 ohms
R-102
120 ohms
R-103 same as $R-102$
R-104 1000 ohms
R-105 4700 ohms
$R-106$ same as $R-105$
R-107 same as $R-105$
R-108 47000 ohms
R-109 100000 ohms
$R-110$ same as $R-109$
$\mathrm{R}-111$ same as $\mathrm{R}-109$
$\mathrm{R}-112$ same as $R-109$
R-113 22000 ohms
$\mathrm{R}-114$ same as $\mathrm{R}-113$
R-115 2200 ohms
R-116 40 ohms
R-117 not used
R-118 15 ohms
$R-119$ same as $R-118$
R-120 330 ohms
R-121 same as $R-105$
R-122 33000 ohms
$\mathrm{R}-123$ same as $\mathrm{R}-122$
R-124 220 ohms
$\mathrm{R}-125$ same as $\mathrm{R}-124$
$R-126$ same as $R-115$
R-127 1500 ohms

RBC Component Values (R,C)

R-128	33000 ohms	composition
R-129	same as R-102	
R-201	same as R-124	
R-202	same as R-124	
R-203	same as R-105	
R-204	5600 ohms	composition
R-205	same as R-105	
R-206	same as R-105	
R-207	same as R-105	
R-208	same as R-108	
R-209	same as R-109	
R-210	same as R-109	
R-211	same as R-128	
R-212	same as R-109	
R-213	120000 ohms	composition
R-214	same as R-213	
R-215	10000 ohms	composition
R-216	1 meg ohm	composition
R-217	same as R-216	
$\mathrm{R}-218$	same as R-216	
$\mathrm{R}-219$	same as R-216	
$\mathrm{R}-220$	not used	
$\mathrm{R}-221$	same as R-218	
R-222	same as R-218	
R-301	10 ohms	ww, 1/2 watt
R-302	same as R-301	
R-303	same as R-301	
R-304	same as R-301	
R-305	22 ohms	ww, 1/2 watt
R-306	same as R-305	
R-307	same as R-305	
R-308	same as R-305	
R-309	680 ohms	composition
R-310	470 ohms	composition
R-311	same as R-310	
R-312	same as R-309	
R-313	same as R-104	
R-314	same as R-104	
R-315	3900 ohms	composition
R-316	same as R-105	
R-317	same as R-216	
R-318	same as R-105	
R-319	same as R-105	
R-320	39000 ohms	composition
R-321	3000 ohms	composition
R-322	same as R-109	
R-323	same as R-215	
R-324	same as R-215	
R-325	6800 ohms	composition
R-326	same as R-215	
R-327	10000 ohms	composition
R-328	22000 ohms	composition
R-329	1100 ohms	composition
R-330	3600 ohms	composition
R-331	same as R-128	
R-332	68000 ohms	composition
R-333	12000 ohms	composition
R-334	same as R-109	

RBC Component Values (R,C)

$\begin{array}{ll}\mathrm{R}-335 & 2200000 \text { ohms } \\ \mathrm{R}-336 & \text { same as } \mathrm{R}-109\end{array}$
$\begin{array}{ll}\mathrm{R}-337 & 1.5 \mathrm{meg} \text { ohms } \\ \mathrm{R}-338 & 180000 \text { ohms }\end{array}$
$R-339$ aame as $R-109$
$R-340$ same as $R-216$
$R-341$ same as $R-216$
R-342 560 ohms
$R-343$ same as $R-335$
$R-344$ same as $R-335$
$R-345$ same as $R-216$
$\mathrm{R}-346 \quad 120000$ ohms
R-347 270000 ohms
$\mathrm{R}-348$ same as $\mathrm{R}-347$
$\begin{array}{ll}R-349 & 470000 \\ R-350 & \text { same as } R-349\end{array}$
$R-351$ same as $R-349$
$R-352$ same as $R-349$
R-353 27000 ohms
R-354 390000 ohms
$R-355$ same as $R-349$
R-356 2.2 meg ohms
$\mathrm{R}-357 \quad 820000$ ohms
$R-358$ same as $R-356$
$R-359$ same as $R-216$
$R-360$ same as $R-356$
$\begin{array}{ll}R-361 & 5000 \text { ohms } \\ R-361 A & \text { part of } R-361\end{array}$
$R-361 B$ part of $R-361$
$\mathrm{R}-362 \quad 500000$ ohms
R-363 25000, 1 meg ohm variable, composition lin, log taper
$R-363 A$ part of $R-363$
$R-363 B$ part of $R-363$
R-364 100000 ohms
R-365 15000 ohms
$R-366$ same as $R-335$
$R-367$ same as $R-328$
$\mathrm{R}-368 \quad 25000$ ohms
R-369 100000 ohms
$R-370$ same as $R-335$
$R-371$ same as $R-216$
$\begin{array}{ll}R-372 & 2400 \text { ohms } \\ R-373 & \text { same as } R-101\end{array}$
$R-374$ same as $R-215$
$R-501$ same as $R-310$
R-502 same as $R-215$
$R-503$ same as $R-216$
Vacuum Tubes

$\mathrm{V}-101$	6 SK7
$\mathrm{V}-102$	same as
$\mathrm{V}-103$	6 V-101
$\mathrm{V}-104$	same as
$\mathrm{V}-105$	9.103
$\mathrm{~V}-106$	$6-8 B$
$\mathrm{~V}-201$	same as
$\mathrm{V}-202$	same as

variable, composition, linear taper composition
variable, composition, linear taper
variable, composition, linear taper
composition

Amperite Ballast tube

RBC Component Values (R,C)

V-203 same as V-103
V-204 not used
V-205 same as V-105
V-206 same as V-106
V-301 same as V-101
V-302 same as V-101
V-303 same as V-101
V-304 same as V-103
V-305 6H6
V-306 same as V-305
V-307 same as V-101
V-308 same as V-101
V-309 same as V-305
V-310 same as V-103
V-311 6K6GT
V-501 same as V-103
Power Supply Components
C-401 same as C-115
C-402 same as $C-115$
C-403 same as C-343
C-403A part of $C-403$
C-403B part of $C-403$
C-404 same as $C-343$
$\mathrm{C}-404 \mathrm{~A}$ part of $\mathrm{C}-404$
C-404B part of $\mathrm{C}-404$
$\mathrm{C}-405 \quad 100000 \mathrm{mmf}$ paper
C-406 10 mf
C-407 same as C-406
L-405 10 Hy choke, 170 ma , 106 ohms DC resistance
L-406 same as L-405
T-401 Power Transformer 550vct@120 ma, 6.3v@11.1a, 17v@1.2 a
Vacuum Tubes
$\mathrm{V}-401 \quad 5 \mathrm{U} 4 \mathrm{G}$
V-402 OC3/VR105

