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CHAPTER 1 

ANALYSIS OF NONSINUSOIDAL WAVEFORMS 

1. Introduction 
(fig. 1) 

Voltages having complex waveshapes fre­
quently are used in electronic equipment. Since 
these wav~shapes do not follow the conventional 
sine-wave pattern they are called nonsinusoidal 
waves. Examples are distorted sine waves, 
square waves, rectangular waves, trapezoidal 
waves, and exponential waves. Originally, non­
sinusoidal waveforms were regarded as unde­
sirable distortions of sinusoidal waves. Today, 
however, they are used in many complex cir­
cuits, and their study has been extended to 
determine new ways of producing and utilizing 
them. 

2. Methods of Analyzing Nonsinusoidal 
Waves 

a. Reactance and frequency concepts used 
for sine waves cannot be applied directly to 
nonsinusoidal waves. For sine waves, the cur­
rent flowing through either an inductor or ca­
pacitor is equal to the applied voltage divided 
by the respective reactance. Inductive reac­
tance is equal to 2 1r fL, and capacitive reactance 
is equal to 1;2 1r [C, when f is the frequency of a 
pu1·e sine-wave voltage. If the waveform is not 
sinusoidal, these formulas do not hold true and 
current cannot be determined by the relation­
ships used for pure sine waves. Hence, special 
techniques are required to determine the con­
ditions existing in a circuit when a non­
sinusoidal voltage is applied. 

b. To study the basic concepts necessa~y to 
an understanding of nonsinusoidal waveforms 
two methods can be used. In· one, the wave is 
expressed in terms of a series of pure sine 
waves, and the sum of the series is equivalent 
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to the nonsinusoidal wave. This method per­
mits the direct use of the standard impedance 
and frequency relationships mentioned above, 
since the nonsinusoidal wave is reduced to 
several pure sine waves. The other method, 
developed in this text ( chs. 2 to 6), is known as 
the tmnsient-1·esponse method. A transient is 
a nonsinusoidal wave that appears momentarily 
when circuit conditions are changed. For ex­
ample, when a switch is turned on or off in a 
circuit, the resulting nonsinusoidal waves are 
known as transients. The transient-response 
method develops relationships between current 
and voltage which can be applied direct to non­
sinusoidal waves. 

3. Harmonic Composition of 
Nonsinusoidal Waves 

a. DEFINITION OF PERIODIC WAVES. There 
are two types of nonsinusoidal waves-the 
ape1'iodic wave, which appears at irregular 
intervals, or only once, and the periodic wave 
(fig. 1) which is repeated at constant intervals. 
The amplitude of the wave, measured on the 
vertical or Y -axis, is plotted against time, mea~ 
sured on the horizontal or X-axis. The time 
axis is calibrated in millionths of a second, or 
usee (microseconds), rather than seconds. The 
unit usee is used because most transient wave­
forms occur in very short time periods. The 
vertical or Y -axis is measured in terms of vol­
tage or current. 

b. FUNDAMENTAL AND ' HARMONIC FREQUEN­
CIES. The rate at which a periodic waveform is 
repeated is known as the fundamental frequen­
cy. If a waveform is repeated 1,000 times a 
second, the fundamental frequency is 1,000 cps 
(cycles per second) • The second harmonic of 
this waveform has a frequency equal to twice 
the fundamental frequency, or 2,000 cycles. 
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The thi1·d ha1·nwnic is three times the funda­
mental frequency, or 3,000 cycles; the fourth 
harmonic is four times the fundamental fre­
quency, or 4.,000 cycles, and so on. Generally, 
the frequency of any harmonic is n times the 
fundamental frequency, where n is 1, 2, 3, 4, or 
any other whole number. 

C. COMPOSITION OF A SAWTOOTH (fig. 2). 
(1) Any nonsinusoidal waveform that oc­

curs periodically can be constructed by 
combining a sine wave at the funda­
mental frequency, sine waves at the 
harmonic frequencies, and, if neces­
sary, a d-e (direct current) voltage. 
The sine waves must have the correct 
amplitude and phase relationships. 
The sawtooth is obtained by the addi­
tion of a fundamental sine w~ve and 
its harmonics. 

(2) A of figure 2 shows the addition of 
the fundamental and its second har. 
monic. The resultant curve, 82, re­
sembles the sawtooth more than the 
fundamental alone (curve 1). The 
peaks of curve 82 are pushed to one 
side. B shows the resultant curve, 83, 
when the third harmonic is added to 
the fundamental and the second har­
monic. In this curve the peaks are 
pushed farther to the side and the 
deviation from the sawtooth is small­
er. Each succeeding curve from C to 
G includes one more harmonic. As each 
harmonic is added, the resultant curve 
more nearly resembles the sawtooth 
voltage. Curve 87, in F and G, con­
tains the fundamental plus the second, 
third, fourth, fifth, sixth, and seventh 
harmonics. The more harmonics 
added, the closer the resultant curve 
approaches the sawtooth. The saw­
tooth can be reproduced exactly, how­
ever, only by the addition of an infinite 
number of harmonics. 

I. COMPOSITION OF SQUARE WAVE. 

(1) Another common waveform used In 
electronic equipment is the square 
wave (B of fig. 1). This wave is com­
posed of a fundamental frequency and 
an infinite number of harmonic fre-
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quencies. In this waveform, however,, 
all the even harmonic-frequency com­
ponents~ second, fourth, sixth, eight, 
and so on-are equal to zero. Only 
the odd harmonics-first, third, fifth, 
seventh, and so on-are contained in 
the square wave. 

(2) In A of figure 3 the fundamental and 
the third harmonics are plotted, aml 
the resultant is curve 83. Three cycles 
6ccur in curve 3 for each cycle of 
curve 1. The resultant curve, 83, ap­
proaches the square wave. In B, the 
fifth harmonic is added to the third 
and first, and a fair approximation of 
the square wave is obtained. The sides 
of the resultant curve, 85, are steeper 
than before. C shows the waveform 
when the seventh harmonic is added. 
Addition of this harmonic increases 
the steepness of the sides of composite 
curve 87. The more odd harmonics 
added, the more the resultant curve 
resembles the square wave. Again, an 
infinite number of harmonics is neces­
sary to obtain a perfect reproduction 
of the square wave. A practical square 
wave or other nonsinusoidal wave­
form has a finite number of harmonics 
and the reproduction of these wave­
forms can be excellent. In practice, 10 
harmonics usually are sufficient for 
good reproduction. 

•· OTHER WAVEFORMS. By adding sine waves 
of the proper frequency, amplitude, and phase 
It is possible to c·ompose many other waveforms 
used in electronic equipment ( ch. 7). Figures 
I and 3 show that, for all harmonic composi­
tions, the amplitude, and, therefore, the im­
portance, of each succeeding harmonic become 
leu and less. The first, or fundamental, har­
monic has the largest amplitude and the fol­
lowing harmonics have progressively smaller 
amplitudes. 

4. Effect of Circuit Bandwidth on 
Nonsinusoidal Wave 

.. When a nonsinusoidal waveform Is applied 
to a circuit, the number of harmonic-frequency 
eomponents that appear at the output depends 

a 
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an the circuit bandwidth. The bandwidth repre­
sents the range pf frequencies that a circuit will 
pass with a minimum of attenuation. For ex­
ample, consider the effect of .a circuit with a 
3,000-cycle bandwidth upon a square wave re­
peated 1,000 times per second. Since the cir­
cuit will pass only frequencies up to 3,000 cps 
with minimum attenuation, 'only the fundamen­
tal (1,000-cps) and the third harmonic (3,000-
cps) ::tppear at the output of this circuit. Al­
thou~h a square· wave is appiied at the input, 
the output waveform (A of fig. 4) is distorted 
badly. If the bandwidth of th'e circuit is in­
creased to ·7,000 cycles, the first, third, fifth, 
and seventh hahrtonic frequencies will be 
passed, an4 the resultant waveform (B of fig. 
4) will show less distortion. 

b. When the bandwidth of the circuit is in­
cre~sed, more harmonics are passed, and the 
output waveform more closely resembles the 
inp.ut waveform. Perfect reproduction of the 
input waveform at the oqtput ·requires a cir­
cuit with an infinite: bandwidth.· This circuit 
cannot be .achieved in practice, and actual cir­
cuits have bandwidth limitations. 

c. The practical bandwidth necessary to 'pass 
a nonsinusoidal wave depends on two factors: 
one, the importance of. harmonic relations ;·two, 
the fimction of . ~he waveform in the · circuit. 
The upper -frequency. limit depends on the fast­
est change occurring in the waveform. The 
lower frequency limit dependson t~e repetition 
frequency of the waveform; .Since the ampli­
tude. of each harmonic component usually .de­
c~eases as the order of .harmonics ' increases, 
the ·effect of a higher harmonic is much less 
than that of ·a lower harmonic. The tenth 
harmonic has a much sm~ller effect on the wave-

4 
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form than the second harmonic frequency, the 
hundredth harmonic has a smaller effect than 
the tenth harmon.ic, and so on. 

.d. A fairly good representation of the wave­
form can be obtained by using a finite number 
of harmonics. The effect of the higher-order 
harmonics depends on the composition of the 
wave. In some waveshapes, the amplitudes of 
the higher harmonics decrease rapidly and a 
narrow bandwidth provides good reproduction 
of the waveform. In other waveshapes the am­
plitudes of the higher-order harmonics decrease 
gradually, and a wider bandwidth is required to 
obtain good reproduction of the wavefotm. 

e. The minimum bandwidth required also de­
pends on how the waveform is to be used. If 
the waveform can be modified without serious­
ly affecting the operation of the equipment, a 
narrower bandwidth can be used. If the wave­
form must be reproduced with a high degree 
of fidelity, a wider bandwidth is necessary. 

. 5. Pulse Bandwidth Requirements 

a. DEFINITION OF A PULSE. A pulse is de­
fined as a sudden rise and fall of voltage or 
current. The square wave· and the rectangular 
wave (B of fig. 1) are examples 'of pulse wave­
forms that are used in many equipments, such 
as radar, instrument landing systems, and com­
munication links. 

b. PULSE PARAMETERS. The pulse 
0 
rise time, 

t,., iR the period required for a pulse to rise 
.'rom 10 percent to 90 percent of its maximum 
amplitude (fig. 5). The pulse duration, t,~> is the 
time the pulse remains at maximum amplitude. 
The decay time, t,, is the time required for the 
pulse to decay (fall) to zero. These times, t., 
ta, t1, are the parameters for a pulse. A para­
meter is a characteristic property which re­
mai•ns constant, or is held constant, during the 
discussion. The wavefront or rise time of the 
pulse, t" is known as the leading edge of the 
pulse, and the decay time, t1, as the trailing 
edge of the pulse. 

c. EFFECT OF HARMONICS ON PULSE RISE AND 
DECAY TIMES. 

(1) In the composition of the square wave, 
as higher-order harmonics are added 
the rise and decay times of the re­
sultant curves become shorter (fig. 3). 
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Figure 5. High-/?·equency response to rec.tangulaT wave. 

(2) 

For example, in C, curve · S7 has a 
shorter rise time thari ·curve S5. In 
B, curve S5 has a shorter rise .time . 
than curve S3. Adding higher-order 
harmonics to this wave shortens the 
rise and decay times. For this 'reason, 
shape of the pulse during the rise and 
decay times is determined by the high­
frequency response of a circuit. If the 
circuit has poor high-frequency re­
sponse, the higher-order harmonics 
are not reproduced, and the rise and 
decay times are lengthened ( C of 
fig. 5). 
A rectangular pulse with finite r ise 
and decay ti-mes is shown in \ A of 
figure 5. Practical circuits modify the 
shape of this pulse and when a circuit 
has good high-frequency response, the 
C\9rners of the pulse are rounded only 
slightly, as in B; the pulse rise and' 

\ 
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decay times are not greatly modified. 
When the circuit has poor high-fre­
quency response, as in C, the rise and 
decay times increase greatly with a 
further rounding of the pulse corners. 

(3) The following rule-of-thumb method 
determines how high a frequency must 
be passed by a circuit to reproduce a 
pulse with rise time of t,: 

1 
f H =- 2t,. cps, 

where t, is in seconds. This formula 
givefl the high-frequency end of the 
bandwidth required. The frequency 
fH is known as the high-frequency re­
sponse, the upper-frequency limit, or 
the upper limit of the circuit. Thia 
formula also applies to the trailing 
edge of the pulse having decay time of t,. 

( 4) In some radar equipment, a pulse with 
rise time of .5 usee is used. To repro­
duce the leading edge of this pulse, the 
high-frequency response of the circuit 
must be 

"''·· 1 1 fH = 2tr ~2(.5 X 10~) 
fH = 1 x 106cps ~ 1 me (megacycle). 
The upper-frequency limit of the cir-
cuit must be 1 me to reproduce the 
leading edge of a pulse having a rise 
time of .5 usee. 

d. EFFECT OF HARMONICS ON PULSE DURA­
TION TIME. 

(1) The duration time td of the pulse de­
pends on the low-frequency response 
of the circuit. Figure 6 shows a 
square wave passed through a circuit 
having poor low-frequency response. 
Note that the curve is not fiat over the 
duration period. To obtain good re-

' production of the waveform, the cir­
cuit must have good low-frequency, as 
well as good high-frequency response. 

(2) The lowest frequency fL that a circuit 
must pass to reproduce a pulse can be 
obtained by the formula 

1 
h = prt cps, 

where prt (pulse recurrence time) J. 
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'"""' 1. Effect of poor low-frequency response to 
square wave. 

in seconds. This is the same as saying 
that 

h = prf, 
since the pulse recurrence time is. the 
reciprocal ef the prf (pulse recurrence 
frequency). When the lower-frequen­
cy limit of the circuit equals the pulse­
recurrence frequency, satisfactory re­
production results. A pulse having a 
repetition frequency of 1,000 cps re­
quires that the lower limit of the band­
width be 1,000 cps. 

G. Sawtooth Bandwidth Requirements 
(fig. 7) 

a. The principles discussed in paragraph 5 
can be extended to cover other types of non­
sinusoidal waveshapes. The high-frequency re­
sponse affects the pulse during the rise and de­
cay times when the voltage changes most rapid­
l'JI. The low-frequency response affects the 
pulse duration when the voltage remains essen­
tially constant. Extending these principles, it 
can be stated generally that the high-frequency 
response affects any waveshape when the vol­
tage is changing most rapidly. The low-fre­
quency respcinse affects the waveform when 
the voltage change is gradual. 
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b. These principles can be used to determine 
the effect of the high- and low-frequency re­
sponse on a sawtooth waveform (fig. 7). The 
voltage for this waveform increases gradually 
until the maximum amplitude is reached, and 
then fall's sharply to zero. The low-frequency 
response affects the rising portion of the saw­
tooth, and the high-frequency response affects 
the decay (or fly back) time. B of figure 7 shows 
the effect of poor low-frequency response on the 
sawtooth. This waveform is obtained by 
subtracting the first, second, and third har­
monics. In C a poor high-frequency response 
causes the voltage to decay more gradualJy and 
run into the rise time of the next cycle. · · 

SAWTOOTH 

POOR LOW-FREQUENCY RESPONSE 

8 

POOR HIGH-FREQUENCY RESPGNSE 

c 
TM 669-7 

Figure 7. Effect of bandwidth on sawtooth. 

c. The bandwidth of a circuit used to pass 
a sawtooth voltage should be · low enough to pass 
the fundamental, or 1/t,, and sufficiently high 
to pass a frequency of 1/2t1• These equations 
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are the same as those given for a pulse. For 
example, consider the bandwidth required to· 
pasa a sawtooth voltage with a pulse period, 
t11, of 1,000 usee and a decay time, t1, of 5 usee. 
The low-frequency response required is 

1 1 
IL- t;- 1,000 x 10-6 = 1,000 cps, 

and the high frequency response required is 

Is-_!__ 1 
= 100,000 cps. 

2t, 10 X 10-6 

The band of frequency to be passed then equals 
Is-h or 99 kc. 

7. Summary 

cz. Any waveform that does not vary sinu­
aoidally is known as a nonsinusoidal wave. 

b. Nonsinusoidal waveforms have two gener­
al classifications: waveforms that are inteN­
tionally nonsinusoidal and waveforms that 
1hould be sinusoidal but are distorted by the: 
equipment. 

e. Nonsinusoidal waves can be analyzed by 
either the harmonic-analysis or the transient­
response method. 

d. A periodic wave is a wave that is repeated 
at constant intervals. 

•· Nonsinusoidal periodic waves can be con­
ltructed from a series of harmonically related 
line waves. 

f. The lowest frequency in this harmonic 
1eries is the fundamental, or first harmonic 
frequency, and it is equal to the waveform re­
petition frequency. 

g. It is possible t0 obtain good reproduction 
of a nonsinusoidal waveform by using a finite 
number of harmonics. 

h. The bandwidth of the circuit passing a 
nonsinusoidal wave should be wide enough to 
pass the highest and lowest harmonics neces­
aary for good waveform reproduction. 

i. Good reproduction of a pulse during rise 
and decay time depends on the high-frequency 
response of the circuit. 

j. Good reproduction of a pulse over duration 
time depends on the low-frequency response of 
the circuit. 
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8. Reyie.w Questions 

· a. What is a nonsinusoidal wave? 
b. What is a periodic wave? 
c. Why cannot conventional impedance re­

lationships be used with nonsinusoidal waves? 
d. A pulse occurs at a rate of 1,000 times per 

second. What is the frequency of the fifth har­
monic? 

e. What is meant by the bandwidth of a cir­
.cuit? 

8 ,. 

f. How does the waveform to be passed de­
termine the necessary upper and lower fre­
quency limits of bandwidths? 

g. What is the effect of the amplitudes of 
the harmonics on bandwidth requirements? 

h. Give the bandwidth requirements for pass­
ing a pulse repeated 1,000 times a second, hav­
ing rise and decay times or 2 usee, and duration 
time of 200 usee. The pulse is flat over the 
duration time. 
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CI-IAfTER 2 

TRANSIENT RESPONSE 

9. Steady-State and Transient Response 
Electrical circuits have two response charac­

teristics: The steady-state response is the long 
time effect of a voltage, or current, on a circuit; 
the t·ransient response is the effect on a circuit 
of changing a voltage or current from one 
steady state to another. 

ct . STEADY-STATE RESPONSE. 
( 1) When a d-e voltage is applied to a cir­

cuit, after a period of time the cur­
rent measured in the circuit is 20 rna 
(milliamperes) . As long as the input 
voltage remains unchanged, the cur­
rent remains at 20 rna, and 20 ma is 
the steady-state response of the cir­
cuit to this particular input. 

(2) The d-e voltage is now removed, and 
after a period of time the current 
drops to zero. As long as the voltage 
across the circuit is zero, the current 
is zero. The steady-state response of 
this circuit in zero current for zero 
voltage. 

b. TRANSIENT RESPONSE. When the d-e volt­
age first is applied to the circuit, however, the 
current cannot increase immediately to 20 ma. 
A period of. time is required for the current to 
reach this value. Similarly, after the input volt­
age drops to zero, the current cannot drop im­
mediately to 7.ero. The period of time required 
for a circuit to go from one steady-state condi­
tion to another is known as the tmnsient time. 

10. fuD"pose of St·udying Transient 
Respnnr;e 

a. To determine the response of a circuit to 
a nonsinusoidal waveform, it is necessary to de­
scribe this waveform in terms of a series of 
harmonically related sine waves ( ch. 1). Since 
nearly all of the a-c (alternating-current) wave-
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forms used in early electrical equipment were 
sinusoidal, standard impedance relationships 
were based on the sine wave. All steady-state 
response characteristics can, therefore, be ob­
tained by using a-c theory. 

b. During transient times the voltages are 
nonsinusoidal, and therefore, the tudy of tran­
sients is the study of the response of networks 
to nonsinusoidal voltages. Although the har­
monic-series method can be u"ed to determine 
the transient response, this method is cumber­
some, and the easier tmnsient-response method 
of analysis is preferable. 

11. Types of Transients 

a. The original term transient was used to 
describe what occurred during the period of 
time immediately after a piece of equipment 
was turned on or off, or after some unusual 
disturbance occurred in the equipment. Today, 
the· term transient has been expanded to mean 
virtually any nonsinusoidal voltage. The reason 
for this is simple. When nonsinusoidal voltages, 
such as pulse or sawtooth waveforms, first were 
used in electronic equipment, it was found that 
the methods developed to study transients could 
be applied to all nonsinusoidal waveforms. 
The meaning of tmnsient or 1JUlse 1·esponse was 
then taken to include the effects of these non­
sinusoidal waveforms. 

b. When a d-e voltage is applied to or re­
moved from a circuit, a t1·ansient occurs befo:·e 
the circuit reaches its steady-state condition. 
Similarly, a transient occurs when a sine-wave 
generator is turned on. These transients, as well 
as pulse and sawtooth voltages, are examples of 
nonsinusoidal waveforms that can be analyzed 
by tmnsient-1·es1Jonse methods. 

12. Response of Simple R Circuit 

a. BASIC PRINCIPLES. The study of transient 
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response is based on the fundamental, or na­
tural, behavior of the three basic elements, re­
sistance, inductance, and capacitance when 
voltage is applied. The natural behavior of . 
these elements relates the current through tlfe 
element to the applied voltage, or the voltage 
across any element to the current flowing 
through it. It is from these fundamental rela­
tions that all impedance equations which as­
sume sinusoidal currents and voltages are de­
rived. This manual will use these fundamental 
relations to determine the response of circuits 
to nonsinusoidal waveforms. 

b. OHM's LAW. 

(1) The natural behavior of a resistive 
circuit is defined by Ohm's law, which 
in one form states that the voltage 
across a resistance is equal to the cur­
rent flowing through it times the re­
sistance. This shows that a simple 
linear relation exists between current 
and voltage at any time in a resistive 
circuit. A resistive circuit therefore 
does not require time to adjust to a 
change in voltage or current. Conse­
quently, a resistive cirooit has no tran­
sient response. 

(2) The current and voltage waveforms in 
a resistiv-e circuit are similar in shape 
and related in amplitude by the value 
of resistance R. In figure 8, resistor R 
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Is 10 ohms and the numerical value of 
the current waveform at any time is 
one-tenth the corresponding value of 
the voltage waveform. For example, 
after 8 usee, E is 15 volts and I is 1.5 
amperes. Similarly, the voltage after 
13 usee is 5 volts and the current is .5 
ampere. At any instant of time, the 
current is equal to the voltage divided 
by the resistance, rega1·dless of 
whether the waveform is d-e, a-c, or 
pulsed, and the current waveform is 
similar to the voltage waveform. 

13. Response of Simple L Circuit 

a. ANALOGY OF INDUCTANCE AND MASS. 

(1) The relationship between current and 
voltage in an inductance is shown in 
the analogy illustrated in figure 9. In­
ductance L is represented by mass M 
(a truck), voltage E is represented by 
force F exerted against the mass, and 
current I is represented by the velo­
city, V, at which the mass (truck) 
moves. The speed, or velocity, of the 
truck is equal to the distance it travels 
per unit time. Assume that no resist­
ance, or its equivalent friction, exists 
in the system. 

(2) A greater force is required to start a 
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Figure 8. Response of simple R circuit. 
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Figure 9. Analogy of inductance and ma8lt. 

truck moving than is required te keep 
it moving. That is why the first gear 
is used to start the truck and the third 
gear keeps it moving. The force also 
varies with the weight of the truck. 
The heavier the truck, the greater the 
force required. 

(3) For example, once a truck reaches a 
speed of 40 miles per hour no force is 
required to maintain this speed if 
there is no friction between tires and 
road. When the speed of the truck is 
increased to 60 miles per hour, a force 
must be exerted in the forward direc­
tion. In other words, it is necessary 
to step on the gas. In the absence of 
friction, however, if this force is main­
tained, the car speed will increase in­
definitely. The speed at any time is a 
function of the force applied to the 
truck and the time it is maintained. 
Despite friction, a truck continues to 
travel after the gas pedal has been re­
leased. To stop it, the brakes must be 
applied to exert a counter force, and 
the force needed depends on the speed 
and weight of the truck. 

( 4) The following, therefore, are funda­
mental principles: A truck tends to 
maintain its steady-state conditions. 
When at rest (zero speed), a force is 
necessary to build up the speed to 40 
miles an hour. If it is traveling at 40 
miles an hour, a force is required to 
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bring it to zero speed. The speed of 
the truck increases indefinitely when 
constant force is applied; the speed is 
proportional to the force applied to the 
truck. 

b. FUNDAMENTAL INDUCTANCE EQUATIONS. 

(1) The principles applied to the truck in 
the preceding discussion are true for 
a simple inductance circuit. Electrons 
at rest in an inductance act just as the 
truck does. They tend to remain at 
'rest and oppose movement, or flow of 
current. Similarly, when electrons are 
moving, they tend to maintain their 
movement and oppose any change in 
current. When no current is flowing 
in the circuit and a voltage (force) is 
applied, the inductance tends t0 pre­
vent current from flowing in the cir­
cuit. This opposition h> the applied 
veltage is known as back emf, or back 
electromotive force, and is dependent 
on the size of the inductor. The larger 
the inductance, the greater the oppo­
sition to any change. Similarly, when 
a current is flowing through an induct­
ance and the applied voltage drops to 
zero, the back emf tends to maintain 
the current flow. 

(2) When a voltage is applied across a pure 
inductance, the current through the 
inductance inc1·eases continuously (fig. 
10). For example, a 5-volt battery 
with zero internal impedance is con­
nected across a p,u1·e inductance, in A. 
An ammeter is placed in the circuit to 
measure the current flow, and the 
reading on the ammeter increases 
steadily. At the end of 1 second it 
reads 1 ampere; at the end of 2 sec­
onds, 2 amperes; at the end of 5 sec­
onds, 5 amperes. At the end of every 
second the current has increased by 1 
ampere. This circuit, therefore, has 
a rate of CU1"1'ent increase of 1 ampere 
per second, as in C. Note that t~e cur­
rent waveform is different from the 
waveform of the applied voltage, in B. 

(3) The value of inductance, L, can be 
determined by find1ng the ratio of the 
applied voltage (5 volts) to the rate 
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Figu.1·e 10. Response of simple L circttit. 
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of current increase ( 1 ampere per sec­
ond), or 5 henrys. When the induct­
ance in this circuit is increased to 10 
henrys (with battery voltage con­
ztant), the rate of current increase 
becomes .5 ampere per second. This 
demonstra'bes an important fact: the 
largeT the inductance, the greater its 
opposition to a change in current flow, 
and the smalle1· the rate of cur1·ent in­
C?'ease for a given applied voltage. 
Since the current inc1~eases every sec­
ond, the value of current dt any instant 

depends on how long the voltage has 
been applied to the circuit; the longe?' 
the voltage is applied to the circuit, 
the higher the value of current in the 
circuit. 

(4) Three fundamental relationships have 
been evolved: 

(a) An inductance opposes any change 
in current. 

(b) When a voltage exists across a pure 
inductance, the current through the 
inductance must change. 

(c) The current flowing in a pure in­
ductance at any given instant de­
pends on the length of time the volt­
age has been applied to the circuit. 

(5) From these fundamental relationships 
it is possible to determine the response 
of an inductance to any voltage wave­
form. It is important to note that 
these relationships assume the exist­
ence of a pu1·e inductance. Actual in­
ducto?'S a-lways have series resistance, 
and the cun·ent does not increase in­
definitely when a d-e voltage is ap­
plied (ch. 3). 

1·4. Response of Simple C Circuit 

a. ANALOGY OF CAPACITANCE AND SPRING. 

(1~ 

(2) 

The relation between charge, current, 
and voltage in a capacitoT is illus­
trated by analogy in figure 11. The 
capacitor is repa:esented by a spring; 
voltage E is represented by a force, F, 
against the spring. The charge, Q, is 
represented by distance S to which the 
spring i.s stretched. The current in the 
circuit is equal to the amount of char0·e 
flowing into the capacitor per second, 
and can be r epr esented by the distance 
per second that the spring is stretched. 
It is assumed that no 1·esistance, or its 
equivalent friction, exists in the 
system. 
When a constant force, F, is applied 
to a spring, it beg; ns to stretch. It 
stretches easi1y at first and the dis­
tance it stretches per second is large. 
The farther the spring is stretched, 
the smaller the distance covered each 

AGO 144GA 



1 
~·L..---~---_f 

s 

TM 669-tl 

Figtwe 11 . Analogy of capacitance and spring. 

second. Stretching the spring devel­
ops a counter force which is opposite 
to the applied force and tends to re­
turn the spring to its original condi­
tion. Finally, the spring cannot be 
stretched any farther, and at this time 
the counter force is equal-to the ap­
plied force. (If the applied force is 
increased, the spring can be stretched 
farther.) 

(3) When this applied force is released, 
the spring returns to its original posi­
tion with a counter force equal to the 
applied force. The velocity is large at 
t he beginning of the return cycle and, 
as the spring comes closer to its ori­
ginal state, the counter force decreases 
and therefore the velocity (distance 
per second) decreases. 

(4) The total distance, S, that the spring 
is stretched depends directly on the 
force, F, and inversely on the stiffness, 
K, ·of the spring. Therefore, the velo­
city of the spring depends directly on 
the force and inversely on the stiffness. 

(5) The following, therefore, are funda­
mental principles: 

(a) When a constant force is applied to 
a spring it stretches to some dis­
tance, S, depending on F and K, and 
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(b) 

maintains this position so long as 
the force is applied. 
The counter force developed by the 
spring is proportional to the total 
distance, S, that the spring is 
stretched and the spring stiffness, K. 

(c) After the spring has been stretched, 
it can be moved only by changing 
the applied force. When the force 
is increased, the spring stretches 
farther· when the force is decreased, 
the spring contracts. The veloci.ty 
with which the spring changes 1ts 
position is proportional to the 
change in the applied force. If the 
change in applied force is very 
large, the spring moves at a high 
velocity; if the force is small, the 
spring changes its position slowly. 

b. FUNDAMENTAL CAPACITANCE EQUATIONS. 

(1) The fundamental principles cited 
above for the action of a spring are 
equally true for the simple capac!­
tance circuit. When a d-e voltage IS 

applied across a capacitor, a curre~t 
starts to flow. The current flow IS 

large at first, but decreases as the ca­
pacitor charges and becomes zero 
when the voltage charge on the capa­
citor is equal and opposite to the ap­
plied d-e voltage. Thereafter, althougl1 
the d-e voltage continues to be applied 
across the capacitor, no further cur­
rent flows: A capacito1· cannot pass a 
d-e current. When the d-e voltage is 
removed and the capacitor is dis­
charged, the current flow again is 
large at first and decreases to zero as 
the capacitor becomes completely dis­
charged. 

(2) When a greater amount of charge is 
applied to a capacitor, the voltage 
across it increases. For example, a 
constant-current generator is con­
nected across an ideal capacitor (fig. 
12). The generator supplies a current 
of .0005 ampere, or .0005 coulomb per 
second. A voltmeter is connected 
across the capacitor, and the reading 
on this voltmeter increases steadily. 
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capacitor increases. At the end of 1 
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Figu?·e 12. Voltage response of simple C ci1·cuit with 
cu1-rent constant. 
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( 3) The voltage increases 5 volts for every 
.0005 coulomb of charge added to the 
capacitor, or 5 volts per second. Capa­
citance C is equal to the current 
(charge per second) divided by the 
voltage rate of change. 

c = (.) 
E' 

Therefore, C equals 100 microfarads 
(.0005 ampere/5 volts). When a 
smaller capacitance of 10 microfarads 
is used, the voltage increases at a rate 
of 50 volts per second. The smaller 
the capacito1·, the greater the voltage 
across it for a given amount of charge. 
The total charge in coulombs at any 
time t is equal to I 1, where I is the 

current in amperes and t is the time 
in seconds. When a current of .0005 
ampere flows for 2 seconds, the total 
charge is 2 times .0005, or .001 cou­
lomb. When the current is applied 
for 5 seconds, the total charge is 5 
times .0005, or .0025 coulomb. The 
longer the current flows, the greater 
the charge, and the greater the volt­
age across the capacitor. 

(4) If the comtant-current generator (fig. 
12) is r eplaced by a voltage generator, 
and an ammeter is placed in the series 
circuit, the following can be noted: 
When the generator voltage is con­
stant, the ammeter reads zero current. 
When the voltage output increases at 
a rate of 50 volts per second (fig. 13), 
the ammeter reads 50 rna. As long as 
the voltage increases at a rate of 50 
volts per second, the ammeter reads 
50 rna. After 10 seconds, the generator 
voltage reaches 500 volts and stays at 
this value for 5 seconds. During this 
period the voltage is not changing and 
the ammeter reads zero. After 15 sec­
onds, the voltage begins to decrease 
at a rate of 25 volts per second. The 
ammeter now reads 25 rna in the re­
verse direction, since the applied volt­
age is decreasing and the capacitor is 
discharging. 

(5) Capacitance C in the circuit is equal 
to cu1·rent I divided by the voltage 
change. The capacitance is, therefore, 
50 times 10-8 amperes divided by 50 
volts per second, or 10-3 farads (1,000 
microfarads). If the capacitance in 
the circuit is 100 microfarads and the 
voltage rate of the change is 50 volts 
per second, the ammeter will read 5 
rna. Therefore, the smalle1· the value 
of capacitance, the smaller the current 
flow for a given voltage change. The 
cu1·1·ent flow in the circuit is propor­
tional to the magnitude of volta.ge 
change. 

(6) Three fundamental relationships have 
been established: 

(a) A capacitor cannot pass d-e. 
(b) The voltage across a capacitor is 
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Figu1·e 13. Cun·ent response of simple C ci1·cuit with 
va1·iable voltage. 

proportional to the amount of charge 
in the capacitor. 

(c) The current flowing into a capacitor 
is proportional to the voltage change 
across the capacitor. 

(7) From these fundamental relationships 
it is possible to determine the response 
of any capacitor to any voltage wave­
form. It is important to note, how-
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ever, that these relationships assume 
the existence of pU?·e capacitance. 
Practical capacitances have · some 
series resistance which modifies the 
current and voltage responses ( ch. 
4). 

15. Energy Considerations 

a. IN RESISTANCE. When current flows 
through a resistance, some of the electrical en­
ergy is changed to heat. The amount of power 
lost as· heat when a current, I, flows through a 
resistance, R, is equal to J2R watts. The energy 
in watt-seconds or joules is equal to J2Rt. Since 
no practical circuit can be without resistance, 
a certain amount of electrical energy must be 
lost as heat. 

b. IN INDUCTANCE. When a current starts 
to flow through an inductance, a magnetic field 
is created around the inductor that increases as 
the current increases and collapses as the cur­
rent decreases. The energy supplied to a pure 
inductance is stored in this magnetic field, and 
at any time, with current I flowing through in­
ductance L, is equal to LI2/2 watt-seconds. 
When the current through the inductance in­
creases, the magnetic field builds up, and energy 
i.s stored. When the current in the inductor de­
creases the magnetic field collapses, and the 
energy is returned to the line. No power is ex­
pended in a pure inductance. It is alternately 
stored in the magnetic field when the current 
increases, and returl}ed to the line when the 
current decreases. 

c. IN CAPACITANCE. All of the energy sup­
plied to a capacitor is stored between the capa­
citor plates in the form of an electrostatic field. 
The energy in a capacitor increases as the 
square of the voltage. If the voltage across the 
capacitor is E and the capacitance is C, the 
electrostatic energy stored in the capacitor is 
CE2/ 2 watt-seconds, or joules. When a capaci­
tor is charging, the electrostatic field becomes 
st1·onger, and ene?"gy is sto1·ed. When a capaci­
tor is discha?"ging, the elect1·ostatic field becomes 
weake'r, and energy is given up. No power is 
expended in a pure capacitance. When it is 
charging, the energy is stored between the 
plates, and on discharge the energy is returned 
to the line. 
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16. Summary 

a. Electrical circuits have two response 
characteristjcs, steady-state and transient. 

b. The steady-state response is the long-time 
effect on voltage and current in a circuit, caused 
by a change in the input. 

c. The transient time is the time required for 
a circuit to go from one steady-state condition 
to another. 

d. The current or voltage in the circuit dur­
ing the transient time is known as the transient 
response. 

e. The transient response method can be used 
for the study of nonsinusoidal waveforms. 

f. The study of transient response utilizes the 
fundamental, or natural, behavior of resistance, 
inductance, and capacitance when voltage is 
applied. 

g. The natural behavior of a resistance is 
designated by Ohm's law: E-IR. This means 
that a resistance has no transient response. 

h. An inductance opposes any change in cur­
rent flow. 

i. The voltage across an inductance is equal 
to L times the rate of change in current flow. 

j. A capacitance cannot pass direct current. 
k. The voltage across a capacitor is equal to 

the total charge divided by the capacitance. 

16 

l. The electrical energy lost as a result of re­
sistance is equal to l 2Rt watt-seconds. 

m. In a pure inductance, energy is stored in 
the magnetic field built up by the current flow. 
The energy stored is equal to L/2 /2 watt-sec­
onds. 

n. The energy stored in a perfect capacitor is 
stored in an electrostatic field between the capa­
citor plates. The stored energy is equal to 
CE~ /2 watt-seconds. 

17. Review Questions 

a. What is steady-state response? 

b. What is transient response? 
c. What is the transient-response method? 

d. Can the transient-response method be used 
to analyze sawtooth and pulse waveforms? 

e. What basic law describes the behavior of 
resistance? 

f. State the three fundamental relationships 
of inductance. 

g. Explain why a capacitor cannot pass di­
rect current. 

h. What law governs the natural behavior 
of a capacitor? 

i. When is energy stored in an inductor? 
j. When is energy stored in a capacitor? 
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CHAPTER 3 

RESPONSE OF R-L CIRCUIT 

18. Definition of Unit Step Voltage 
(fig. 14) 

Transient response methods are used to de­
termine the current and voltage in a circuit 
when the equipment is first turned on or off 
and to determine the current and voltage in a 
circuit r esulting from a pulse. A circuit with 
d-e voltage applied through a switch is shown 
in A. When the switch is open, the voltage ap­
plied to the circuit is zero. When the switch is 
closed, the battery voltage, E, is applied to the 
circuit instantaneously. When the switch is 
opened, the applied voltage again is instan­
taneously zero. B shows the resultant volt­
age applied to the circuit, and C shows a rec­
tangular pulse identical with the waveform in 
B. The instantaneous rise in the applied voltage 
when the switch is turned on is the same as the 
positive step voltage of a rectangular pulse. 
When the switch is turned off, the instantaneous 
fall to zero is known as a negative step voltage. 
The rectangular pulse also can be called a step 
voltage, and when E is equal to a unit measure 
of voltage, the waveform is known as a unit 
step voltage. 

19. Positive and Negative Step Voltages 

The response of a circuit is essentially the 
same for an on-off d-e transient as for a rectan­
gular pulse, and the step voltages can be either 
positive or negative. A positive step voltag~ 
occurs when the rectangular pulse first is ap­
plied to the circuit (A of fig. 14). Similarly, 
when the switch is turned off or the rectangular 
pulse ends, as in B, the instantaneous voltage 
change from E to zero is called a negative step 
voltage. A rectangular pulse consists of a posi­
tive and a negative step voltage, occurring sue-
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Figure 1.$. D-e switching and rectangula.t· pulse. 

cessively. The addition of these two step volt­
ages is shown in figure 15. 

20. Basic Voltage Equation 
(fig. 16) 

a. To determine the response of any circuit 
to a step voltage, the basic voltage equation 
derived from Kirchhoff's law must be used. 
This equation states that the sum of the voltage 
drops in any closed circuit is equal to the ap­
plied voltage. For example, a voltage, E b• is 
applied across a series R-L circuit (fig. 16). 
The voltage drop across R is designated as eJh 

and the voltage drop across L is designated as 
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eL. Acco~ding to the basic voltage equation, at 
any instant, the sum of en and eL must be equal 
to Eu, the applied voltage. Expressed math .. 
matically, 

Eb ~en+ eL. 
The voltage across resistance 

en= i 1R, 
where en is in volts, and i 1 is the current In 
amperes flowing in the circuit at any time t. 

b. Voltage eL across the inductance is ez­
pressed by the formula 

di 
eL=L-dt, 

where eL is in volts, Lis in henrys, and di/dt i1 
in amperes per second. The symbol d signifies 
the rate of change of any quantity. The basic 
voltage equation for the series R-L circuit then 
becomes 

d' 
E b = i,R + L ·d~ 

at any instant of time t. 

21. Response of Series R-L Circuit to 
Posi~ive Step Voltage 

(fig. 16) 

a. GENERAL DESCRIPTION. 

(1) When the positive step voltage, in B, Ia 
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Figure 10. Cha1·ge of stwies R-L ciTcuit. 

applied to the series R-L circuit, in A, 
a voltage, Eu, appears across the cir­
cuit. Current attempts to flow, but the 
inductance opposes this current by 
building up a back emf that equals Eb, 
at the instant Eu is applied to the cir­
cuit, and 

Eu-e£ = 0. 
Consequently, the voltage drop across 
R is zero, and no current is flowing in 
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the series circuit. The values of cur­
rent and voltage at every instant are 
shown in B, C, D, and E. 

(2) As current starts to flow, a voltage, 
e 11 (equal to it?') , appears across R. 
This voltage drop represents the dif­
ference between Eb and a decreasing 
er.. As the voltage drop across R in­
creases, the rate of current change in 
the circuit decreases; it increases at a 
slower rate; voltage en. builds up 
gradually until the entire input volt­
age is dropped across R, and the 
steady-state condition is reached. Volt­
age e11 then is equal to the applied 
voltage, Eb, voltage er, is zero, and cur­
rent i 1 is maximum and equal to E~!R 
since di/ dt now is zero. 

b. DETAILED DESCRIPTION. 

(1) Cu?"?"ent du1·ing ji1·st usee. The volt­
age, current, and rate of current 
change at a number of successive in­
tervals during the transient periods 
will be discussed in detail to show 
how these characteristics change with 
time. The value of current at each 
instant can be obtained from figure 
17, since this is an enlarged version 
of the curve in C of figure 16. This 
value of current then is used to find 
the voltage and current rate of change 
by means of the equation 
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E 'R L di = 2t•+ dt' 
Actual values for E, L, and R are 
given to clarify the discussion. E is 
1 volt, L is 10 mh (millihenrys), and 
R is 1,000 ohms. At the instant that 
E is applied to the series R-L circuit, 
t equals zero and the current is zero; 
therefore, the voltage equation be­
comes 

and 

di di 
E = 0 X R + Ldt = L lff' 

E di 
L =(ft· 

With voltage E across the inductance, 
the current begins to flow. From the 

equation above, the rate at which the 
current increases is 
di E 1 dt = L ~ 10 X 10--a ~ 100 amperes 

per second= .1 rna per usee. 
This is the maximum rate of current 
increase, or, the current has its maxi­
mum rate of change when tis zero. 

(2) Cur1·ent during second usee. After 1 
usee, figure 17 shows that the current 
is .096 rna, and the voltage equation 
becomes 

di 
1 volt= (.096 X lO-s) X 103 + Ldt. 
Therefore, 

di 
L dt = 1- .096 ~ .904 volt across L, 

and 
di .904 
dt = 10 X lo-s = 90.4 amperes per 

second = .0904 rna 
per usee. 

At the end of 1 usee, the voltage 
across the resistor is .096 volt and 
the voltage across the inductor is .904 
volt. The rate of current change is 
.0904 rna per usee. Note that the cur­
rent changes at a slower rate. 

(8) Cun·ent after 5 usee. It is not neces­
sary to determine the current at every 
microsecond, but it is helpful to note 
the voltage, current, and rate of cur­
rent change at 5- and 10-usec inter­
vals. After 5 usee, the current flow­
ing in the circuit is .394 rna and the 
voltage in the circuit at this time is 

1 = 103 X .394 X 10--a + L ~~ · , 
or 

di 
L &= .606 volt, 

and 
di .606 - = --·- = 0606 rna per usee. dt 10 X 10-.'1 . 

At the end of 5 usee, the voltage 
across the resistor is .394 volt and the 
voltage across the inductor is .606 
volt. The rate of current change is 
.0606 rna per usee. Note that the rate 
of current increase is much lower by 
this time, and the voltage drop across 
R is greater. 
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Figure 17. Curr•nt in aerie• R-L circuit. 

(4) Current rate after 10 usee. When t 
equals 10 usee, the current flowing in 
the circuit is .632 rna. The voltage 
equation is then 

di 
1 = 1,000 X .632 X 10-s + L dt • 

eR is now equal to .632 and eL is, 
therefore, only .368. Most of the ap.. 
plied voltage is now across R, and the 
rate of current increase is 
di .368 dt = 10 X 10_8 = .0368 rna per usee. 

( 5) Current rate after 20 usee. After 20 
usee the current is .871 rna, the voltage 
across the resistor is .871 volt, and the 
voltage across the inductor is only .129 
volt. The rate of current increase is 
.0129 rna per usee. 

(6) Current rate after 40 usee. After 40 

usee the current · flow is .982 rna and 
the rate of current increase is .00182 
rna per usee. Theoretically, the cur­
rent never stops increasing, although 
it never quite reaches 1 rna. From a 
practical viewpoint, when the current 
becomes .999 rna (after 70 usee), it is 
considered to be equal to 1 rna, and eL 
is considered to be zero. 

22. Series R-L Circuit Time Constant 

a. A period of time is required for the cur­
rent in a series R-L circuit to reach its steady­
state value. A ratio known as the time constant 
has been derived, which allows an immediate 
prediction whether a long or short period of 
time is required for the circuit to reach a steady­
state. When the time constant is short, the cur­
rent rises rapidly to its steady-state value. 
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When the time constant is long, the current rises 
slowly to its steady-state value. 

b. The time constant is defined as being 
numerically equal to L/R, where the time con­
stant is in seconds, L is in henrys, and R is in 
ohms. For example, if L is 10 mh and R is 
1,000 ohms, the time constant is 

L! R ~ 101~01~-a =- 10 X 10-6 seconds- 10 usee. 

23. Time Constant and Response Curve 

a. EFFECT OF INDUCTANCE. Inductance in a 
circuit prevents the current from rising im­
mediately to its steady-state value. The larger 
the inductance, the greater the opposition to 
a change in current, and the longer the period 
of time required for the current to reach its 
steady-state value. The final, or steady-state 
value of current for this circuit is equal to 
E/R. Increasing the value of L increases th• 
time required to reach the steady-state condi­
tion. Decreasing the value of L decreases the 
time required to reach the steady-state condi­
tion. 

b. EFFECT OF RESISTANCE. If the same value 
of inductance is used and the value of resist­
ance is increased, the rate of current increase 
remains the same when t is zero. However, 
the steady-state value of current is reached in 
a shorter period of time. Increasing the value 
of R decreases the time requi'red to reach the 
steady-state condition. Decreasing the value 
of R increases the time required to reach the 
steady-state condition. 

'c. EFFECT OF TIME CONSTANT. 
(1) The time constant L/R is increased 

either by increasing L or decreasing 
R. Increasing the time constant in­
creases the time required to reach the 
steady-state condition. Decreasing the 
time constant decreases the time re­
quired to reach the steady-state condi­
tion. 

(2) Circuits with the same time constant 
require the same period of time to 
reach the steady-state condition. For 
example, the time constant of a series 
circuit with L of 10 mh and R of 1,000 
ohms is 10 usee. With 1 volt applied 
to the circuit, 70 usee are required for 
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the current to reach .999 rna, or 99.9 
percent of the steady-state current 
(E/R equals 1 rna). If the inductance 
is increased to 20 mh and the re­
sistance is increased to 2,000 ohms, 
the time constant of the new circuit 
is also 10 usee. Therefore, 70 usee are 
required to reach 99.9 percent of the 
steady-state current. The steady-state 
current is only .5 rna (E/R equals .5 
rna), or one-half of the steady-state 
value of current for the previous cir­
cuit; since L is doubled and the rate 
of current increase is halved, the same 
time is required to reach the steady 
state. 

.(8) The ·period of time required for the 
current in any R-L circuit to reach 
99.9 percent of the steady-state value 
can be expressed in terms of the time 
constant. In the example given above, 
L/ R is 10 usee, and the 99.9 percent 
value is reached in 70 usee. The time 
70 usee can be expressed as 7 L/R, or 
7 time constants. No matter what 
the values of L and R, the time re­
quired to reach 99.9 'Percent of the 
steady-state value is always 7 L! R. 

'(4) In L/R time, the current always will 
increase to 63.2 percent of its steady­
state value. If L/R is 50 usee, the cur­
rent reaches 63.2 percent of its steady­
state value in 50 usee. 

24. Universal Time-constant Chart 

a. GENERAL, 

(1) When a step voltage is applied to a 
series R-L circuit, it is possible to 
determine the values of it. eR, and eL 
through the use of the universal time­
constant chart (fig. 18). On this chart, 
the horizontal axis is plotted in terms 
of time constants, L/R equals 1. The 
vertical axis is plotted in terms of 
relative voltage or current, and 100 
percent corresponds to the applied 
voltage, E, or the current. 

(2) The rising curve, A, represents either 
current i 1 or voltage eR across the re­
sistance. Curve B, represents voltage 
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eL across the inductor. This graph is 
valid for only a step voltage input. 

b. T!I!m CONSTANT EQUAL TO 10 USEC. 
(1) An illustrative problem follows to show 

how these curves are used. The cur­
rent and voltage in a series circuit 
with L of 10 mh, R of 1,000 ohms, and 
E of 1 volt will be determined. One 
time constant equals 
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and the current will reach 63.2 percent 
of its final value at this time. 

(2) At the instant E is applied, t equals 
zero, eL is 100 percent, or 1 volt, en 
and it are zero (fig. 19). 

(3) When t is 1 usee, one-tenth of L/R 
time has elapsed (L / R equals 10 usee). 
At this time, eL is 90 percent of maxi­
mum or .9 volt, en is 10 percent, or 
.1 volt, and it is 10 percent, or .1 rna. 

(4) Calculation of these individual points 
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is simplified in table I. The points 
listed are shown on the universal time­
constant chart. 

Table I. Calculation of Voltage and Cu1Tent by Use of 
Universal Time-constant Cha1·t 

2 
6 

10 
20 
40 

c 
L/R 

2/10= .2 
6/10= .6 

10/10= 1 
20/10=2 
40/10=4 

I % •L ., I o/o •R ., I 'll'• 't ma 

82 .82 18 .18 18 .18 
55 .55 45 .45 45 .45 
36 .36 64 .64 64 .64 
14 .14 86 .86 86 .86 
2 .02 98 .98 98 .98 

(5) When 70 usee have passed, 7 time con­
stants have elapsed, eL reduces to zero, 
and en and i 1 become 100 percent, as 
shown in the chart (fig. 18). Actually 
eL is not zero nor is en equal to 1 volt 
at this time. All the points indicated in 
table I are plotted in figure 19, where 
they are connected by a smooth ex­
ponential curve. Since it is impossible 
to indicate a very small percentage on 
the chart, the steady state is almost 
reached when t is equal to 50 usee. 
The current and. voltages during the 
transient time of any series R-L cir­
cuit can be determined by substituting 
the appropriate values of E, L, and R. 

25. Energy Considerations 

a. From figure 18, it is possible to determine 
the expenditure of power in the series circuit 
at any given time. Each circuit element re­
ceives power at any time equal to the current 
flowing through it multiplied by the v'oltage 
across it. The power expended in the resist­
ance is therefore i 1eR, or i12n, and the power 
expended in the inductance is equal to iteL. The 
power received by the resistance is dissipated 
in heat; the power received by the inductance 
is transformed into a magnetic field around it. 

b. When the step voltage first is applied to 
the R-L circuit, the current is small, and most 
of the energy supplied to the circuit is stored 
in the magnetic field around the inductance. 
However, as the current increases, more power 
is dissipated in the resistance, and a smaller 
portion is stored in the inductance. Finally, 
when the current reaches the steady-state value, 
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eL is zero, no more energy is supplied to the 
magnetic field, and all the energy is dissipated 
in the resistance. As long as current flows in 
the circuit, however, a magnetic field exists, 
and energy remains stored in this field. This 
energy is equal to Lf2/ 2 watt-seconds, where I 
is the steady-state current. The energy stored 
in the magnetic field at any time t is En = 
Li1

2/2 watt-seconds. The fact that there is no 
voltage drop across L means that no more 
energy is being stored, or that the magnetic 
field is not increasing. 

26. Response of Series R-L Circuit to 
Negative Step Voltage 

a. CIRCUIT. B of figure 20 shows a negative 
step voltage applied to a series R-L circuit. 
Prior to the application of the negative step 
voltage, the circuit was operating in its steady­
state condition, switch SW, in A, was in posi­
tion 1, and current I in the circuit was equal 
to E!R. When SW is placed in position 2 the 
negative step voltage drops the input voltage 
from E to zero volts. 

b. GENERAL DESCRIPTION. 

(1) When the voltage drops to zero, the 
current in the circuit also tends to 
drop to zero because no further energy 
is being supplied. The inductance re­
sists any change of current flowing 
through it and attempts to maintain 
the current flow. The energy for main­
taining this current flow is the energy 
that has been stored in the magnetic 
field around the inductor. The indue~ 
tor, the?·efo?·e, acts as a source of emf. 
To maintain the current flow, a cer­
tain amount of power must be ex­
pended in the resistance. Since any 
dissipated energy must come from the 
energy stored in the magnetic field, 
the stored energy is gradually dissi­
pated, and the current drops to zero. 

(2) As the emf of the inductance decreases 
(fig. 20), the current ie becomes 
smaller, and the voltage drop across 
the resistance decreases in direct pro­
portion. Note that the current flow 
is maintained in the same direction as 
the current produced by the applied 
voltage, E. As current continues to 
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the stored energy in the inductance 
acts as the source of emf. 

Substituting, di 
itR"""' L df . 

h' circUit The detailed response of t_ IS ctual 
can be understood by usmg a ·ng 
values for L and R. In the. folloWI L 
discussion, therefore, the value~rns 
equals 50 mh and R equals 10,000 ° 
are used. uals 

(2) Current after zero time. At t ~q the 
0, the current flowing throug uals 
circuit is equal to E I R. For E e~ince 
1, this is 1/10,000, or .1 rna. ous­
the input voltage drops instan~a~\ed 
ly to zero, this current is mai~ a~eld 
only by the emf of the magnetict de­
around the inductance and m~~e fol­
crease at a rate determined by 
lowing equation: 

S. Ldi 
mce eL = dt' 

then 
tll •L 1 

0
nd, or cu-y--- - 20 amperes per sec 

50 X 10--ll .02 rna per usee. that 
(3) C Th. means urrent afte?· 1 usee. IS f rn .1 

in 1 usee the current drops ~~Jtage 

0 . ': .. _ 
rna to .08 rna. Therefore, the

08 
tirnes 

across the resistor drops to · The 
10-a times 10,000 or .8 amP 

1 
usee, 

eL 

-E -----i-iME~-----e:-
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Figure 20. Discharge of Be?'ies R-L circuit. 

flow, the stored energy gradually i 
dissipated in the resistance until, final~ 
ly, the stored energy is exhausted, and 
current flow ceases. 

c. DETAILED DESCRIPTION. 

(1) 
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Basfc-voltage equation. Under Kirch. 
hoff~ La.w, the voltage drops around 
the CircUit must equal the applied volt. 
a~e. Con~equently, en is equal to eL, 
w1th eL bemg the applied voltage, since 

. ·-

·, ..... 
~ · 

ere. 

rate of current decrease after 
therefore, becomes 
d' ~ _:= .8 = 016 rna per us . 
dt 50 X 10--3 · decrease 
Note that the rate of current f the 
has become smaller because 0 

lower emf applied by L. rrent at 
(4) Cu1·rent a[te1· 5 usee. The cu ·ned b'f 

any instant also can be deterrru To use 
reference to curve B (fig. 1S) ·express 
this curve it is necessarY to nstant· 

' . e co 0 the time in terms of the tlrn 
1 

to 5 
The time constant L/R is equwten t 
times 10-3/10,000, or 5 usee. 

1 
to 

. l t - is equa 6 1s equa to 5 usee, L/ R . . 
1
,, 3 

'Imate J 1 and the current is approx o36 J!li.l· 
percent of the initial value, 0[~es 10' 3 

The voltage across R is .036 ~ the rate 
times 10,000, or .36 volts, an 
of current change is eC· 
d . ·US 
_]:_ = .36 0072 ma pel 
dt 50 X 10--ll or · ~~·" 

,~.ao 1 



(5) Current after 10 usee. At t equals 10 
t usee, L/ R equals 2 and the current 

has decreased to 14 percent of its initial 
value, or .014 rna, as in curve B. The 
voltage across R is .14 volt. The rate 
of current change is then .0028 rna per 
usee and is becoming smaller. Theo­
retically, the current in the circuit 
never reaches zero; however, when t 

t 
equals 35 usee, L/R equals 7, and the 

current has decreased to .1 percent of 
the initial value. At this time, the cur­
rent has dropped to a value of .0001 
rna, and for all practical purposes has 
reached its steady-state value, which 
is considered to be zero. 

(6) Voltage curves. The voltage curves 
for eR and eL decline along the same 
curve as current. Therefore, curve B 
can be used to determine the voltage 
across either the resistance or the in­
ductance for any time expressed in 

t 
terms of L!R; t equals 0, or L/R 

equals 0, corresponds to the time when 
the negative step voltage is applied to 
the circuit. 

d. SIGNIFICANCE OF TIME CONSTANT. The 
time constant, L/R, for the negative step volt­
age response has the same significance that it 
has for the positive step response. The period of 
time required for the circuit to reach the steady­
state condition depends directly on the magni­
tude of the time constant. A longer time con­
stant means that a longer period of time is 
required to reach 99.9 percent of steady-state 
value; a small time constant means that the 
steady-state condition is reached in a short time. 

27. Precautionary Measures When 
Switch Is Used 

a. When the negative step voltage is obtained 
by opening a switch (A of fig. 21), precaution­
ary measures must be taken. After the switch 
is opened, current attempts to continue flowing 
in the R-L circuit because of the action of the 
inductance, and no path exists for the curr~nt 
flow. This causes the voltage across the m­
ductance to build up to the point where it breaks 
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down the air between the switch contact and 
the blade, and an arc is created across the 
switch. 

E ~:SPARK GAP 

NEGATIVE STEP VOLTAGE 
USING SWITCH 

FIELD· DISCHARGE 
CIRCUIT 

A 

8 
TM 669-21 

Figure !Jt. Field discharge resistor circuit~ 

L 

b. The magnitude of the inductive voltage 
which will cause arcing depends on the distance 
between the switch blade and the contact and 
the speed with which the switch is opened. 
When the switch is opened slowly, arcing can 
occur before the separation is very great, and 
only a relatively small voltage is required. If 
the switch is opened rapidly, a much higher 
voltage is required because a larger air space 
(greater resistance) is involved. 

c. When the switch is opened, the resistance 
in the circuit is increased, since the open switch 
acts as a high series resistance. The inductance 
tends to maintain the same value of current 
flow in the circuit and, since the series re­
sistance is higher, en is larger, and, from the 
basic voltage equation, e11 equals e,, and the emf 
developed across inductor L must be greater. 
The increased R lowers the time constant to 
such a value that the spark is practically in­
stantaneous. The larger the air gap in the 
switch, the higher the series resistance, the 
shorter the time constant, and the larger the 
emf developed by the inductance. 

d. This last consideration emphasizes the 
practical danger of allowing an inductive circuit 
to be opened too rapidly. When the direct cur-
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rent in the inductive field circuit of a large 
generator is interrupted, the voltage across the 
inductor can rise to several thousand volts. 
If the normal voltag.e in the field is only 125 
volts, this transient voltage can puncture the 
insulation between leads, turns, or the field 
winding and its iron core. 

e. To avoid damage of this kind, a field dis­
charge r-esistor, R2 (B of fig. 21), is used in 
many equipments. The switch connects a re­
sistor in the circuit when it is opened, and 
permits the energy stored in the inductance to 
discharge through this resistor. When the 
switch is opened, the blade makes contact with 
the field resistor before contact is lost with the 
battery. In this way the switch is moved from 
closed to open position without interrupting 
the current through the inductance. The field 
current then will gradually decrease to zero as 
the energy stored by the inductance is dissi­
pated in the form of heat in resistors R1 and 
R2. 

28. Step-by-step Procedure for 
Determining Transient Response 

a. GENERAL. 

2.6 

(1) The value of current in the R-L circuit 
at any instant of time has been deter­
mined directly from an exponential 
curve. No attempt has been made to 
derive this curve because higher 
mathematics are involved. When a 
universal time-constant chart is not 
available, an approximation of the re­
sponse curve may be obtained by use 
of the basic voltage equation. This 
method is developed step-by-step and 
can be used for determining transient 
responses. 

(2) The step-by-step method is useful also 
for obtaining the response of circuits 
to pulse voltages which do not have 
the ideal step-voltage form. The curves 
in figure 18 are valid only for a step 
voltage in which the voltage is as­
sumed to rise and decay instantaneous­
ly. In practical equipment, zero rise 
and decay times cannot always be as­
sumed, and the step-by-step procedure 
provides the approximate response of 
an R-L circuit to any waveform. 

(3) In this procedure, it is assumed that 
the current does not increase continu­
ously, but increases in small steps, and 
this can be understood by working out 
a response problem. For example, the 
current in an R-L circuit for E of 1 
volt, L of 10 mh, and R of 1,000 ohms 
is determined below. 

b. CURRENT DURING FIRST USEC. At the 
instant that the positive step voltage is applied 
to the circuit, the current is zero and the full 
voltage appears across L. The initial rate of 
current increase is E I R, or 1/10 times 10-3 or 
100 amperes per second, or .1 rna per usee. It 
is also assumed that, at the end of 1 usee, the 
current increases from zero to .1 rna. 

c. CURRENT DURING SECOND USEC. With a 
current of .1 rna flowing in the circuit, there 
is a voltage drop across R of .1 times 10-a times 
1,000. or .1 volt. 'The voltage drop across L is 
.9 volt and the rate of current change is re­
duced to .9/ 10 times 10-a, or .09 rna per usee. 
The current still is increasing and at the end 
of 2 usee it becomes .1 + .09, or .19 rna. 

d. TABLE OF CURRENT FROM 2 TO 10 USEC. 
(1) The currents and voltages at the end 

of each microsecond step are shown 
in table II. 

Table II. Step Voltag es at End of Each USEC with 
L!R Equal to 10 USEC 

·-----,------
' (usee ) I eR (v) I •L (v) I* (:ln/usec )l ( 1 (rna ) 

·---
2- 3 .19 .81 .08 .19+ .08 = .27 
8-4 .27 .73 .07 .27 + .07 ·= .34 
4-5 .34 .66 .07 .34+ .Q7 = .41 
5-6 .41 .59 .06 .41+ .06 = .47 
6- 7 .47 .53 .05 .47+ .05 = .52 
7-8 .52 .48 .05 .52+ .05 = .57 
8-9 .57 .43 .04 .57+ .04 = .61 
9-10 .61 .39 .04 .61+ .04 = .65 

(2) In a similar manner, it is possible to 
plot all values of current until the 
steady-state condition is reached. The 
currents indicated above are shown 
in figure 22. Check these values with 
those given for the same period of 
time in figure 17. The values obtained 
by the step-by-step method are slightly 
higher, but very close to the actual 
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values. For example, at 10 usee in 
figure 17 the current is .64 rna; in 
figure 22, the current is .65. 

(3) The time interval of the step should 
be one-tenth the time constant of the 
circuit. In this procedure, 1-usec steps 
are used .because the time constant of 
the circuit is 10 usee; if the time con­
stant is 100 usee, 10-usec steps should 
be used.' 

29. Use of Step-voltage Procedure for 
Other Waveforms· 

The procedure outlined above can be applied 
to any waveform. A good approximation of 
the series R-L response to the sloping voltage 
(fig. 23) can be determined by the following 
procedure. 

a. Redraw the sloping voltage in terms of a 
series of small step voltages (B of fig. 23). 

b. Determine the voltage equation fort equals 

1 usee (E = i1R + L ~~). 
c. Using this equation, determine the rate of 

current increase at t equals 1 usee, and the cur­
rent in the circuit at t equals 3 usee, assuming 
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that the rate of current increase is maintained 
for 2 usee. 

d. Determine the voltage equation at t equals 
3 usee, using the value of current obtained in 
step c, and the new value of inp1,1t voltage, E. 

e. Using this voltage equation, determine the 
rate of current increase at t equals 3 usee, and 
the total current in the circuit at t equals 5 usee. 

f. Repeat this procedure for each step volt­
age. If the time constant of the circuit is less 
than 20 usee, the spacing of the step voltages 
should be made at least .1 L/ R. If L/R is 10 
usee, .1 times 10, or 1-usec steps should be used. 

30. Application of ·step-voltage 
Procedure 
(fig. 23) 

The voltage shown in A is applied to an R-L 
circuit with R equal to 500 ohms and L equal to 
10 mh. Using the step-by-step method, the fol­
lowing response is obtained. 

a. CURRENT RATE AT 1 USEC. From the step 
representation, in B, the voltage at 1 usee is 1 
volt and the current during the first usee is 
zero. Since there is no voltage drop across R, 
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v 
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Figu1·e 22. Step-by-step response of serie• R-L ci1·cuit. 
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Figure 29. Plotting step-by-step response. 

di/dt is equal to 1/L, or l/10 times 10-8, or .1 
rna per usee. By 3 usee, therefore, the current in­
creases to .2 rna. Although a voltage of 1 volt 
is assumed to exist at 1 usee, actually it is only 
.5 volt, as shown in A. 

b. CURRENT RATE AT 3 USEC. At 3 usee the 
current is .2 rna, and the voltage drop across the 
resistor is .1 volt. At this time, however, the 
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applied voltage has increased to 2 volts. There­
fore, the voltage across L is 2 minus .1 volt, or 
1.9 volts. The current rate of increase then is 
1.9/10 times 10-3, or .19 rna per usee. 

c. TABLE OF VALUES FROM 5 TO 29 USEC. 
Table III indicates the values of current, volt­
age, and current rate from t equals 5 to t equals 
29 usee. These values are plotted in C. Similarly, 
any L-R transient response can be approxi­
mated. 

Table III. Step Voltages of R-L Circuit at 2-USEC 
Intervals 

41 (ma) 

I 
iR I I ( ) I di (mn/ 

drop (v) E (v) 1•£ v ldt usee) 

5 .2 +.19 X2= .58 .29 8 2.7 .27 
7 .58+.27 X2=1.12 .56 4 3.4 .34 
9 1.12+.34 X 2=1.8 .9 4 3.1 .31 

11 1.8 +.31 X 2=2.42 1.23 4 2.77 .277 
13 2.42+.277 X 2=2.97 1.49 4 2.49 .25 
15 2.97+.25 X2=3.47 1.73 4 2.27 .23 
17 3.47+.23 X2=3.93 1.97 4 2.03 .20 
19 3.93+.20 X2=4.33 2.165 4 1.83 .183 
21 4.33 + .183 X 2=4. 7 2.35 4 1.65 .165 
23 4.7 +.165 X2=5.03 2.5 4 1.5 .15 
25 5.03+.15 X2=5.33 2.67 4 1.27 .13 
27 5.33+.13 X2=5.5912.8 4 1.2 .12 
29 5.59+.12 X2=5.83 2.9 4 1.1 .11 

31. Summary 

a. On-off switching of a d-e voltage or a rec­
tangular pulse can be represented by step volt­
ages. 

b. The basic voltage equation required for 
determination of response of an R-L circuit to 

a step voltage is E = i 1R + L ~;. 

c. The current and resistor voltage start at 
zero and increase exponentially in the circuit 
after the step voltage is applied. 

d. The inductor voltage starts at E and de­
clines to zero exponentially. 

e. The time constant of the circuit is defined 
as L/R. · 

f. The time required to reach steady-state 
conditions depends directly on the magnitude of 
L/ R. A large time constant means that long 
periods are required to reach steady-state con-



ditions; a small time constant means that short 
periods are required to reach steady-state con­
ditions. 

g. When time is expressed in terms of L/R, 
it is possible to determine the relative current 
and voltages in the circuit from the universal 
time-constant chart. 

h. The energy received by the circuit at any 
time is equal to iter+ iteL. 

i. Energy received by resistance is dissipated 
into heat; energy received by the inductance is 
stored in the magnetic field around it. 

j. When a negative step voltage is applied to 
the series R-L circuit, reducing input voltage 
from E to 0, the current in the circuit is main­
tained by the back emf developed across the in­
ductance. 

k. As the energy stored in the inductance is 
fed back to the line, /, e1~. and e,, decline in ac­
cordance with an exponential curve. 

l. When the negative step voltage is obtained 
by opening a switch, a very large voltage can 
be developed across the inductance since no path 
exists for the current flow. The voltage in­
creases until the air gap across the switch is 
broken down and an arcing between switch con­
tact and . blade occurs, providing a current path 
for the inductance discharge. As a precaution­
ary measure, a field discharge resistor is placed 
in some circuits which enables the inductor to 
discharge. 

m. The basic equations outlined in this chap­
ter can be used 'to determine the response of the 
R-L circuit to other types of input voltage wave­
forms. 
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32. Review Ques«·ions 

a. What is a positive step voltage? 
b. Describe the current flowing in a series 

R-L circuit with L = 50 mh and R = 7,500 ohms 
at 1 usee after a step voltage of +5 volts is ap­
plied to the circuit. 

c. What is the steady-state condition of this 
circuit and how long does it take to reach 99.9 
percent of the steady-state condition? 

d. How does the value of L determine the 
time required to reach the steady-state condi­
tion? 

e. Using the universal time-constant chart, 
plot it, en, and eL for a positive step voltage, 
E = 8 volts, R = 10,000 ohms, and L = 25 mh. 

f. How much energy is dissipated in the re­
sistor at t = 10 usee in the example given in 
question e? 

g. How much energy is stored in the induct­
ance when the steady-state condition is reached 
in the example given in question e? 

h. Why does current continue to flow in the 
R-L circuit after the applied voltage has 
dropped to zero? 

i. What is the rate of current decrease in the 
R-L circuit, with R = 500 ohms and L = 1 mh, 
at 1 usee after a negative step voltage is ap­
plied to the circuit? The steady-state value of 
current was 10 ma. 

j. Describe the variation of current, I, eJt, and 
eL in the series R-L circuit, with a negative step 
voltage applied to the circuit. 

k. Why is it dangerous to open the switch 
rapidly in an inductive circuit? 
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CHAPTER 4 

RESPONSE OF R-C Cl RCU IT 

33. Introduction 
(fig.24) 

a. POSITIVE STEP VOLTAGE. When a d-e volt­
age is applied to an R-C circuit, as in A, for a 
period of time, the steady-state current in the 
circuit is zero because the capacitor cannot' pass 
a d-e current. In this steady-state condition, the 
emf resulting from the charge on the capacitor 
is equal and opposite to the applied voltage and 
no current flows. When the d-e voltage first is 
applied, however, the capacitor has no charge, 
and current flows in the circuit until the capaci­
tor charges to the applied voltage. The current 
and voltage change in the circuit during this 
transient period is covered in the first part of 
this chapter. 

E 
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~0----'1 

it .. 
R-C CIRCUIT 

E 

TIME­

STEP VOLTAGE 

A 

B 
TM en·z• 

l'lgur• 14. · R-C oircuit with poriti11e. etep tnJ')t't. 
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b. NEGATIVE STEP VOLTAGE (fig. 28). When 
the d-e voltage is removed and the capacitor is 
discharged, after a period of time the steady­
state current is zero. No voltage is applied to 
the circuit, :no charge is left on the capacitor, 
and there is no current flow in the circuit. When 
the d-e voltage first is removed, the capacitor 
has a charge on it equal to the applied voltage, 
and this emf is applied to the circuit. Current 
flows, discharging the capacitor, and when 
there is no charge on the capacitor, current 
stops flowing and the steady-state current is 
zero. Current and voltage change during this 
discharge period is the subject of the second half 
of this chapter. 

c. BASI<~ VOLTAGE EQUATION. The voltage 
and current in the circuit at any given instant 
of time between the instant the step voltage 
is applied to the circuit and the time the steady 
state is reached can be determined by means of 
the basic voltage equation. The voltage across 
the resistance at any time is e~~. the voltage 
across the capacitance is eo, and the sum of these 
voltages is equal to the applied voltage. The 
voltage across the resistance at any instant is 
equal to i 1R, and the voltage across the capaci­
tance is equal to the charge, designated Q, divid­
ed by C. The basic volta.ge equation can be ex­
pressed in the following manner (E is the ap­
plied voltage) : 

E - e11 + ec -= itR + ~. 

34. Response of Circuit to Positive Step 
Voltage 

cr,. GENERAL DESCRIPTION (fig. 24). 

(1) When the positive· step voltage shown 
in B is applied to the R-C circuit, a 
voltage, E, appears across the circuit. 
At the instant the voltage is applied 
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eR 

there is no charge ,pn the capacitor, e0 

is equal to zero, the applied voltage 
appears across ·E., ,and the initial cur­
rent is equal to E/R (A, . B, C of fig. 
25). 

(2) The current flowing in the circuit 
starts to charge the capacitor (C of 
fig. 25). Since the emf of the capacitor 
is proportional to the charge, a small 
voltage, e0 , appears across it. This emf 
is opposite in polarity to the applied 
voltage and subtracts from it. As a re­
sult, the voltage across the resistance 
is E minus eo and is equal to i1R. Since 
R is fixed, it must decrease and the 
capacitor charges more slowly. The 
greater the emf of the capacitor, the 
smaller the voltage across the resistor, 
the smaller the current in the circuit, 
and the lower the rate of charge of the 
capacitor. 

(3) The charging process continues until 
the capacitor is fully charged to the 
applied voltage, E. B and C show the 
relation of en to eo at all times during 
the charging process. The emf of the 
capacitor increases rapidly at first and 
then gradually until it is equal to the 
applied voltage, following an expo­
nential curve. The voltage across the 

resistance declines along a similar ex­
ponential cu.r:ve. 

b. DETAILED DESCRIPTION. 

( 1) Cw·rent during first usee. 
(a) A tabulation of voltage, current, and 

rate of charge at a number of suc­
cessive intervals during the transi­
ent period will show how these char­
acteristics change with time. The 
value of e0 at each of these intervals 
is obtained from the exponential 
curve in C. 

(b) To aid in the understanding of the 
material, the following values for R, 
C, and E are used : E is 1 volt, R is 
10,000 ohms, and C is 1,000 p.p.f (mi­
cromicrofarads). At the instant that 
E is applied to the circuit, t equals 0, 
the emf of C is zero, and the initial 
current in the circuit is E/R, or 
1/10,000, or .1 rna. 

(c) A current of .1 rna means that .0001 
coulomb flows into the capacitor in 
1 second, or .0001 times 10~ coulomb 
in 1 usee. Therefore, at the end of 
1 usee, .0001 times 10~ coulomb of 
charge Q have gone into the capac­
itor. The emf of the capacitor is 
equal to Q/C, or 10-1o;10-D, or .1 volt, 
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Figure 16. Charge of R-C eircuit. 
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and the initial rate of voltage charge 
of the capacitor is .1 volt per usee. 

(2) Cu1·rent du1'ing second usee. At the 
end of the first usee, the emf of the 
capacitor is .1 volt and the voltage 
across the resistor is 1 minus .1, or .9 
volt. The current in the circuit is equal 
to .9/10,000, or .09 rna. A smaller cur­
rent flow means that less charge is 
flowing into the capacitor, and the rate 
of charge decreases. The rate of volt­
age charge at this time is .09 times 
10-·D /1,000 times 10-12, or .09 volt per 
usee. 

(3) Current during fifth usee. At the end 
of the fifth usee, the emf of the capac­
itor is approximately .33 volt, en then 
is .67 volt, and the current flow is 
. 67/10,000, or .067 rna; the rate of 
voltage charge is .067 volt per usee. 

(4) Cur·rent during tenth usee. At the end 
of the tenth usee the emf of the capac­
itor is approximately .64 volt. At this 
time, eo is over half the applied volt­
age, and the current flow is less than 
one-half its initial value. The current 
is .036 rna and the resultant rate of 
voltage charge is approximately .036 
volt per usee. 

(5) Tabulation of current from 20 to 50 
usee. The voltages, currents, and rate 
of charge are tabulated below for 20, 
30, and 50 usee after the step voltage 
has been applied to the circuit: 

I I I I 
rate of change 

t In usee e0 in v e11 in v (1 In rna In v per usee 

t = 20 .86 .14 .014 .014 
t= 30 .95 .05 .005 .005 
t= 50 .99 • 01 .001 .0001' 
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(6) Current at 70 usee. The curve shows 
e0 reaching E approximately 50 usee 
after the step voltage has been applied 
to the circuit. Theoretically, e0 never · 
quite reaches E. However, at 50 usee, 
e0 is 99 percent of E, and at 70 usee, 
eo is 99.9 percent of E. It is impossi­
ble to show such small percentage dif­
ferences on a graph, and therefore, the 

curve reaches E at about 50 usee. For 
practical purposes, it is safe to assume 
that the steady state is reached at 70 
usee. At this time the current is as­
sumed to be zero, and the emf of the 
capacitor is equal and opposite to the 
applied voltage. 

35. R-C Circuit Time Constant 

a. GENERAL. A period of time is required for 
the emf of the capacitor and the current in the 
circuit to reach their steady-state values. A 
product known as the time constant has been 
evolved which allows immediate prediction 
whether a long or short period is required for 
the circuit to reach a steady state. When the 
time constant is short, the voltage rise and the 
current decline to steady-state values are rapid . 
When the time constant is long, the voltage rise 
and the current decline are g-radual. 

b. DEFINITION. 

(1) The time constant is equal numerically 
to RC when R is in ohms, if C is in 
farads, and the time constant is in sec­
onds. For example, if R is 100,000 ohms 
and Cis .00001 farad (10 p.f), the time 
constant in seconds is 100,000 times 
.00001, or 1 second. This is a long time 
constant, since R and C are large in 
value. 

(2) Usually, capacitance in micromicro­
farads is used, and the time constant 
frequently is expressed in usee. When 
R is in ohms and C is in microfarads, 
the time constant is in usee. For ex­
ample, if R is 1,000 ohms and C is 100 
p.p.f (.0001 p.f), the time constant in 
usee is 1,000 times .0001, or .1 usee. A 
time constant as short as .1 usee some­
times is used in pulse circuits . 

36. Time Constant and Response Curve 

a. EFFECT OF CAPACITANCE. When the capac­
itance is large, a large amount of charge is re­
quired to develop a given emf across it. When 
the cap&.citance is small, a relatively small 
charge can develop the same emf (E = Q/C) • 
To reach a given value, E, more charge (cur­
rent flow for a longer period of time) is re-

.. quired for a large than for a small capacitance. 
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/ncr·easing C increases the tim.e required ttJ 
reach the steady-state condition. Depreasing C 
decreases the time· required to reach the steady­
state condition. 

b. EFFECT OF RESISTANCE. The amount of 
current, or ch~rge per second, that can flow into 
a given capacitor is controlled by the series 
resistance. When the resistance is large, a small 
current flows and a longer period of time is re­
quired to charge the capacitor. When the re-

' sistance is small, the capacitor charges rapidly, 
and a large amount of charge flows into it per 
second. Inc1·easing R decreases the rate of 
charge of the capacitor, and increases the time 
required to 1·each the steady-state. Decreasing R 
increases the rate of charge, and decreases the 
time required to reach the steady-state. 

c. EFFECT OF TIME CONSTANT. 
(1) The time. constant RC is increased by 

increasing either R or C, or both. In­
creasing the time constant increases 
the time required to reach the steady­
state. Decreasing the time constant 
decreases the time required to reach . 
the steady-state. 

(2) Circuits with the same time constant 
require the same period of time to 
reach the steady-state condition. For 
example, the time constant of a circuit 
with C of 1,000 p.p.f and R o£ 1,000 
ohms is 1 usee. With 1 volt applied to 
the circ.uit, 7 usee .are required for e0 

to reach .999 volt, or 99.9 percent of 
steady-state v-oltage (1 volt). If the 
resistance is increased to 10,000 ohms 
and the capacitance is red1.1ced to 100 
p.p.f, the time constant again is 1 usee, 
and 7 usee are required to reach 99.9 
percent of the steady-state voltage. 
The current flow has been cut to one­
tenth its previous value, but the 
amount of charge has also been cut and 
the same amount of time is required 
to reach the steady-state. 

(3) The period of time required for eo to 
reach 99.9 percent of the steady-state 
value in any series R-C circuit can be 
expressed in terms of the time con­
stant. In the example given above, the 
time constant, RC, is 1 usee and the 
99.~ percent value is reached in 7 usee. 
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. . The time 7 usee can be expressed as 7 
time constants, or ' 7 RC. No matter 
what the values of Rand C, the time 
required to reach 99.9 percent ot the 
steady-state is always 7 RC. 

(4) The emf of the capaci~or always 
reaches 63.2 percent of the applied 
voltage after a period of time equal 
to the time constant has elapsed (t =­
RC). For example, if the applied volt­
age is 10 volts and RC is 3 usee, the 
emf of the capacitor will rise to 6.32 
volt in 3 usee. If E is .1 volt, and RC 
is 10 usee, e0 is .0632 volt 10 usee after 
the step voltage has been applied. 

Note. The voltages given above for 1 time 
eonstant and 7 time constants are true only if 
a step voltage is applied to the circuit. 

37. Universal Time-constant Chart 
I 

a. GENERAL. It is possible to determine the 
value of eo, en, and i 1 in an R-C circuit through 
the use of the universal time-constant chart 
(fig. 26). This chart can be used only for step­
voltage inputs. The horizontal axis is plotted in 
terms of time constants. The vertical axis is 
plotted in terms of relative voltage or current, 
with 100 percent corresponding to E (applied 
voltage) and E!R (initial current), respective­
ly. Curve A shows the increase of emf across the 
.eapacitor, e0 • Curve B shows the decline .of cur­
rent, ie, and resistor voltage, en. 

b. TIME CONSTANT EQUAL TO 5 USEC. 
(1) An illustrative problem follows, show­

ing the use of the universal time-con­
stant chart (fig. 26). The currents a:q.d 
voltages in an R-C circuit will be de-
termined, with R equal to 5,000 ohms, 
C equal to 1,000 p.p.f, and a step input of 
10 volts. The time constant of this cir­
cuit is 5,000 times .001, or 5 usee. 

(2) When the voltage is first applied, t is 
zero, and t!RC is also zero. Referring 
to zero on the horizontal scale, it is 
seen that e0, curve A, is zero, and it, 
curve B, is 100 percent. The initial cur­
rent is 10/ 5,000, or 2 rna.. 

(3) Table IV shows the values of e0, eR, and 
, ie at a number of successive times. 

Each point in this table is taken from 
figure 26. 
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!'able IV. Voltage and Curr111t '" R-C Cireuit, with RC Equal to 6 U1ec, 

f-lo 
usee ' RC I 

.5 .5/5 = .1 10o/o of 10 :a: 1 
1 
2 
4 
8 

16 
20 
25 

115= .2 18% of 10 = 1.1 
2/5 = .4 I•; 83o/o of 10 = 8.8 
4/5= .8 ! 55% of 10 = 5.11 
8/5 = 1.6 80% of 10 = 8 

16.5 = 8.2 96% of10 s::: IU 
20/5 = 4 98o/o of 10 • 9.1 
25/5 = 5 ' 100% of 10 s 10 

(4) When t/RC is equal to 5, curve A readt 
100 percent and curve B is zero. Ac-­
tually, eo does not reach 100 percent 
and i1 is not zero at thfs time. They are 
so close to these values, however, 
(within 1 percent), that the difference 
cannot be indicated on the graph. 

(5) All of the points determined in (2) and 
(3) above are plotted in figure 27. 
Time in microseconds is plotted along 
the horizontal axis; voltage and cur­
rent are plotted along the vertical axis. 
The points obtained are connected bT 

•.o In y C1 In ma 

90o/o of 10 = 9 90o/o of 2 = 1.8 
82% of 10 = 8.2 82% of 2 = 1.64 
67% of 10 = 6.7 67 o/o of 2 = 1.34 
45o/o of 10 = 4.5 45% of2 = .9 
20% of 10 = 2 20% of ·2 = .4 
4% of10= .4 4% of2 = .08 
2% of10 = .2 2% of2 = .04 
0 of 10 = 0 0 of2 :::t 0 

smooth exponential curves, one curve 
for current, or en, and the other for the 
emf developed across the capacitor, 
ea. These curves are known as the 
transient-response curves for this R-C 
circuit. Response curves for any R-C 
circuit can be developed in a similar 
manner. 

38. Energy Considerations 
4. During the transient period, energy is sup­

plied to the R-C circuit. Part of the energy is 
dluipated in the form of heat in the resistor. 
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The other portion is stored in the capacitor in 
the form of an electrostatic field. At the instant 
step voltage is applied, there is no charge in the 
capacitor a.nd ·all of the energy suppiied to the · 
circuit is dissipated in the form of he~t in the 
resistor. Then, the flow of energy into the ca­
pacitor increases, the capacitor accumulates 
charge, and the emf rises. The curren,t, how­
ever, is diminishing, since the rate at which 
energy is stored in the capacitor has passed a 
maximum and is decreasing. Finally, when the 
current is zero, no further energy is supplied to 
the circuit, and no additional energy is stored. 

b. The energy dissipated as beat in the re­
sistor at any instant is equal to i1 times eR. The 
energy stored in the electrostatic field at any 
instant is equal to i 1 times e0 • Referring to the 
universal time-constant chart (fig. 26), note 
that at first i 1 and . e[l., curve B, are maximu·in 
and maximum heat dissipation occurs. As time 
passes, both i 1 and en decline simultaneously, 
and heat dissipation diminishes rapidly. 

c. The rate at which energy is stored is a 
product of curve A, e0 , and curve B, ie. One curve 
rises as the other declines and during the first 
instant i 1 is maximum, but e0 is zero, and no 
energy is 'being stored. As e0 rises, the product 
of eo times i 1, which is the rate of energy being 
stored, increases until the capacitor is charged 
to 50 percent of the applied voltage. This oc­
curs when·t is about .7 RC. After this time, the 
decrease in i, more than offsets the increase in 
eo, and the rate at which energy is stored de­
creases. Finally; when i 1 is zero, the rate of 
energy storage becomes zero, although eo is 
maximum. 

d. The energy stored in the capacitor after 
it is fully charged is equal to CE2 /2, and the 
final value of e~ is equal to the applied voltage, 
E. This energy remains in the capacitor aa 
long as the applied voltage remains across the 
input, and, since the emf of the capacitor is 
equal and of opposite polarity, no current can 
flow in the circuit. 

39. Response of R-C Circuit to N•gative 
Step Voltage 

a. CIRCUIT. PriQr ·to the application of ~he 
negative step voltage (fig. 28) to the R-C cir­
cuit, the circuit was at steady-state, and the 
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capacitor was charged to a voltage, E. The step· 
voltage drops the applied voltage from E to zero 
Yolta. 

I 
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t t.2 -0 
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""""'' 17. Plot of respo7Uie curve. 

R-C ·CIRCUIT A 

TIME-

NEGATIVE STEP 8 

Till llt·tt 

""""''. 18. R-C circuit with. n"egati1!e ltep 1!0lt4gl. 

•• GENERAL DESCRIPTION. 

(1) When the applied voltage drops to zero 
(B of fig. 28) and the circuit is com­
pleted as shown in A, the emf of the 
ehara-ed capacitor is unopposed, and 
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current ,beg.i:qs to flow. This current is 
· opposi~e in direction to the char.ging 
current and equal to eoiR. The current 
flowing in the opposite direction indi­
cates that charge is bei.ng removed 
from the capacitor. When charge is 
removed from the capacitor, eo de­
creases, and the current in the circuit 
decreases, since itR must be equal to 
e0 • Therefore, charge is removed from 
the capacitor at a decreasing rate and 
the voltage and the current decrease 
until no charge is left on the capacitor. 

(2) At the instant that the applied voltage 
drops to z;ero, a discharge current 
equal to -E I R starts to flow (A of 
fig. 29). Since the discharging current 
is opposite in direction to the charging 
current, it is represented mathema­
tically as a negative quantity. In B, the 
voltage drop across the resistor, result­
ing from the current, is equal to the 
capacitor voltage in C but is opposite 
in polarity. Since the voltage across 
the capacitor must decrease as the cur­
rent decreases, and since the resistive 
voltage drop must be equal to the 
capacitor voltage, both voltages fall 
rapidly at first, then gradually as the 
current decreases, and finally slowly 
approach zero. Steady state occurs 
when voltage and current a·re zero. 

c. DETAILED DESCRIPTION. 

36 

(1) Use of unive1·sal time-cons~ant .chart. 
The detailed response of this circuit 

., can be determined by use of the univer­
sal time-constant chart (fig. 26). FQr 
the-discharging circuit, it. e1h and eo all 
vary in accordance with curve B. When 
t is -zero, the negative step voltage is 
applied to the circuit. To use this 
chart, actual values for R, C, and E 
are required, and in the following dis­
cussion, R is 2,000 ohms, C is .0075 p.f, 
and E is 6 volts. The time constant is 
2,000 times .0075, or 15 usee. 

(2) Current at 1 usee. During the initial 
instant, the voltage drop across the 
resistor must be equal to eo and of op-

i-tEJ ______ ~ __ fG 
A 

eR _:[ _______ r 
B 

t=o 
Tl ME __ __,,..~ c 

TM 669·29 

Figure ~9. Discharge of R-C ci1·cuit. 

posite polarity, or -6 volts. The cur­
rent is -612,000, or -3 rna, and the 
minus sign indicates that the capacitor 
is being discharged. A current of 3 rna 
means that .003 coulomb of charge is 

. being drawn from the capacitor in 1 
second, or .000000003 coulomb, 3 times 
10-9 per usee. This corresponds to a 
voltage rate of discharge of (3 times 
10-9 ) 1 (75 times 10-10), or .4 volt per 
usee. 

(3) Current at 5 usee. The current de­
creases as the emf of the capacitor 
decreases. At the end of 5 usee ( tl RC 
equals lfa), the current is 2.16 rna, and 
the rate of voltage decrease in the 
capacitor is about .29 volt per usee. 

(4) Cun·ent at. 1 time constant. The cur­
rent decreases to about 37 percent of 
the initial value, or 1.11 rna, 15 usee 
(or 1 time constant) after the step 
voltage is applied. The voltage across 
the capacitor also has been decreased 
to 37 percent of its original value, or 
2.22 volts, and the rate of voltage de­
.decrease is about .15 volt per usee. 

(5) Cun.ent at 2 time constants. The cur­
rent and voltage decrease to 13.5 per-

AGO U45A 



. cent of their initial values (fig. 26) 30 
usee, or 2 time constants, after the step 
voltage has been applied. The current. 
is approximately .4 rna, the voltage 
approximately .8 volt, and the rate of 
voltage decrease is .05 volt per usee. 
The voltage is decreasing at a slower 
rate at this time because of the low 
value of current in the circuit. 

(6) Current at 7 time constants. Theoreti­
cally, the current and voltage never 
reach zero value. However, 7 time con­
stants (105 usee) after the transient 
period has started, the current and 
voltage reach .1 percent of the initial 
values, and can be considered zeto. 

d. SIGNIFICANCE OF TIME CONSTANT. The 
time constant RC for the negative step response 
has the same significance that it has for the 
positive step response. The period required to 
reach the steady-state condition, or the rate at 
which the voltage declines, depends directly on 
the magnitude of the time constant. The longer 
the time constant, the longer the period of time 
required to discharge the capacitor completely 
(.1 percent). The shorter the time constant, the 
faster the capacitor discharges. 

40. Step-by-step Procedl!.lla'e for 
Determining Ta·ansier~t Response 

a. GENERAL. 
(1) The emf of the capacitor at any instant 

of time has been determined in this 
chapter directly from an exponential 
curve. It is possible to obtain an ap­
proximation of this response curve by 
means of the simple voltage equation, 
E equals e1e plus e0 • This method is 
developed step by step, and is useful 
when a universal time-constant chart 
is not available. The step-by-step 
method also is useful in obtaining the 
approxhnate response of an R-C cir­
cuit to pulse voltages in which rise and 
decay times are not zero. 

(2) In the step~by-step procedure, it is 
assumed that the current does not de­
crease continuously, but decreases in 
small steps, and can be understood by 
working out a response problem. The 

voltage across a 1,000-p.p.~ capacitor 
resulting from a step voltage of 10 
volts, with R of 10,000 Qhrns, will be 
determined. 

b. VoLTAGE AT END OF 1 USEC. At the in­
stant that the step voltage is applied to the cir­
cuit, a current of 10/ iO,OOO, or 1 rna, flows in the 
circuit. The capacitor is charging at a rate of 
(.001 times 10··6 ) 1 (1,000 times 10-12), or 1 volt 
per usee, ~nd at the end of 1 usee, the capacitor 
charg~s to 1 volt. 

c. VOLTAGE AT END OF 2 USEC. With 1 volt 
across the capacitor, there are only 9 volts 
across the resistor and the current drops to 
9/10,000, or .9 rna. The capacitor then. charges 
at a rate of .0009 times 10~/1,000 times 1()--12

• 

or .9 volt per usee, and, at the end of 2 usee, the 
capacitor has an emf of ·1.9 volts. 

d. TABLE OF VOLTAGE FROM 3 TO 10 USEC. 
The currents and voltage at the end of each 1· 
usee step are recorded in table V. 

Table V. Currents and V~ltages in 1-Usec Steps, 
Using Step-By-Step Procedttre 

tin usee a . R • ' rate in in v between I 
~ I 6 I i I Chargel total charge 

in v tn v 
1 

tn mn v /usee each usee step 

t=2tot= 3 1.9 8.1 .8 .8 1.9 + .8 = 2.7 
t=3tot= 4 2.7 7.3 .7 .7 2.7 + .7 = 3.4 
t=~tot= 5 3.4 6.6 .7 .7 3.4 + .7 = 4.1 
t =5tot= 

~ I 
4.1 5.9 .6 .6 4.1 + .6 = 4.7 

t=6tot= 4.7 5.3 .5 .5 4.7 + .5 = 5.2 
t=7tot= 8 5.2 4.8 .5 .5 5.2 + .5 = 5.7 
t =8 tot= 9 5.7 4.3 .4 .4 5.7 + .4 = 6.1 
t = 9 tot:::;: 10 6.1 3.9 .4 .4 6.1 + .4 = 6.5 

e. RESULTS. It is possibl.e to plot all values of 
voltage until a steady-state is reached, and these 
voltages can be used to determine the response 
of any R-C circuit. A graph of the voltages in 
table V is plotted on a curve in figure 30 and 
should be compared with the curve in A of figure 
26 where the values obtained by the step-by-step 
method are slightly lower. 

41. Use of Step-by-step Method for Other­
Waveforms 

a. The procedure outlined in paragraph 4(} 
can be applied to any waveform. Practical! 
pulses usually have a finite rise and decay time~ 
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(A of fig. 31) and an approximation of the re­
sponse of· an R-C circuit, having a finite pulse 
rise time can be obtained by the following pro­
cedure. 

I 

I 
w 

3 5 7 
t (U SEC)_.. 

PULSE RISE TIME A 

/ 

0 3 5 7 t u 
t (U SEC)-

STEP REPRE~ENTATION 8 
TM est-,11 

Figure 81. Step represen-tation of pula• rUI tim.. , 
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(l) ·Redraw the sloping voltage in terms 
of '. a series of small step voltages· (B 
of fig. 31). 

(2) Determine the current flowing through 
the circuit at the end ot.'1 usee (El/R). 

(3) Using this value of current, obtain ·the 
voltage rate of charge during the 
second usee. This determines eo at the 
end of 2 usee. 

( 4) Determine current flowing -in circuit 
at the end of 2 usee. It is equal to .E2 
minus e0/R (B of fig. 31). 

(5) Using this value of current, determine 
the voltage rate of charge during the 
third usee, and obtain e0 at the end of 
the third usee. 

(6) Repeat this procedure for each step 
voltage. 

b. This procedure is slightly different from 
paragraph 40 since the voltage increases with 
each usee an,d new values of E must be used in 
each step. The step intervals should be equal to 
one-tenth the time constant. When the time con­
stant is 10 usee, 1-usec steps should be used; 
when the time constant is 25 usee, 2.5-tisec steps 
!hould be used. 

42. Summary 

a. When a step voltage is applied to an R-C 
eircuit, the emf of tqe capacitor cannot rise 
Instantaneously, but requires a finite period of 
time to reach the step-voltage value or steady 
state. 

b. The current in the circuit is,, initially, 
maximum and decreases as the capacitor 
charges. 
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e. The capacitor charges to the input voltage, 
following an exponential curve in which the 
rate of charge is greatest at the .beginning -and 
tapers off as the capacitbr accnmulates charge. 

d. The length of time required to charge the 
capacitor to the applied voltage depends on RC, 
the time constant of the circuit. 

e. A long time c()nstant means ~hat a long 
period of time is required for the capacitor to 
charge. 

f. A short tipte constant means that a short 
charging period· is required. 

g. When .time is expres·sed in terms of RC, it 
is possible to determine the relative current and 
voltages in the .circuit from the universal time­
constant chart. 

h. The rate ,at which energy is received. by 
the circuit at any instant is equal ·to i1e8 . + i1e0 , 

i. The rate at which energy is being dis­
sipated in heat is represented by i,en; the rate 
at which energy is being stored in the capacitor 
is represented by i,eo. 

j. When a negative step voltage is applied to 
the ci'rcuit, th·e capacitor discharges through 
the resistor. 

k. The time required for the capacitor to dis­
charge depends on the time constant. A l(;mg 
time constant means a long discharge period; 

AGOl«<A 

l. The step-by-step method of determining 
the charge and discharge curves of an R-C cir­
cuit can be used. for any v_oltage waveform. 

43. Review Questions 

cz. Describe the current flowing in a series 
R-C circuit, with R equal to 5,000 ohms and C 
equai to .001 pi with a positive step voltage of 
15 volts applied. 

b. What is the steady-state condition of this 
circuit, and how long does it take to reach 99.9 
percent of the steady-state values? 

c. How does the value of C affect the period 
of time required to reach the steady state? 

d. How much energy has been stored in the 
capacitor after 10 usee in the cir~uit describe.d 
hi Review Question a? 'I 

e. Using the universal time-constant chart, 
determine the values for e0, e11, and i, after .5, 
1, 3, and 5 usee resulting from the application 
of an 18-volt step voltage to a series R-C circuit. 
R is 100 ohms, and C is .015 ~-tf. 

f, Determine the discharge curve for the cir­
cuit in Review Question 5 up to 1.5 usee after 
the applied voltage is removed. Use .1 R-C steps. 

g. Determine the time constants for the fol­
lowing values of R and C: R = 1 megohm, C =­
.01 pi; R- 1,000 ohms, C- 5 ~-tf; R=- 10,000 
ohms, C - .001 ~-tf. 

1 

; 
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. I . CHAPTER 5 

RESPONSE OF R-L-C CIRCUITS 
I 

.. 
44. Introduction 

a. The ' R-L-C circuit (fig. 32) can be con­
sidered a · general representation of any net­
work, since a certain amount of resistance, 
capacitance, and inductance must be present in 
every practical circuit. In the previous series 
R-L and R-C circuits the distributed capacit­
ance and inductance were disregarded to avoid 
complicated calculations, and L and C were con­
sidered ideal elements. However, this could not 
be considered a completely accurate description 
of a practical circuit. The stray capacitance 
and inductance that are always present in a 
circuit affect its operation, and the response 
characteristics must be modified. 

b. Since R, L, and C are present in any cir­
cuit, the circuit will be resonant to some fre­
quenc~ determined by LC,. and oscillations may 
occur. In pulse circuits the problem of minimiz­
ing or avoiding oscillations is sometimes more 
important than the problem of sustaining them 
in r-f circuits. The modifications necessary to 
calculate the response characteristics of these 
R-L-C circuits as well as the effects of reso­
nance are studied in this chapter. 

TM 669•32 

Figure ~£. Series R-L-C circuit. 

45. Forms of Solution 

a. When a step voltage is applied to a series 
I,l-L-C circuit, two response characteristics can 
result. One is known as a sing~e surge or over­
damped response, in which the current in the 
circuit rises to some amplitude and then gradu­
ally declines to zero (A of fig. 33). The other 
is known as the oscillato·ry response, in which 
the current undergoes a series of damped oscil­
lations, as shown in B. The plus and minus 
signs signify the direction of current flow in 
th.ese circuits. The steady-state current of both 
circuits is zero, since a d-e voltage is being 
applied to a circuit having series capacitance. 

f~ 
O TIME-

SINGLE- SURGE RESPONSE 
A 

+ 

TIME-

OSCILLATORY RESPONSE 
B 

TM 669·3S 

Figure 99. Forms of R-L-C response. 

b. The interchange of energy from the mag­
netic field of the inductance to the electrostatic 
field of the capacitance, and then from the elec-
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trostatic field to the. magnetic field, causes oscil­
lation. The element that limits the extent of 
this energy transfer is the resistance in the 
circuit , and the energy dissipated by the re­
sistance is lost to the circuit. When R is in­
creased, t he t ime constant L! R is decreased and 
if a large circuit resistance is used the field 
energy is dissipated quickly, and oscillations 
rapidly di e out . As the resistance is increased, a 
point is r eached where the t ime constant is so 
shol.'t t hat there can be only one transfer of 
energy from the magnetic to the electrostatic 
fi eld. This cor responds to the single-surge re­
sponse (A of fig. 33). 

c. The value of resistance at which the cir­
cuit r esponse changes from an oscillatory to a 
single-surge is known as the critical · value of 
resistance. In the R-L-C circuit, the critical 
value of resistance is equal to: 

Rr = 2 vL/C ohms, 
where Ra = the critical value of resistance in 

ohms, 
L = the inductance in henrys, 

and C = t he capacitance in farads. 
When the value of resistance in the circuit is 
lower than R., the circuit has an oscillatory 
response. 

d. Consider, for example, a circuit in which 
R equals 1,000 ohms, L equals .1 mh, and C is 
equal to 1,000 p.p.f. 

Then 

R --- 2 1 L/C 2- • / •1 X ·001 632 ohms. 0 
- v = V 1,000 X 10-!2 

Since R is 1,000 ohms, and higher than the criti­
cal value of resistance, which is 632 ohms, this 
circuit has a single-surge response. 

e. If R equals 1,000 ohms, L equals 10 mh, 
and C equals 100 p.p.f, then 

'I 10 X .001 R. = 2 'V 
100

-X 
10

_12 = 20,000 ohms. 

Since R is smaller than the critical value of 
20,000 ohms, this circuit is oscillatory. 

46. Single-surge Response 

a. GENERAL DESCRIPTION. 

(1) The response of an R-L-C circuit to a 
positive step voltage is shown in figure 
34. This response characteristic is for 
a value of resistance near the critical 
value. When the step voltage is first 
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applied to the circuit, a back emf is 
developed across the inductance equal 
to the applied voltage. Therefore, at 
the. first instant no current flows in 
the circuit, and the full input voltage 
is across the inductance. 

l lie 
A 

.... __ 

0 tt t2 t3 
TIME 

B 
TM G69-34 

Figure 84. Single-surge respome for resistance near 
critical value. 

(2) This voltage, eL, across the inductance 
causes the current in the circuit to 
increase at a rate proportional to the 
value of inductance L. As current 
flows in the circuit, a voltage drop, en, 
appears across R, the rate of current 
change decreases, and eL decreases 
accordingly. Initially, the capacitor 
has little effect on the circuit , and 
the response is essentially t he same 
as the response of an R-L circuit. 

(3) At time t1, in B, the r ate of current 
change has diminished appreciably 
from its initial value. A voltage, eL, 
still exists across the inductance, and 
therefore current is still increasing in 
the circuit. 

( 4) At the same instant that curr ent 
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started to flow in the circuit above, a 
charge began to accumulate on the 
capacitor. The voltage charge on the 
capacitor built up slowly at first, since 
the current was small. As the current 
increased, the charge on the capacitor 
increased, and the opposition of the 
capacitor voltage to the flow of cur­
rent further reduced the voltage 
across the. inductance. Therefore, at 
time t1 the rate of current change is 
smaller than it would be if no capa­
citance existed in the circuit. 

(5) The voltages across the resistance, 
capacitance, and inductance at time tl 
are opposite in polarity to the applied 
voltage. After tl, the voltages across 
the resistance anq capacitance con­
tinue to increase, the voltage across 
the inductance decreases, and the rate 
of current change decreases to zero. 
At this time, the current reaches its 
maximum value. 

(6) At time t2, maximum current occurs 
and the current is neither increasing 
nor decreasing; therefore eL is zero, 
and the voltage drop across R is the 
difference between the applied voltage 
and the opposing voltage of the capa­
citance, E minus ea equals en. How­
ever, this condition cannot last since 
the charge on the capacitance accumu­
lates, and the voltage across the capa­
citor, e0 , increases. As ea increases, 
en decreases, and the current de­
creases. 

(7) This decrease in current is opposed by 
the inductance, and· a back emf is de­
veloped across L which has the same 
polarity as the applied voltage. The 
energy stored in the magnetic field 
around the inductance tends to keep 
the current flowing in the circuit and 
prevents the current from decreasing 
along the R-C curve (ch. 4). Note 
that the inductance does not prevent 
the current from decreasing, but stops 
it from decreasing as fast as it nor­
mally would in an R-C circuit (rate of 
change decreases)'. 

(8) At time t3, the voltage across R is 

equal to the applied voltage, E, plus 
the voltage, e1,, across L, minus the 
voltage, e0 , across C, which is opposite 
in polarity to both E and eL, or 

E + e1, - ea == eu. 
As time passes beyond t3, eL continues 
to decrease, reducing the current flow, 
while e0 increases as charge accumu­
lates on the capacitance. F~nally, the 
steady state is reached when the cur­
rent is zero, eL is zero, and the emf 
of the capacitor is equal and opposite 
to the applied voltage. 

(9) When the step voltage is applied at 
time tl, the current essentially follows 
the R-L circuit response curve. After 
a period of time, the capacitance acts 
to reduce the rate of current increase 
so that a lower maximum current is 
obtained than in an R-L circuit. At 
time t2, the response resembles the 
R-C current charge curve and the 
inductor prevents the current from 
decreasing too rapidly. 

b. ENERGY CONSIDERATIONS. 

(1) The energy supplied to a circuit ele­
ment at any instant is equal to the 
current at that instant times the volt­
age across the element. The energy 
supplied to the resistance is equal to 
i,eR, and is dissipated in the form of 
heat. The energy supplied to the in­
ductance is equal to i1er,, and is stored 
in the magnetic field. The energy sup­
plied to the capacitor is equal to iteo 
and is stored in the electrostatic field. 
The energy supplied to the entire cir­
cuit is equal to itE. 

(2) When the step voltage, E, first is ap­
plied to the circuit, en and eo are zero, 
and all of the energy supplied to the 
circuit is stored in the inductance. As 
current begins to flow, this energy is 
divided into three parts. Some is dis­
sipated by the resistance, some is 
stored in the electrostatic field of the 
capacitor, and the major portion is 
stored in the magnetic field of the 
inductance. Until t2, in B, the rate 
of energy stored in the magnetic field 
is decreasing continuously, since eL 
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decreases faster than i, increases. The 
rate of energy supplied to the resistor 
and capacitor is · increasing continu­
ously, since itt en, and e0 are all be. 
coming larger. 

(3) At time t2 the current stops increas­
ing, eL becomes zero, and no further 
energy is supplied to the inductance. 
All of the energy being supplied to the 
circuit is either dissipated by the re­
sistance or stored in the capacitor. 
When the current starts decreasing, 
the energy stored in the magnetic field 
is returned to the circuit. Part of this 
energy is dissipated in the resistor, 
and the rest is stored in the capacitor. 

(4) The rate at which energy is dissipated 
is maximum at time t2, since both i, 
and en are maximum. The rate of 
energy storage in the capacitor 
reaches a maximum slightly after t2. 
At this time e0 is increasing faster 
than i, is decreasing. As the current 
decreases, the energy dissipated in the 
resistor decreases rapidly, and the 
rate at which energy is stored in the 
capacitor decreases gradually, since 
the reduction in current is some~hat 
offset by a larger e0 • When the steady 
state is reached, all of the energy 
stored in the inductor has been re-
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turned to the circuit. The capacitor is 
fully charged, and the total energy 
stored is CE2/2. 

47. Effect of Individual Elements on 
Single-surge Response 

a. RESPONSE FOR CRITICAL DAMPING. 

.......__ 

(1) When the resistance is equal to R0 , 

the. circuit is said to be critically 
damped. This occurs when the values 
of R, L, and C are such that 

R~2Vf 
or 

~=vLC. 
In the response curve for a critically 
damped circuit (fig. 35), the current 
in terms of E 1 R is plotted along the 
vertical axis. Time in terms of 2£/ R 
is plotted along the horizontal axis. 
Since 2L/ R equals vr;r:, either one 
can be considered the time constant 
for this circuit. 

(2) Note that the current reaches a maxi­
mum of .7 4 E I R at t equals 2L/ R, or 
one time constant after the step volt­
age is applied to the circuit. The cur­
rent reaches zero (.001 E/R) 8.5 time 
constants later. 

-----0 2 3 4 5 6 7 8 9 

TIME ( 2L "'I) 
R 

TM 111·35 

Figu.re 85. Cr itioally damped circuit response ourv1. 
' 
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(3) For example, a 5-volt step voltage is 
applied to a circuit in which L equals 
1 mh and C equals .001 p.f. ·.The value 
of resistance required for critical 
damping is 

Ro =< 2 • / 1 X 10-
3 

0 
= 2,000 ohms. o/ .001 X 10-

The time constant is 2 ( 1 times 1 o-s) I 
(2,000), or 1 times 10-o second, or 1 
usee. The current at this time reaches 
a maximum value of .74 E!R, or 
1.85 rna, and then declines, reaching 
zero about 8.5 usee or 8.5 time con­
stants later. 

b. EFFECT OF INDUCTANCE. 

(1) The inductance opposes the change in 
current. Therefore, it affects the cir­
cuit at the very beginning when the 
current rises to its maximum value. 
The inductance then acts to maintain 
the current flow · after the maximum 

. value is reached and current tends to 
decrease. The larger the inductance, 
the more gradual the rise and decay 
curves become (A of fig. 36). 
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Figu.re 36. Effect of inductance on single-BUrg• 
response curve. 

(2) When the inductance is decreased, the 
current risl;!s and decays more rapidly. 
When the inductance is decreased to 

· zero, the response is the same as that 
for the R-C circuit. The response curve 
for a smaller L, in B, is similar to tl1e 
current curve of an .R-C circuit. Since 
it is impossible to have a circuit with­
out a small amount of inductance, it is 
physically impossible for the current 
in a circuit to rise instantly from zero 
to a maximum value as suggested by 
the R-C curve (fig. 25). The ideal 
shape of the R-C curve is approached 
closely when the inductance in the cir­
cuit is made very small. Therefore, the 
solution indicated in chapter 4 can be 
used for most practical circuits with a 
negligibly small error. This factor be­
comes important, however, in circuits 
using R-C constants lower than .1 usee. 

I. EFFECT OF CAPACITANCE . 

(1) In an R-L circuit the current theo­
retically never reaches its maximum 
value. The addition of capacitance to 
the circuit, however, causes the current 
to reach a definite maximum value. 
Capacitance also affects the maximum 
value of current that flows in the cir­
cuit and causes the current to decline 
to zero after the maximum value is 
reached. The smaller the capacitance, 
the smaller the maximum value of cur­
rent, and the shorter the period of 
time required to reach maximum cur­
rent. 

(2) Figure 37 shows the effect upon the 
response curve as the capacitance· is 
increased. It takes the current a longer 
time to reach a maximum value, and 
the maximum value is increased. Also, 
after the maximum current value is 
reached, the current falls toward zero 
very slowly. When the·capacitance be­
comes infinite, the response curve· be­
comes the same as the R-L response 
curve; that is, the current theoretically 
never reaches its maximum value, and 
never falls to zero. Note that an infinite 
capacitance is the equivalent of a short 
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circuit, since the voltage across 'such a 
capacitance is always zero: 

Q 
eo== C' and Qco -= 0. 

-... 
TIME~-.... 

Tt.l 8U-S7 

Figurl 8?'. Eff·ect of larg1 capacitance on single-surg• 
1·esponse curve. 

. d . . SMALL L AND LARGE C. When L is very 
small and C is very large (fig. 38), the resistor 
is the major controlling element in the circuit. 
The current rises very quickly and then remains 
constant for a relatively long period of time. 
The sudden rise in current is possible since the 
circuit inductance is small. Its decay is slow 
because a long time is required to charge the 
large capacitor (large R-C time constant). The 
response curve closely resembles the input step 
voltage. In fact, as L approaches zero and C 
approaches infini ty, so that only resistance is 
left in the circuit, the output waveform ap­
proaches the input waveform. This is to be ex­
pected since a purely resistive circuit has no 
transient response, and therefore does not 
change the shape of the input voltage waveform. 

1 
1-
z 
w 
a: 
a: 
:::J 
0 

· 0 
TIME---

TM 869-SI 

Figure $8, Effect of small L and large Con singll­
su?·ge response curve. 

e. EFFECT OF RESISTANCE. 

(1) The resistance in the circuit limits the 
flow of current and prevents the 
voltage from oveTshooting (exceeding 
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AT REST 

A 

the applied voltage). Also, it .Jimits the 
amount of energy that can be stored 
in the magnetic field around the in­
ductance. 
Compare the R-L-C circuit .to a pen­
dulum (fig. 39). The steady-state co_n­
dition for the pendulum is when it is 
at rest at the center position, as in A. 
When it is pulled to one side, in B, and 
released, C, the force of gravity acts 
to return it to the center position. 
When there is little friction, the pen­
dulum picks up speed on its downward 
swing, and overshoots the center posi­
tion to swing upward against gravity . 
If it is immersed in oil so that there is 
a large frictional force opposing its 
movement, it cannot pick up a great 
deal of speed on its way down. If the 
friction is great enough, the pendulum 
moves slowly toward the center posi­
tion and stops there. 
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F'igu1·e 99. Pendulum. 

(3) Resistance affects the R-L-C circuit in 
the same manner. When R is large 
enough (above the critical value) the 
current in the circuit is limited to a 
very small value. The energy stored in 
the magnetic field is small, since the 
amount of energy stored depends on 
the amount of current flow, L/2 /2. 
When the current in the circuit begins 
to decrease, the inductance adds a 
small back emf voltage to the applied 
voltage. This small back emf causes 
the voltage drop across the resistance 
to increase. Therefore, the stored 
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energy. of the magnetic field cannot 
cause the capacitor voltage to over­
shoot or exceed the applied voltage. 
The resistance acts to slow down the 
entire cycle and prevent oscillation. 

48. Oscillatory Response 

a. CHARACTERISTICS. 

(1) When the value of the resistance in 
the R-L-C circuit is below the critical 
value, an oscillatory r e s p o n s e is 
obtained (fig~ 40). This is a damped 
sinusoidal current response 'in which 
the current alternately swings positive 
or negative. The amplitude of each 
successive sine wave of current is 
smaller than the previous cycle and, 
eventually, becomes so small that the 
~urrent is considered to be zero. This 
is the steady-stage condition. 

Til 1 .. -4. 

Figure 40. Current in alightl11 damped otcill4tortl 
circuit. 
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(2) Referring to the pendulum analogy 
given in the previous paragraph, a low 
frictional force permits the pendulum 
to swing past, or overshoot, the center 
position. It then comes to rest at some 
point beyond the center position, and 
g,ravity forces the pendulum to swing 
back and forth sevE)ral times before 
coming to rest at the center point. 
Similarly, when the resistance in the 
R-L-C circuit is low, more energy is 
stored in the magnetic field during the 
current build-up time. This energy 
then causes the voltage charge on the 
capacitor to exceed the applied voltage, 
and oscillations occur. 

I 

(3) The capacitor discharges and again 
overshoots the applied voltage because 
of the action of the inductance and 
must charge up again, and so on. 
Steady-state occurs when the capacitor 
voltage is maintained at the level of 
the applied voltage. 

( 4) A response is considered oscillatory if 
the capacitor voltage at any time ex­
ceeds the applied voltage, even though 
only one oscillation may take place 
(fig. 41). The only way a single oscil­
lation can be distinguished from a 
single surge is by the overshoot· of 
capacitor voltage that takes place. This 
is an important factor in many pulse 
circuits. 

oL--------------------------
TIME---... "' ....... 

rigure 41. Singlfl oscillation retponu curv1. 

b. DETAILED DESCRIPTION (fig. 42). 
(1) When the step voltage is applied to an 

R-L-C circuit, the current begins to 
increase at a rate determined by the 
inductance. If the resistance is small, 
there is little opposition to the flow of 
current until a charge accumulates on 
the capacitor. If a high value or resis­
tance is used, the rate of current 
change does not diminish as rapidly. 

(2) In A, a step voltage of E volts is ap­
plied to a series R-L-C circuit at time 
tO. The initial slope, or rate of increase 
of the current curve is equal to E I L, 
as in D. The rate of change decreases 
as the capacitor charges, decreasing 
the voltage across the inductance as 
in B and C. The resistance in this cir­
cuit is assumed to be sufficiently low 
that the voltage drop across it can be 
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neglected~ A little after time tl, the 
applied voltage is divided equally be­
tween the inductance and the capaci­
tance, and the current is changing at 
a rate one-half its initial value. 

tO 

TIME-

t1 t2 t.3 t4 t5 t6 t7 t.8 

INPUT VOLTAGE (E) 
A 

VOLTAGE ACROSS INDUCTANCE (ed 
B 
te 

VOLTAGE CHARGE OF CAPACITANCE (e0) 

c 

OSCILLATORY CURRENT IN R-L-C CIRCUIT 
D 

TM 669-42 

Figure ,42. Voltage relations in ideal L-C circuit. 
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(8) At time t2 the· current reaches its 
maximum value and the current stops 
changing. The rate of change is zero 
and therefore the voltage eL across the 
inductance is zero. The voltage ea 
across the capacitance is equal and 
opposite toE (neglecting any voltage 
drop across R). Since eo is equal to E, 
the current in the circuit attempts to 
drop to zero. However, a back emf, 
with the same polarity as the applied 
voltage, is developed across the induc­
tance. This emf adds to the applied 
voltage, and current flow continues in 
the same direction. At first the current 
decreases slightly, and a small emf 
exists across L. Later, as the rate of 
current change becomes larger, eL in­
creases. At t4, the rate of current 
change is maximum and eL is equal 
to E. 

(4) The inductance helps to drive current 
through the circuit until all the energy 
stored during the current build-up time 
(tO to tl) is exhausted. At time t4, the 
energy left in the magnetic field is 
reduced to zero and the current is zero. 
The capacitor is charged to the sum of 
E plus eL, and is opposite in polarity 
to the applied voltage. The energy 
stored in the magnetic field is applied 
to the capacitor between t2 and t4. 

(5) The current curve from t2 to t4 is the 
same shape as the current from tOt@ 
t2, except that the current is decreas­
ing instead of increasing. The same 
average current flows during each of 
these periods, and therefore the same 
total charge is driven into the ca­
pacitor. If the capacitor voltage is 
equal to E at t2, as in C, it is equal to 
2E at t4. 

( 6) At time t4, the current is equal to zero. 
The voltage across the inductance is 
equal to E, since the rate of current 
change is maximum. The voltage 
charge on the capacitance is -2E, and 
the applied voltage is E. Therefore, 
there is a net emf of zero in the cir­
cuit: 

E-2E+E-=O. 
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(7) ·Since the. capacitor. is · charged to a 
voltage of .-2E, or twice the applied 
voltage, the capacitor begins to dis­
charge in the opposite direction. The 
voltage across the inductance is E, and 
the rate of change of current is -E I L. 
At a time slightly after t5, the capaci­
tor has been discharged by a voltage 
equal to E /2. eL is, therefore, equal to 
-E /2, and the rate of current change 
is diminished approximately one-half. 

(8) The maximum negative current is 
reached at t6, when e0 . has decreased 
to a point equal and opposite to E. The 
inductor voltage is then zero and the 
current 'cannot become more negative. 
Since e0 is equal to E, there is no net 
emf in the circuit, and the current 
tends to drop to zero. This creates a 
back emf across the inductance, which 
forces current to continue to flow, and 
eo to decrease below E. 

(9) The inductance continues to help dis­
charge the capacitor until all of the 
energy stored in its magnetic field 
from t4 to t6 is exhausted. This occurs 
at t8, when the current becomes zero. 
At this time the capacitor has been 
completely discharged, and the con­
ditions that existed at tO prevail again. 

(10) In the previous discussion, the effect 
of resistance has been neglected. Act­
ually, resistance acts to reduce the 
amplitude of the oscillatory current 
during each successive cycle. At the 
end of the first quarter-cycle, the 
voltage charge on the capacitor is not 
quite equal to E, because there is a 
voltage drop, E R• across R. From t2 to 
t4 the capacitor charges to a voltage 
double that at t2, or 2 (E minus ER), 
or 2E minus 2En. Note that the 
voltage drop across R has doubled at 
t4. Similarly, at t6 the voltage charge 
on the capacitor is E -3 En. At t8 
the capacitor voltage is not zero, as in 
the ideal case, but equal to 4 En· The 
voltage across the inductance is E -
4 ER, which indicates that the current 
does not rise as fast during the second 
cycle. The current has a smaller amp-

Utude during this cycle, and the effect 
of the iR drop is cumulative with each 
cycle, causing smaller and smaller cur­
rent amplitudes. 

c. ENERGY IN CIRCUIT. 

(1) When the step voltage first is applied 
to the R-L-C circuit (with R negli­
gible) , most of the energy supplied by 
the voltage source is stored in the 
magnetic field around the inductance. 
As long as the current is increasing, 
energy is being stored in the magnetic 
field. However, as the capacitor 
charges, part of the energy is stored 
also in the electrostatic field. As the 
rate of current change diminishes, the 
rate of energy stored decreases in the 
magnetic field and increases in the 
electrostatic field. Finally, at t2, no 
further energy is being stored in the 
magnetic field, and all of the energy 
supplied to the circuit is being stored 
in the electrostatic field. 

(2) From t2 to t4, the current is diminish­
ing, and the magnetic field is trans­
ferring energy to the electrostatic 
field. At time t4 the magnetic field is 
zero and the electrostatic field has been 
doubled. At this time, the capacitor 
voltage is twice the applied voltage. 
This causes current flow in the op­
posite direction. When current is flow­
ing in the opposite direction, the elec­
trostatic field is returning energy to 
the circuit. From t4 to t6, part of this 
capacitor energy is stored in the in­
ductance and the rest is returned to 
the voltage source. 

(3) From t6 to t8, both the inductance and 
the capacitance are returning energy 
to the voltage source. When the cur­
rent falls to zero, at t8, all of the 
energy supplied to the circuit during 
the first half-cycle has been returned 
to the source. Since all conditions at 
the end of the first cycle are identical 
with conditions at zero time, the second 
cycle of current is identical to the first 
one, the third one with the second one, 
and so on. 
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(4) When the effect of resistance is con­
sidered, part of the energy during each 
cycle is dissipated in the form of heat. 
During the first cycle, the resistance 
takes part of the energy that normally 
would be stored in the magnetic field. 
It also absorbs some of the energy that 
normally goes from the magnetic to 
the electrostatic field. Therefore, at the 
end of the first half-cycle, the capacitor 
has received less energy than it would 
have received in the ideal case of no 
resistance. 

(5) The capacitor still is sufficiently over­
charged to reverse the current flow. 
Again, during the negative half-cycle, 
part of the energy is lost as heat. The 
action continues until all the excess 
energy has been transformed into heat 
and current ceases to flow. The ca­
pacitor is then charged to the applied 
voltage, E, and its stored energy is 
CE2/2. The energy dissipated by the 
resistance is also CE2/2. 

49. Frequency of Oscillatory Current 

. a,, EFFECT OF CIRCUIT ELEMENTS. The fre­
quency at which the current oscillates depends, 
primarily, on the value of inductance and ca­
pacitance. It also be.comes a function of the 
resistance when the value of resistance is close 
to the critical value. Since the current can in­
crease at a faster rate. when the inductance is 
small, the frequency of the oscillatory current 
increases as the inductance decreases. The 
voltage charge on the capacitor increases more 
rapidly when the capacitance is small. Conse­
quently, the capacitor voltage becomes equal to 
the applied voltage in a shorter period of time 
when a smaller capacitance is used. Therefore, 
the frequency of the oscillatory current in­
crea8es when the capacitance is decreased. The 
resistance in the circuit slows up the cycle, so 
that the frequency is decreased when the re­
sistance is increased. 

b. FREQUENCY EQUATION. 
(1) The frequency of oscillation of the 

R-L-C circuit is given by the following 
equation: 

1 • I 1 R2 

f· = ~'V LC - J,.£2 
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(2) · For example,- if L ...... 10 mh, C - .01 
pi, and R == 100 ohms; the frequency 
of oscillation is 

1 . I 1 . . (1 X 102) 2 . 
1·.~v 1ox1o-ax.o1x.Io-:-6 4(10.>.<10-3) 2' 

i . ' ' ·. 
I· oaco 211' y100 X 108-25 X 108 = 15,900 cps. 

. (3) The term R2/4L2 has little effect on 
'· · . the frequeACY because it is small ~om­

pared with 1/LC. When the .resistance 
is small compared with the critical 
value, the frequency equation can be 
written as 

1 
I·= 2n- v LC 

( 4) Although the frequency is affected 
only slightly by a small amount of re­
sistance, it is reduced considerably 
when the resistance is anywhere near 
the critical value (R equal to 2 '\(L/Cf. 
If the value of resistance in the ex­
ample given above is increased to 
1,000 ohms, the frequency of this cir­
cuit then becomes 

I _!_ . I 1010 (1os> 2 = 10" -vw 
• = 211' 'V 4 X 10-" 211' · ' 

I• = 13,800 cps. 
When the resistance is increased 
further to 1, 750 ohms, the frequency 
is reduced to 7,600 cps. 

(5) As the resistance is increased further, 
the frequency is decreased until the 
resistance is at the critical value, Ra. 
At this time the freq'uency is zero. The 
following chart ilh.istrates the effect 
of resist~nce upon the frequency of 
the circuit: 

Resistance 
(% of R0 ) 

Reduction In frequency 
1 -­

(%of 211' v 1/LC) 

0 (zero resistance) 
1 

0 (fo = 2"' v'LC 
. 10 

30 
50 
70 
90 

100 

.5 
4.6 

13.4 
28.6 
56.4 

100 (no oscillation) 

The resistance does not have an ap­
preciable effect upon the frequency 
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until it has a value·of about 10 percent 
of the critical resistance. 

50. Damping Factor 

a. AMPLITUDE OF 'SINE WAVE WITHOUT R. In 
an R·L·C circuit, in which the resistance is so 
small that it can be neglected, the amplitude of 
the sine wave of current is a function of the 
circuit inductance and capacitance. The ampli· 
tude of the current at the quarter-cycle instant, 
t2, is 

E E 
lmas: ,_ v L/C _, L(l/v LC)' 

Since 1/ v LC = 2?rf, this expression can be 
written also as 

E 
lmas..., 2Tr/L ' 

which is the familiar expression for the current 
in a circuit using conventional impedance 
notation. 

b. EFFECT OF RESISTANCE. 
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( 1) The resistance prevents the current 
from actually reaching the maximum 
amplitude indicated above. This effect 
is cumulative, decreasing the ampli­
tude of successive cycles until the amp­
plitude is reduced to the point where 
it can be considered equal to zero. This 
effect is known as damping, and the 
resultant sine wave is known as a 
damped sine wave. The degree of 
damping, or the speed with which the 
amplitude reduces to zero, is deter­
mined by the value of resistance. In 
figure 43, A illustrates a slightly 
damped wave caused by a relatively 
low value of resistance. As the resis­
tance increases, the damping effect 
increases. B shows a highly damped 
wave caused by a resistance just below 
the critical value. 

(2) The effect of damping is indicated by 
a dotted exponential curve which 
shows how the reduction in current 
amplitude takes place in the circuit. 
Figure 44 can be used to determine 
the response of any oscillatory circuit 
by expressing time in terms of L/R, 
the circuit time constant. When this 
is done, the maximum current in per-

(8) 

(4) 

SLIGHTLY DAMPED A 

HIGHLY DAMPED B 

TM 669·43 

Figure 48. Du.mped siM wu.ve. 

cent can be determined at any time. 
From this curve, it is noted that the 
amplitude reduces to zero when t is 
about 5 time constants, or 10 L/R. 
Actually, the amplitude is about 1 per­
cent of maximum at this time, but 
such a small percentage cannot be 
shown on the graph. Theoretically, the 
amplitude never reaches zero, but it 
can be assumed to be zero when the 
time elapsed is 7 time constants, or 
14 L/R. 
The time required for a series R-L-C 
circuit to reach a steady-state (zero 
amplitude) is dependent primarily on 
the values of R and L. If R is in­
creased, the time constant 2L/R is 
decreased, and the sine wave is 
damped more strongly. Varying C af­
fects the frequency of the oscillatory 
current. 
To obtain the response of an oscilla­
tory circuit, first determine the fre­
quency, assuming that R is zero for 
resistance lower than 10 percent of 
the critical value. Otherwise, use the 
equation including resistance (par. 
49b). Calculate the value of maximum. 
current, using this frequency and as-
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suming that no resistance is in the cir­
cuit. Then include the effect of resist­
ance, using the damping factor curve 
in figure 44. 

(6) The response of an R-L-C circuit with 
L of 26 mh, C of .01 pi, and R of 250 
ohms, to a step voltage of 10 volts will 
now be determined. 

(a) The critical value of resistance, 
2vL/C, for this circuit is about 
3,160 ohms; so that an R of 260 
ohms can be assumed to be zero in 
determining the frequency. 

1 
I - 2 11' v LC - 10,000 cps. 

Maximum current 
1 E 10 
' - 211' fL """'211' X 10,000 X 25 X 10...s' or ·

0064 

ampere, or 6.4 rna. 
(b) The time· constant of this circuit is 

2 (25 times 10-8) /250, .0002 second, 
or 200 usee. The time required to 
complete 1 cycle of oscillation is 
equal to 1/{, or 100 usee. The sine 
wave,.. therefore, .. reaches its first 

A.GO lUU 

maximum amplitude 25 usee, or one­
eighth of a time constant, after the 
step voltage is applied to the cir­
cuit. The damping factor after one­
eighth of a time constant is 87.5 
percent (fig. 44), and the amplitude 
of the first half-cycle· is 87.5 percent 
of 6.4 rna, or 5.6 rna (fig. 45). 

(c) The first negative peak occurs after 
three-eighths of a time . constant, 
when the current is only 69 percent 
of maximum, or about 4.4 rna. Sim­
ilarly, as in figure 45, each half­
cycle reaches a lower amplitude. 
Fourteen cycles after the step volt­
age has been applied to the circuit, 
the current reduces to zero (.0064 
rna). 

(6) Increasing the resistance increases 
the damping factor and decreases the 
current flow in the circuit, even dur­
ing the first cycle. A smaller current 
flow means that the voltage across the 
capacitor at the end of the first quar­
ter-cycle is lower, or that the over-
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Figure ~5. Oscillatory response curve. 

shoot is less. Hence, in many circuits 
where overshoot must be minimized, 
the value of resistance is increased. 

51: Summary 

a. The series R-L-C circuit actually is repre­
sentative of any series network, since all cir­
cuits must have some inductance, capacitance, 
and resistance. 

b. An R-L-C circuit may have two forms of 
response: the single-surge response and the 
oscillatory response. · 

c. A single-surge response occurs when the 
value of resistance in the circuit exceeds the 
critical resistance. 

d. In a single-surge response, the current 
rises to some maximum value and then decays 
to zero. 

e. The rise time of the current is determined 
by the resistance and inductance; the capaci­
tance serves to reduce the maximum value of 
current obtained. 

f. The decay period is determined by the re­
sistance and capacitance; the inductance main­
tains the current flow in the circuit. 
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-g. At the first instant, all of the energy sup­
plied to the circuit is stored in the magnetic 
field of the inductor. 

n. As current flows, energy is dissipated as 
heat by the resistance and stored in the capaci­
tor in the form of an electrostatic field. 

i. When the current reaches its maximum 
value no further energy is supplied to the in­
duct;nce, and all energy supplied to the circuit 
is either dissipated across the resistance or 
stored in the capacitor. 

j. During the decay period, the 'inductor re­
turns to the circuit all the energy stored in it 
during the current build-up period. 

k. The resistance acts mainly as a brake in the 
circuit, preventing current from rising to rela­
tively high values, by controlling the amount of 
energy stored in the inductor. Consequently, 
the' resistance prevents overshoot of the capaci­
tor voltage. 

l. In an oscillatory circuit, the resistance is 
low, overshoot occurs, and the current under­
goes a series of damped oscillations. 

m. In the ideal oscillatory circuit (having no 
resistance), there is a continuous interchange 
of energy between the magnetic field of the in-
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ductor and the electrostatic field of the capaci­
tor. 

n. The capacitor voltage varies from zero to 
2E and then back to zero again in one cycle, 
when a low resistance is in the circuit. 

o. The resistance acts to reduce the current 
amplitude by dissipating part of the energy flow 
of each successive cycle. 

p. The frequency of oscillation is dependent 
on Land C when the resistance is less than 10 
percent of the critical value. 

. q. When the resistance becomes an appreci­
able portion of the critical value, it reduces the 
frequency. 

r. The resistance damps the sine wave so that 
the oscillations reduce to zero after a period of 
time equal to 14 L/R. 

52. Review Questions 

a. Why is the R-L-C circuit studied? 
b. What two general types of response are 

obtained? 
c. What is the critical value of resistance for 

L of 100 mh and C of 1,000 p.pl? 

d. How does the inductance affect the single­
surge response? 

e. How does the capacitance affect the sin­
gle-surge response? 

f. Give one important characteristic of the 
oscillatory re~ponse. 

.• 

g. Explain 1 cycle of oscillation of this re-
sponse, assuming that R is zero. 

h. What is the frequency of oscillation for R 
of 500 ohms, L of 75 mh, and C of .001 p.f? 

i. What is the frequency of this circuit when 
R is increased to 5,000 ohms? 

j; ·What is a damped sine wave, and how is 
the damping affected by the . value of resist­
ance? 

k. With R of 500 ohms, and L of 75 mh, how 
long do~s it take for the oscillations to reduce to 
.1 percent of maximum amplitude? 

l. Determine the response of the circuit given 
in Review Question h to a step voltage of 15 
volts. 

m. Determine the response of this circuit 
when R is increased to 5,000 ohms . 

. ' 
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CHAPTER 6 

APPLICATION OF R-L AND R-C CIRCUITS 

Section I. EFFECT OF TIME CONSTANT ON PULSE RESPONSE 

53. Time Constant 

a. In the circuits discussed previously (R-L, 
R-C, and R-L-C), the time required to reach 
either a maximum or a minimum of current or 
voltage depended on the circuit time constant. 
When this time constant is small, the current 
or voltage can change rapidly, and a short pe­
riod of time is required to reach the steady­
state. 

b. In an R-L circuit to which a step voltage 
has been applied, the time constant is a meas­
ure of the time required for the current to rise 
or fall to its steady-state value. In the R-C cir­
cuit to which a positive step voltage is applied, 
the time constant is a measure of how fast a 
capacitor charges or discharges. The time con­
stant may be used to describe either the rise 
time or the decay time of a current or voltage. 

54. Relation of Time Constant to Pulse 

Figure A of 46 shows a rectangular pulse; 
B, C, and D illustrate the response of three dif­
ferent circuits to this pulse. 
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a. IDEAL RECTANGULAR PULSE. 

(1) Until now, discussion has been lim­
ited t1> the circuit response when a 
positive or a negative step voltage is 
applied and maintained for a long pe­
riod of time (long compared to the 
time constant). However, when a peri­
odic rectangular pulse, shown in A, is 
applied to the circuit, other factors 
must pe considered. The time constant 
of the circuit is used to determine the 
amplitude of the output voltage since 
this voltage may not reach a value 
·equal to the applied voltage E during 

the rise time. The time constant also 
is used to determine the time required 
for the voltage to decay, since the out­
put voltage may not decay to zero be­
fore the next pulse is applied to the 
circuit. 

TIME- A 

[l/ \(_ \ 

TIME- c 

~ :1./:\ /::\ 
D 

TN Ut·46 

Figt&re -'6· Reaponae to idecll reotcJngulclr pul.e. 

(2) In B, the output voltage reaches E a 
short time after the pulse is applied 
and decays to zero when the pulse is 
removed. The output voltage reaches 
E more slowly in C, and does not decay 



to zero by the time the next. pulse _is 
applied to .the circuit. ' In D, the volt­
age doesJ :riot,,~each E, but does decay 
to zero before the next pulse occurs. 
The output obtained in any circuit de­
pends on the circuit time constant 
compared with the pulse duration and 
the time between pulses, or pulse pe­
riod. 

b. AcTUAL PULSE. An actual pulse has finite 
rise and decay times (fig. 47) and the circuit 
time constant can affect various portions of 
this pulse differently. The time constant deter­
mines whether the circuit voltage can rise as 
rapidly as the applied voltage. It is used also 
to determine the decay time and whether the 
output waveform droops over the durati?n 
period. 

c. SHORT AND LoNG TIME CONSTANTS. 

(1) Time constants often are referred to 
as being short, long, or of the same 
length as some reference period of 
time. A short time constant is defined 
in this text as being less than one­
seventh that of the reference period. 
A long time constant is over seven 
times the time constant of the refer­
ence period. For example, a 1-usec 
time constant is short compared with 
one of 10 usee, but long compared 
with one of ;1 usee, and of the same 
magnitude as a 2-usee period. 

(2) The reference period of time is deter­
mined by the applied voltage. For ex­
ample, the pulse shown in figure 47 
has a rise time of .2 usee, a duration 
time of 20 usee, and a decay time of 8.5 
usee. This pulse is applied to an R-C 
circuit with a time constant of 1.5 
usee. The circuit, therefore, has a long 
time constant with relation to the rise 
time, a short time constant with rela­
tion to the duration time, and a time 
constant of magnitude equal to the 
decay time. 

55. Effect of Time Constant on Ideal 
Rectangular Pulse 

The effect of the time constant of an R-C and 
an R-L circuit upon an ideal rectangular pulse is 

AQO l«<A 

0 5 10 15 20 25 

TIME (U SEC) ---
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Figure ~~· Pulse with rise and d6C471 titM1. 

described to show the variation in output wave­
form that occurs when the time constant is 
changed. 

a. TYPES OF R-C AND R-L CIRCUITS. Two 
sources of output voltage are available from 
either the R-C or the R-L circuit (fig. 48). The 
output can be taken across R, and e8 is propor­
tional to the current flowing in the circuit. The 

· output voltage also can be taken across C or L 
as in B, and is proportional to the charge in 
the capacitor for e0 , or the rate of change of 
current for eL. 

b. RESPONSE OF R-C CmcUIT. 

(1) For example, a square wave occurring 
at a frequency of 1,000 cps and with 
an amplitude of 10 volts (A of fig. 49) 
is applied to an R-C circuit with a 
time constant equal to the pulse period, 
or 1,000 usee. The output voltage dur­
in the first 2 cycles is shown across the 
resistor in B and across the capacitor 
in C. 

(2) When the pulse is first applied to the 
circuit, the full input voltage appears 
across R, since C has no charge. There­
fore, e11 is equal to E, and eo is equal 
to zero. The capacitor begins to charge 
to a value determined by the universal 
time-constant curve (fig. 26, curve 
A) . As the voltage across the capaci­
tor, e0 , increases, the voltage across 
the resistor, e8 , decreases. At 500 usee, 
or one-half a time constant, the pulse 
decays to zero; the capacitor, accord­
ing to the universal time-constant 
curve, has charged to 40 percent of E, 
or 4 volts, and es has dropped to 60 
percent of E, or 6 volts. If a discharge 
path is provided during the pulse rest 
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Figure 48. Output voltage sources in R-C and R-L circuits. 

period, E . equal to 0, the capacitor dis­
charges and causes a negative voltage 
to appear across R equal to 40 percent 
of E, or 4 volts.' The ci'rcuit follows 
the R-C discharge curve (fig. 26, curve 

. . B), ·and is more gradual than the 
charge curve for the first pulse. The 
·reason for this is that the capacitor 
charges from zero toward E during 

· the pulse duration and discharges 
from 40 percent of E toward zero dur­
ing the pulse rest time. At 1,000 usee, 

· or one-half a time constant after the 
pulse decays, the capacitor has dis-

· charged to 60 percent of the charge 
it held at the end of 500 usee. There­
fore, it discharges to .4 times .6E, 
or 24 percent of E at 1,000 usee. 

·(3) A of figure 50 shows the effect on the 
output of varying the time constant 
with the same applied voltage that 
was shown in figure 49. The time con-

(4) 

stant is reduced~ to 50 usee, or one­
tenth the pulse duration. After the 
step voltage is applied, e0 will reach E 
in 350 usee, since seven time constants 
are required to charge the capacitor 
to the applied voltage. During this pe­
riod the voltage across the· resistor, 
eR, declines to zero. Similarly, during 
the rest period of the ·pulse, E equal 
to 0 the capacitor discharges com-' . pletely, following the universal time-
constant decay curve. This is because 
the pulse rest period is longer than 
seven time constants, the period nec­
essary for complete discharge. 
In B, the output voltage resulting 
from the square wave is shown when 
the time constant is increased to 5,000 
usee. The capacitor can charge only 
slightly during the pulse duration, and 
it discharges slightly during the pulse 
rest period. Comparirtg B and C of, 
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figure 49 with A · and B, of. figure 60, 
·it is seen that variations in the shape 
of the output waveform can be ob­
tained when the time constant of the 
circuit is made short or long with rela­
tion to the period of the applied volt-

. age. . . 
c. RESPONSE OF R-L CIRCUIT (fig. 61). 

(1) When the 1,000-cps square-wave in­
put is applied to an R-L circuit with a 
time constant of 1,000 usee, at the 
first instant a back emf equal to E is 
developed across L, and no current 
flows. Therefore, eL is equal toE, and 
e8 is equal to zero. Current begins to 
flow in the circuit at a rate determined 
by the universal time-constant chart 
(fig. 18, curve A). At 500 usee, or 
one-half a time constant later, the 
current has increased to 40 percent of 
its steady-state value, E/R. The volt-

0 . 500 1000 1500 

TIME (USEC)~ 

APPLIED VOLTAGE (E) A 

OUTPUT ACROSS R (eR) 
B 

OUTPUT ACROSS L ( e L) c 
TM 669-51 

Figure 51. Response of an R-L circuit to a square wave. 
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,age across the · r~ist!!.nee, ell, is equal 
·to 40 percent of E, as .~hown in B, and 
, eL has dec.}jned to ~0 percent of E, as 
shown in C. 

(2) When the pulse voltage decays to 
zero, an emf develops across the in­
ductance, which acts to maintain the 
current flow. This voltage is negative 
with relation to the voltage drop across 
R, and equal to ell. Therefore, when 
'the pulse drops to zero, eL equals 
-e,n, or 40 percent of -E. The de-
'crease of voltage across eL and ell is 
determined by the ·standard current 
decay curve of the R-L circuit. 

(3) Compare figure 4~ (response of R-C 
circuit with 1,000-usec time constant) 
with figure 51. Note that exactly the 
same curves are obtained except that 
the e.n curve in the R-C circuit becomes 
the eL curve in the R-L circuit, and the 
eo curve becomes the e.n curve. Sim­
ilarly, the response of the R-L circuit 
with time constants of 50 and 5,000 
usee is exactly the same as the R-C cir­
cuit response with the same time con­
stants. Again the e.n curve becomes the 
eL curve, and the e0 curve becomes the 
ell curve. 

56. High-pass R-C Filter 
In practice, pulses have finite rise and decay 

times. When en is taken as the output voltage 
(A of fig. 48), the R-C circuit is known as a 
high-pass filter. A high-pass filter allows any 
current above a certain frequency to pass to the 
desired circuit and opposes or diverts the flow 
of all currents of frequencies below this value. 

a. SHORT TIME CONSTANT. 
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( 1) The pulse shown in A of figure 52 is 
applied to a high-pass filter with a 
time constant of 1 usee. R is 100 ohms 
and C is .01 p.f. Since the time constant 
of this circuit is small compared with 
the pulse rise time of 10 usee, the 
voltage across the capacitor can in­
crease as fast as the input voltage 
rises. 

f 
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10 20 30 40 

PULSE INPUT 
50 60 

A 

t +2 
(f) 

~ Of---~--~--~~~;=~~==~--t -2 10 20 30 40 50 60 

t TIME (USEC)-

OUTPUT VOLTAGE (eR) B 
TM 669-52 

Figure 5£. Effect of low time constant on pra.otical 
pulse in kigft..pass circuit. 

(2) The voltages and current in this cir, 
cuit can be obtained by the step-b1' 
step method, as shown in table VI. 

Ta.ble VI. Voltages a.nd Current in Higk-Peu~t R-C 
Filter Witk Skort Time Constant. 

1 
2 
8 
4 
6 
6 
'1 
8 
9 

10 
11 

1 0 1 .01 1 
2 1 1 .01 1 
3 2 1 .01 1 
4 8 1 .01 1 
6 4 1 .01 1 
6 6 1 .01 1 
'1 6 1 .01 1 
8 '1 1 .01 1 
9 8 1 .01 1 

10 9 1 .01 1 
10 10 0 0 0 

When the voltage first is applied to the 
circuit, current begins to flow. The 
flow of current increases after the 
first step to the point where the rate 
of capacitor voltage charge is equal to 
the rate of increase of the applied volt­
age. At 1 usee (first step), the applied 
voltage is 1 volt. The voltage across the 
capacitor is assumed to be zero, but 
the rate of voltage charge is 1 volt per 
usee. At 2 usee, E has increased to 2 
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volts, and the capacitor voltage to 1 
volt. At 3 usee, E has increased to 3 
volts, and eo to 2 volts. The capacitor 
volfa:ge increases at exactly the same 
rate as the input voltage, except that 
it is delayed at the very beginning. 

(3) The current flowing in the circuit is 
equal to the voltage difference between 
E and e0 divided by R. Since the volt­
age difference remains essentially con­
stant after 1 usee, the current in the 
circuit remains constant after 1 usee. 
The voltage difference at 1 usee is 1 
volt. The current is, then, 1/100, or 
.01 ampere. The same current flows at 
2 usee, 3 usee, and so on up to 10 usee. 
The voltage across R during this pe­
riod of time is always about 1 volt (B 
of fig. 52). 

(4) At 10 usee, the applied voltage reaches 
the maximum value of 10 volts and re­
mains constant for the next 30 usee. 
Since there is only a 1-volt difference 
between eo and E at this time, the ca­
pacitor charges up to the input voltage 
a short time after 10 usee. When eo 
is equal to E, the voltage across R is 
zero, and the current reduces to zero. 
The output voltage and current then 
remain zero up to 40 usee. 

(5) At 40 usee, the applied voltage begins 
to decay. Again, because of the low 
time constant, the capacitor can dis­
charge as fast as the voltage decreases. 
During the decay period (A of fig. 
52), the voltage decreases more grad­
ually than it increased during the rise 
time. The current flow in the circuit 
is maintained at a value that enables 
the capacitor to discharge at the same 
rate as the applied voltage. If the volt­
age decreases more gradually, a 
smaller current is required to reduce 
the capacitor discharge voltage ac­
cordingly. Furthermore, since the cur­
rent flow is in the opposite direction 
to the original current flow, it develops 
a negative voltage across R, as in B. 
Note that the decay voltage is one-half 
the value of the rise voltage, since the 
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decay time is twice as long as the rise 
time. 

(6) At 60 usee, the appli~ vo~~ge is zero, 
the capacitor is almost discharged 
completely, and the current in the cir­
cuit reduces rapidly to zero. Compare 
the input and output pulse waveforms, 
which are completely different. Sim­
ilar waveforms are obtained across R 
whenever the time constant of a high­
pass R-C circuit is small compared 
with the rise and decay times. 

b. TIME CONSTANT EQUAL TO RISE TIME. 

(1) When the time constant is equal to 
the rise time, the capacitor cannot 
charge quite as fast as the applied 
voltage increases. The pulse shown in 
A of figure 52 is applied to a high-pass 
R-C circuit with a time constant of 10 
usee. R is now 1,000 ohms, and Cis .01 
pi. Table VII shows the step-by-step 
values of current and voltage in this 
circuit: 

Tabl6 VII. Voltage and Current in Higk-Ptus R-C 
Filter with Time Constant Equal to Rise Time. 

t 
Rate of capacitor ,_) E(v) •o(Y) •.s(v) i 1 (amp) YOltaP charp 

(v per usee) 

1 
2 
8 
4 
5 
6 
7 
8 
9 

10 
11 

1 0 1 .0010 .10 
2 .10 1.9 .0019 .19 
8 .29 2.7 .0027 .27 
4 .56 8.4 .0034 .34 
5 .90 4.1 .0041 .41 

' 6 1.3 4.7 .0047 · .47 

7 1.8 5.2 .0052 .52 
8 2.8 5.7 .0057 .57 
9 2.9 6.1 .0061 .61 

10 8.5 6.5 .0065 .65 
10 u 5.9 .0059 .59 

(2) When the pulse is applied to the cir­
cuit, current begins to flow. Since the 
resistance in the circuit has been in­
creased, the current cannot increase as 
fast as it did in the short time-con­
stant circuit. The flow of charge into 
the capacitor is lower, and eo cannot 
·increase as fast as the applied voltage, 
E, is increasing. Hence, the voltage 
difference between E and e0 is increas-
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... ' .~. ing eontinuou~?lY between zero and 10 
usee. Since at 1 usee, the applied volt­
age is 1 . vott (A of fig. 52) and the 
~apacitor voltage is . .01 volt, the volt­
age difference is about 1 volt. At 2 
~S!'!c, E is 2 volts, e0 is .1 volt, and the 
ditrerence is 1.9 volts. The voltage 
. differEmce is the voltage, .eR, across R, 

. ~r -~he output voltage. This voltage is 
shown in A of figure 53. 

PULSE PULSE . PULSE PULSE 
-1 RISE ~DURATION---1--DECAY-+-REST-··· -+ t i. TIME : TIME : TIME : . TIME . 

-~:: 
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Figure 53. Effect of time constant in higk-pass circuit. 
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(3) Although the voltage difference in· 
creases rapidly between zero and 6 
usee, it increases slowly between 6 and 
10 usee. This reduction in voltage 'dif­
ference is due to the increase of cur­
rent in the 'bircuit. As current in­
creases, the charging rate of the ca­
pacitor . approaches the voltage-in­
crease rate. The current in the circuit 
at any time is equal to the voltage dif­
ference, E ~e0, d~vided by the resist­
ance. At 1 usee, it is about .001 am­
per,e, and incre~ses to approximately 

.. 005 ampere at 6 usee. From 6 to 10 
usee, the current increases gradually 
from .005 to . . 0065 ampere. This can 
be. seen-in table VII. 

'4) ·From 1Q . to 40 usee, .the applied volt~ 
age is -constant, and the capacitor volt­
age charges to E. As e0 increases, the 
voltage difference and current rate de­
crease. At 40 usee, the capacitor volt­
age has not reached E (time for com~ 
plete charge is 7 RC, or 70 usee), and 
there is a small output voltag~, eR, of 
.4 volt ( ea is 9.6 volts). Therefore, a 
small current still flows in the circuit. 

(5) At 40 usee, the applied voltage begins 
to decrease. At 41 usee E declines to 
9.6 volts and is equal and opposite to 
the capacitor voltage. The output volt~ 
age, therefore, is zero at this time. 
After 41 usee, the applied voltage be~ 
comes smaller than the capacitor volt­
age, the difference voltage becomes 
negative, and the current flows in the 
opposite direction. Again, the long 
time constant prevents the capacitor 
from discharging as fast as the ap­
plied voltage decreases. However, 
since the pulse-decay period is longer 
than the pulse-rise period, the rate of 
capacitor discharge approaches to the 
rate of voltage. 

( 6 ). The output voltage reaches a maxi~ 
mum of -3.8 volts at 60 usee (A of 
fig. 53). It is -3.1 volts at 50 usee, 
and -3.7 volts at 55 usee .. This indi­
. cates that at approximateiy 55 usee, 
the rate of_ discharge is aimost equal to 
the rate of decay. At 60 usee, the ap­
plied voltage is zero and the capacitor 

1 has discharged to 3.8 volts. The ca­
pacitor continues to discharge after 
60 usee 1,1ntil e0 becomes zero. The volt­
age difference, and consequently the 
circuit current and output voltage, de­
crease as the capacitor discharges, fol­
lowing the R-C exponential discharge 
curve. 

(7) The output voltage curve (A of fig. 
53) is typical of the waveform of any 
high-pass R-C circuit whose time con­
stant is of the · ;i~ame magnitude as the 
pulse rise time. When the pulse dura-

. tion time is increased, the current and 
o~tput voltage fall to zero before the 



decay time starts. Conversely, if the 
duration time is decreased, the output 
voltage during the decay time remains 
positive for a longer period of time, 
and negative for a shorter period of 
time. 

c. LoNG TIME CONSTANT. 

(1) When the time constant is long com­
pared with the rise and duration time, 
the capacitor charges to a small frac­
tion of the total applied voltage. Most 
of the voltage exists across R, and the 
output wa·vef0rm closely resembles the 
input pulse voltage. 

(2) The pulse shown in A of figure 52 is 
applied to a high-pass R-C circuit with 
a time constant of 100 usee. R is now 
10,000 ohms, and C is .01 pi. Because 
of the high resistance in this circuit, 
the current flow is small. For exam­
ple, when E is 1 volt, the current is 
only 1/10,000 or .0001 ampere. This 
low value of current results in a low 
rate of change of the capacitor voltage. 
During the entire rise time, the ca­
pacitor charges up to only .5 volt, and 
the voltage difference at 10 usee is 9.5 
volts. The voltage difference, or output 
voltage, during this period of time fol­
lows the input voltage, as in B. 

(3) From 10 to 40 usee, the capacitor 
charges slowly toward the applied 
voltage. Because of the long time con­
stant, however, e0 is only 3 volts at the 
end of 40 usee. This means that the 
difference voltage, and the output 
voltage and current, drop about 2.5 
volts during this period of time. 

( 4) After 40 usee, the applied voltage 
starts to decay and the output voltage 
follows the same rate of voltage de­
crease. However, since the voltage 
across the capacitor was 3 volts at 40 
usee, the applied voltage does not equal 
the capacitor voltage until the pulse 
has been decaying for 13 usee. At 53 
usee, E equals e0 , and the difference 
voltage, circuit current, and output 
voltage are, therefore, zero. After 53 
usee, the applied voltage becomes less . 
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than the capacitor voltage. Since the 
capacitor discharges slowly (long time 
constant), the difference voltage in­
creases to -3 volts at 60 usee. At this 
time E is equal to 0 and eo is 3 volts. 
The capacitor then discharges slowly 
toward zero. 

(5) After 100 usee, or one time constant, 
the capacitor charge decays to 1.1 
volts. After 700 usee, or seven time 
constants, the output is zero. If this 
pulse appears periodically, and the 
pulse rest period is less than 700 
usee, the trailing edge (decay time) 
of the output waveform runs into the 
leading edge (rise time) of the next 
pulse. When the time constant of a 
circuit is increased, the capacitor will 
charge to a smaller voltage, and there­
fore, a smaller negative output voltage 
is obtained. This results in a closer 
approximation of the input waveform. 
The longer the time constant, the bet­
ter a high-pass R-C circuit reproduces 
the input waveform. 

d. PERIODIC PULSES. 

(1) When the pulse occurs periodically, 
the capacitor may not be able to dis­
charge completely by the time the next 
pulse is applied to the circuit. The re­
sponse of a high-pass long time-con­
stant R-C circuit to a series of pulses 
is shown in A of figure 54. The time 
constant is 100 usee. 

(2) The first pulse that is applied to the 
circuit follows the waveform shown in 
B of figure 53. Upon application of the 
second pulse, however, the capacitor 
still has -2.5 volts of charge obtained 
during the first pulse (B of fig. 54). 
When the second pulse is applied, the 
output voltage rises 9.5 volts (the ca­
pacitor charges slightly during rise 
time) to approximately 7 volts, and 
there is a net voltage of 3 volts across 
the capacitor. During the 30-usec 
duration time, .3 of one time constant, 
the capacitor charges to 25 percent of 
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Figure 54. Response of high-pass, large time-constant filter to periodic pulse. 

7 volts, or 1.8 volts. The output volt­
age across R then drops 1.75 volts to 
5.2 volts. The output voltage dropped 
about 2.5 volts during the same period 
of the first pulse because of the higher 
net voltage across C. 

(3) The pulse decays 10 volts, from 120 
usee to 140 usee, and the output volt­
age follows a similar curve to -4.8 
volts. During the rest time, which is 
.2 time constant, the capacitor dis­
charges about 18 percent of 4.8, or .9 
volts. The output voltage, conse­
quently, goes from -4.8, to -3.9 
volts. The output voltage decreased .6 
volt during the first rest period and .9 
volt during the second rest period. 

( 4) With each succeeding cycle, the 
charge added to the capacitor over the 
duration period decreases, and the ca­
pacitor discharge voltage during the 
pulse rest period becomes larger. After 
a few cycles, a point is reached when 
the charge added to the capacitor dur­
ing the duration period is equal to the 
discharge during the rest period. This 
condition corresponds to the stable re­
sponse of the circuit (or its steady 
state). A circuit can have a steady­
state response to a periodic pulse as 
well as to a step voltage. 

e. SUMMARY OF TIME-CONSTANT EFFECT 0~ 
HIGH-PASS FILTER. Compare the output volt­
ages obtained in a high-pass filter for short, 
equal magnitude, and long time constant rela­
tive to rise times (figs. B of 52, and A and B of 
53). Increasing the time constant has two ef­
fects. First, the output waveform more closely 
resembles the input waveform; second, the 
magnitude of the output voltage increases. In 
the short time-constant circuit, a maximum 
voltage of 1 volt was obtained, with approxi­
mately 6.5 volts for an equal time constant, and 
9.5 volts for a large time constant. 

57. Low-Pass Filter Response 

a. GENERAL. The output in the low-pass filter 
is taken across the capacitor, and the effect of 
the time constant on the output voltage is en­
tirely different from that for the high-pass 
filter. When the time constant of the circuit is 
short compared with the rise time, the voltage 
across the capacitor increases at about the same 
rate as the applied voltage. Therefore, very lit­
tle change in the leading edge of the waveform 
results; the output and the input during the 
rise time are essentially the same. When the 
time constant is long compared with the rest 
time, the rate of change of capacitor voltage is 
decreased and there is considerable change in 
the leading and trailing edge of ,the waveform. 
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b . . SHORT TIME CONSTANT. 
( 1) The pulse voltage in A of figure 52 is 

applied to an R-C circuit with a time 
constant of 1 .usee. R is 100 ohms and 
C is .01 p.f (the same valuations that 
were used previously for a short time­
constant high-pass filter). When the 
voltage is first applied to the circuit, 
the current increases rapidly and the 
rate of capacitor charge is equal to 
the rate of applied voltage increases. 
The output voltage follows the input 
voltage with the exception of a slight 
delay at the beginning of the cycle. 
This delay is equal, approximately, to 
the time constant, or 1 usee. The top 
and bottom portions of both the rise 
and decay times are rounded slightly 
(A of fig. 55). 
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Figure 55. Effect of time constant on low-pass filter. 

(2) At 10 usee, the applied voltage reaches 
10 volts and then remains constant for 
30 usee. The voltage across the capaci­
tor is nearly equal to the applied volt­
age at 10 usee, and rises to 10 volts 
shortly thereafter. The voltage across 
the capacitor remains at 10 volts as 
long as the pulse remains at 10 volts. 

(3) At 40 usee, the pulse begins to decay, 

AGO 1446A 

and the capacitor starts to discharge. 
The discharging current increases un­
til the rate of voltage drop across the 
capacitor is equal to the rate of volt­
age decay. The output pulse closely 
follows the input pulse during decay 
time. There is a slight delay at the be­
ginning of the decay time that is equal, 
approximately, to the time constant, 1 
usee, which causes a rounding of the 
corners (A of fig. 55). 

(4) The low-pass, short time-constant 
R-C circuit provides the best repro, 
duction of the pulse waveform. The 
only circuit with a similar response 
is the long time-constant, high-pass 
filter. This circuit, however, requires 
a long discharge period and can run 
into succeeding pulses. Varying the 
time constant of a low-pass R-C cir­
cuit up to 25 percent of the rise time 
(assuming that it is the smallest pulse 
time period) does not change the. cir­
cuit response to a great extent except 
to increase the rise- and decay-time 
delay periods. 

c. TIME CONSTANT EQUAL TO RISE TIME (B 
of fig. 55). 

(1) When the time constant of the low­
pass filter is increased to the same 
magnitude as the rise time, the capaci­
tor voltage cannot increase as rapidly 
as the applied voltage. When the ap­
plied voltage reaches its maximum 
amplitude, the capacitor voltage is 
only a fraction of this voltage, and the 
capacitor continuaq to charge, or in­
crease toward E, after the pulse rise 
time is over. This means that the rise 
time of the output is increased. 

(2) In A of figure 52 the pulse is applied 
to a low-pass R-C circuit with a time 
constant of 10 usee. R is 1,000 ohms 
and Cis .01 p.f. A lower initial current 
is obtained because of the greater R, 
and the voltage across the capacitor 
does not become appreciable until 
about 2 usee. 

(3) It then rises slowly until, as in B of 
figure 55, at 10 usee or one time con-
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stant, the capacitor voltage is 3.5 volts. 
The applied voltage remains constant 
at 10 volts, and the capacitor follows 
the standard R-C charging curve. At 
40 usee, or 3 time constants later, the 
capacitor charges to 93 percent of 6.5 
volts, or approximately 6.1 volts, and 
the total voltage across the capacitor 
is, then, 9.6 volts. 

(4) At 40 usee, the applied voltage starts 
to decay, the rate of capacitor charge 
decreases almost immediately and, ap­
proximately 41 usee later, it stops. At 
this time, the applied voltage is smaller 
than the capacitor voltage, and the 
capacitor starts to discharge. The rate 
of discharge depends on the difference 
between E and eo and the value of re­
sistance. Since R is high, the capacitor 
cannot discharge as fast as the applied 
voltage decreases and the voltage dif­
ference between them increases. At 55 
usee, the voltage difference between 
E and eo is large, a relatively large 
current flows, and the capacitor starts 
discharging as fast as the applied 
voltage decreases. 

(5) When the applied voltage reaches 
zero, the capacitor is not discharged 
cempletely, and there is still an output 
voltage. The capacitor now discharges 
following the R-C discharge curve and 
becomes, essentially, equal to zero at 
80 usee. The output voltage follows the 
input voltage more closely during the 
decay time than during the rise time . ' smce the pulse decay time is longer. 
The circuit time constant of 10 usee is 
only one-half the decay time of 20 
usee, and better decay-time reproduc­
tion is obtained. 

d. LARGE TIME CONSTANT (C of fig. 55). 
(1) When the time constant is large com­

pared with the rise and duration 
times, the voltage across the capacitor 
increases slightly during the pulse rise 
and duration periods. It also dis­
charges slowly during the decay pe­
riod. 

(2) In A of figure 52 the pulse now is ap-

plied to a low-pass R-C circuit with a 
time constant. of 100 usee. R is 10,000 
ohms an~ C IS .01 p.f. The capacitor 
v?lta~e mcreases slightly during the 
rise time and does not become appreci­
able during the first 5 usee. It in­
creases to .5 volt at 10 usee. for the 
next ~0 usee .it increases ~long an 
essentially straight line, which curves 
slightly to.ward the end, and at 40 usee 
the capacitor voltage is 3 volts. This 
portion of the curve corresponds to 
the first .3 of a time constant of the 
R-C charge curve (fig. 26). Although 
the over-all R-C charge curve is ex­
ponential, it is Practically straight for 
a small part at the beginning of the 
curve. 

(3) The applied voltage starts to . decaY 
at 40 usee and the rate of charge de­
creas~s. T~e applied voltage, although 
decaymg, IS greater than the capaci­
tor voltage until about 53 usee. Con­
sequently, the capacitor charges 
slightly during this portion of the ap­
plied voltage decay time. After 53 
usee, however, the applied voltage is 
smaller than the capacitor voltage, 
and the capacitor begins to discharge. 
At 60 usee, the applied voltage is zero 
and the capacitor discharges along the 
standard R-C discharge curve. Be­
cause of the long time constant, a long 
discharge time is required, and at 80 
usee the capacitor voltage is still 2 
volts. 

e. SUMMARY OF TIME-CONSTANT EFFECT ON 
LOW-PASS FILTERS. 

(1) Compare the three curves shown in 
figure 55. Note that as the time con­
stant increases the rise and decaY 
times of the output voltage increase 
accordingly. Although good reproduc­
tion of the input pulse is obtained with 
a small time constant, an entirely dif­
ferent waveshape is obtained when a 
large time constant is used. The time 
constant of a circuit affects to a great 
extent, the output voltage of a low­
pass filter. 

(2) The relative value of time constant, 
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with relation to the waveform periods, 
and the element supplying the output 
voltage determine the output wave­
shape. Although an R-C circuit was 

used to demonstrate this effect, sim­
ilar wide variations in response char­
acteristics can be noted in an R-L cir­
cuit. 

Section II. DIFFERENTIATION 

58. Introduction to Shaping Circuits 

In practical applications, sometimes it is nec­
essary to change or reshape an input waveform. 
Reshaping of the waveform can be accomplished 
through the use of R-C and R-L networks with 
appropriate time constants. Examples of shap­
ing networks are the differentiator, integrator, 
and d-e restorer circuits. Each of these shapes 
the waveform in a different way. 

59. Differentiator 

a. DEFINITION. A differentiator is a circuit 
whose output voltage is proportional to the rate 
of change of the input voltage or current. When 
the rate of change is zero, the output is zero. 
When the rate of change is a positive or nega­
tive constant value, the output is a positive or 
negative constant value. When the rate of 
change is increasing or decreasing, the output 

· increases or decreases. 
b. INPUT AND OUTPUT (fig. 56). The d-e volt­

age shown in A is applied to an R-C circuit and 
the differentiator output is taken across the re­
sistor. After the ·circuit has reached a steady­
state, the rate of change is zero, and the differ­
entiator output, therefore, is zero. The voltage, 
in B, has a constant, positive rate of increase 
for equal periods of time. When this voltage is 
applied to a differentiator circuit, a constant, or 
d-e, voltage is obtained at the output. The mag­
nitude of the output voltage depends on the 
speed of the input voltage change. The higher 
the rate of change, the greater the d-e voltage 
output. 

c. SINE-WAVE INPUT (C of fig. 56). The input 
to the differentiator circuit varies sinusoidally 
with time. This voltage is applied to the differ­
entiator circuit, and another sine wave is ob­
tained at the output. When the input voltage is 
zero, the rate of change is maximum, and the 
output across the resistor is maximum. When 
the input voltage is maximum, its rate of change 
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Figure 56. Differentiator waveforms. 

is zero, and the output across the resistor is 
zero. The sine-wave output is 90° out of phase 
with the sine-wave input. 

60. Differentiator Output for Common 
Waveshapes 

a. SAWTOOTH VOLTAGE. The sawtooth in A of 
figure 57 is applied to the differentiator circuit 
C. The waveform rises gradually along a 
straight line to some maximum amplitude. Dur­
ing this period of time the rate of change re­
mains constant at some small positive value. 
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The output, therefore, is a small, positive d-e 
value, whose amplitude is proportional to the 
rate of change of the input. When the sawtooth 
decays to zero, the rate of decrease is a con­
stant, negative value of large amplitude. The 
differentiator output, during this time, is a rec­
tangular pulse and has a high, constant, nega­
tive value. 

SAWTOOTH INPUT 

PULSE INP,UT 

r 
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t 
(/) 

+ 

+ 
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PULSE OUTPUT 

A 

~ 0!--L------..-g TIME--. 
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B 

cl 

R 

c 
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Figure 57. Diflerentiator output for common wcweforms. 

b. PULSE VOLTAGE. The pulse voltage in B of 
figure 57 is applied to an ideal differentiator 
circuit C. During the rise time, the rate of in­
crease is constant, positive, and relatively large. 
Consequently, a high value of positive d-e volt­
age is obtained at the output. The pulse remains 
at a constant value over the duration period and 
its rate of change is zero; therefore, zero out­
put is obtained from the differentiator. During 
the decay period, the rate of decrease is one­
half the rate of increase during the rise time. 
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The differentiator output, then, is negative, and 
one-half the amplitude of the voltage durina- the 
rise time. 

61. Basic Types of Differentiators 

Three basic circuit components can be used 
as differentiators. These are the capacitor, the 
inductor, and the transformer. As shown pre­
viously, the current flowing into a capacitor is 
equal to the capacitance, C, times the rate of 
change of the applied voltage. The voltage that 
exists across an inductor is equal to the in­
ductance, L, times the rate of change of current 
through the inductor. Also, the voltage that 
exists across the secondary of a transformer is 
equal to the mutual inductance, M, of the trans­
former times the rate of change of the current 
in the primary. The output of each of these ele­
ments is proportional to the rate of change of 
the input. 

62. R-C Differentiator 

a. BASIC CAPACITANCE EQUATION. 

(1) In describing the fundamental capaci­
tor relation in chapter 2, it was noted 
that when a constant current flowed 
into a capacitor, the voltage across the 
capacitor increased at a constant rate. 
Also, when the voltage appli,ed to a 
capacitor was increasing at a constant 
rate, the current flowing into the ca­
pacitor was constant. The current is 
equal to the rate of change of the ap­
plied voltage, dE/dt, times capaci­
tance C, or C dE/dt. When dE/dt is 
expressed in volts per second and C in 
farads, the current is in amperes. The 
current is also in amperes when 
d-E I dt is expressed in volts per usee 
and C in p.f. 

(2) An input voltage which increases at a 
rate of 10 volts per second is applied 
to a 10-p.f capacitor. The current flow­
ing in this circuit is then 10 times (10 
times 10-6), or .0001 ampere, or .1 ma. 

(3) As another example, a voltage which 
increases at a rate of 1 volt per micro­
second is applied across a .01-~ ca­
pacitor. The current flowing into this 
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capacitor is 1 times .01, or .01 ampere, 
or 10 rna. 

b. INTRODUCTION OF RESISTANCE. Since a dif­
ferentiator circuit does not require a large cur­
rent flow, a small resistor is placed in series 
with the capacitor. T.h.e voltage output is taken 
across the resistor and is proportional to the 
current flowing through the circuit. This circuit 
is the same as the high-pass filter shown in A 
of figure 48, and is known as an R-C differen­
tiator. 

c. EFFECT OF TIME CONSTANT. 
(1) Any high-pass R-C circuit which has 

a short time constant compared with 
the time periods of the applied wave­
form acts as a differentiator. In a 
short time-constant circuit, the ca­
pacitor charges as fast as the applied 
voltage can increase. The basic voltage 
equation is E equals eR plus e0• Since 
eo increases as fast as E (except at the 
beginning), the capacitor voltage be­
comes much greater than the re­
sistance voltage. 

(2) The current flow in the circuit is a 
function of both the capacitance and 
and the resistance and depends on the 
relative magnitudes of eR and e0 • When 
eo is much larger than eR, the current 
in the circuit follows the basic capaci­
tance equation given in the previous 
paragraph. When R is increased, eR 
becomes larger, and the circuit acts 
less as a differentiator since R has a 
greater effect on the current flow. The 
current flowing through R is propor­
tional to the voltage across it, not to 
the rate of change of that voltage (i 
equal to E/R). Therefore, as Rand eR 
increase and the time constant is 
longer, the current in the circuit tends 
to become directly proportional to the 
applied voltage, rather than to the 
change in this voltage. These effects 
can be understood by considering the 
waveforms in an R-C differentiator 
circuit as the time constant is varied. 

63. R-C Differentiator with Short Time 
Constant 

a. The pulse in A of figure 52 is applied to an 
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R-C differentia tor circuit ( C of fig. 57) . R is 
100 ohms and C is .001 p.f, and the time constant 
is .1 usee. At the first instant, there is no charge 
on the capacitor, and the full applied voltage 
appears across the resistor. At .1 usee, the 
applied voltage is equal to .1 volt, and the cur­
rent is .1/100, or .001 ampere. This corresponds 
to a charge of .001 coulomb per second, or 1 
times 10-9 coulomb per usee. The rate of voltage 
charge per usee due to this current is then 1 
times 10-0 divided by .001 times 10-6, or 1 volt. 
Since the applied voltage also is increasing at 
a rate of 1 volt per usee, the current cannot 
increase any further. 

b. From .1 usee to 10 usee, the current is 
maintained at .001 ampere and the output 
voltage is .001 times 100, or .1 volt. At 10 usee, 
E is 10 volts and e0 is about 9.9 volts. E stays 
at a constant value from 10 to 40 usee and the 
rate of change is zero. The output voltage then 
drops to zero after about .1 usee, which is the 
time required to charge C from 9.9 to 10 volts. 
The output voltage remains at zerq until the 
end of the duration time ( 40 usee). 

c. The voltage decays at a rate of .5 volt per 
usee. At the beginning, the full drop in applied 
voltage exists across R, and the discharge cur­
rent in the circuit is primarily a function of R. 
At .1 usee, the voltage drops .05 volt, and the 
current is .05/100, or .0005 ampere. The rate of 
capacitor voltage decrease is .0005 times 10-6 
divided by .001 times 10-6 or .5 volt per usee. 
Therefore, the capacitor discharges at the same 
rate that the applied voltage decreases, and the 
current cannot become larger. The output 
voltage, therefore, stays at .0005 times 100, or 
.05 volt for the entire duration period. It rapidly 
becomes zero at 60 usee, when the applied 
voltage becomes zero. Hence, with the exception 
of the beginning and end of the rise and decay 
times, this circuit acts as an ideal differentiator 
with output similar to the one shown in B of 
figure 57. 

64. R-C Differentiator with Long Time 
Constant 

(fig. 58) 

a: An R-C differentia tor is considered to have 
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a long time constant if it is equal to one-half 
the smallest waveform time. For example, the 
pulse shown in A of figure 52 has a rise time of 
10 usee, a duration of 30 usee, and a decay time 
of 20 usee. The rise time is, therefore, the 
shortest waveform time period. An R-C dif­
ferentiator time constant of 5 usee is considered 
long for this pulse. 

b. This pulse now is applied to an R-C dif­
ferentiator with R of 500 ohms, C of .01 pi, and 
the time constant is 5 usee. When the pulse first 
is applied to the circuit, the entire input voltage 
appears across R. At 1 usee, E is 1 volt, and the 
current in the circuit increases to 1/ 500, or .002 
ampere. The rate of capacitor charge is .002 
times 1Q-6 divided by .01 times 10-6, or .2 volt 
per usee. Since the applied voltage is increasing 
at a rate of 1 volt per usee, the capacitor charge 
rate is smaller. These values are tabulated 
below. 

Table VIII. Voltage and Current in Long Time-Constant 
Differentiator Circuit. 

Time I I I I I Rate of charge (usee) E(v) e0 (v) e,.(v) i 1 (amp) (v per usee) 

1 1 0 1 .002 .2 
2 2 .2 1.8 .0036 .36 
3 3 .5 2.5 .0049 .49 
4 4 1 3.0 .0059 .59 
5 5 1.6 3.4 .0068 .69 
6 6 2.3 3.7 .0073 .73 
7 7 3.1 3.9 .0079 .79 
8 8 3.8 4.2 .0083 .83 
9 9 4.7 4.3 .0086 .86 

10 \1.0 5.5 4.5 .0089 .89 
11 10 6.4 3.6 .0071 .71 . , 
c. The current in the circuit increases to .01 

ampere before the capacitor charge becomes 
equal to 1 volt per usee. Because of the large 
resistor, the current cannot possibly increase 
to .01 ampere until 5 usee after the pulse is 
applied to the circuit. During the first 5 usee, 
however, current has been flowing in the cir­
cuit, so that a voltage of 1.6 volts exists across 
C. Hence the full input voltage, E, does not exist 
across R. The voltage across R is 3.4 volts, and 
the current flow is .0068 ampere. 

d. At 7 usee, the applied voltage has in­
creased to 7 volts, but the capacitor voltage also 
has been increased and is 3.1 volts. The voltage 
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across R has increased to 3.9 volts and the cur~ 
rent to .0079 ampere. At 10 usee, the applied 
voltage is 10 volts and the capacitor voltage is 
5.5 volts. The voltage across R is 4.5 volts, and 
the current is .0089 ampere. With the time con~ 
stant equal to one-half the rise time, the ca~ 
pacitor never charges as fast as the applied 
voltage increases and the current never reaches 
the maximum permitted by the capacitor. The 
resultant curve (fig. 58) during this period of 
time is a rising voltage which bears little re~ 
semblance to the ideal differentiated curve. 

5 

4 

3 

2 

t 1 
(ij 
!:::; 
~ 0 10 80 90 
a: 

Q) 

~ 

TIME (USECl--

Figure 58. Output of differentiator with large time 
constant. 

e. After 10 usee, the capacitor continues to 
charge toward the applied voltage (10 volts) 
following the universal time-constant curve . 
For practical purposes, it reaches 10 volts, at 
35 usee. The voltage across the resistor, from 
10 to 30 usee, decreases as the capacitor voltage 
increases (fig. 58). 

f. The time constant of the circuit is one­
quarter of the decay period. The circuit acts 
now more like a differentiator circuit than dur­
ing the rise time. At 42 usee, the applied voltage 
has dropped 1 volt, and the voltage across the 
resistance is about -1 volt (negative because 
of discharge current). The current is 1/500, or 
.002 ampere, resulting in a discharge rate of 
.2 volt per usee. The rate of applied voltage de­
crease is .5 volt per usee, so that current can 
still increase. 
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g. At 47 usee, the applied voltage is 3.5 volts 
and the capacitor voltage is about 1 volt. The 
voltage across R is 2.5 volts, resulting in a cur­
rent of .005 ampere, and a capacitor discharge 
rate of .5 volt per usee. This rate is equal to the 
decay rate and, therefore, the current cannot 
decrease any further. The output voltage is 
maintained at 2.5 volts until 60 usee. The input 
then is zero, and the output decreases to zero in 
accordance with the universal time-constant 
discharge curve. The complete output of this 
differentiator to the pulse input (A of fig. 52) 
is shown in figure 58. 

h. Compare the output voltage obtained in B 
of figure 57 and figure 58. Increasing the cir­
cuit time constant (by increasing the re­
sistance) has two effects. First, the circuit acts 
less like the ideal differentia tor; second, a 
higher output voltage is obtained. If the time 
constant is increased further, differentiating 
action virtually ceases. For example, the output 
does not reduce to zero over the duration time 
(A of fig. 53). In most differentiator circuits, it 
is important that the output does drop to zero 
shortly after the constant-amplitude duration 
period starts. 

65. Inductive Differentiator 

a. BASIC EQUATION. 

(1) An inductor can be used as a differen­
tiator because the voltage developed 
across it is equal to the rate of change 
of current, di/ dt, times the inductance, 
L. This output voltage is negative with 
relation to the current change; that is, 
if the current is increasing, the output 
voltage is negative, or eL = -L di/dt. 
The output is in volts when di/dt is 
expressed in amperes per second and 
L is in henrys. The output is also in 
volts if di/ dt is expressed in amperes 
per usee and L in p.h. 

(2) A current pulse increasing at the rate 
of .1 ampere per sec is driven through 
an inductor with L of 5 henrys. The 
voltage across this inductor is then -
(.1 times 5), or -.5 volt. 

(3) As another example, the current de­
creases at a rate of .01 ampere per 
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usee through a 50-mh inductor, which 
is the same as 50,000 p.h (micro­
henrys), so that the voltage developed 
across the inductor is 

- [ (.01) X (50 X 103 ) ], or 500 
volts. 

b. NEED FOR RESISTANCE. To obtain a dif­
ferentiated output from an inductance, the cur­
rent through the inductance must rise and de­
cay as rapidly as the applied voltage. By placing 
a large resistor in series with the applied 
voltage the time constant L/ R is made very 
small. This causes the voltage developed across 
the inductance to vary almost directly with the 
applied voltage, since e1, is equal to the rate of 
change of current times the inductance. The 
rate of change of current is now fast because 
the time constant is small, and the current curve 
is the same as the voltage curve. The resultant 
circuit acts as a current generator across L, and 
is called an R-L, or inductive, differentiator. 

R 

TM 669-59 

Figure 59. R-L differentiator. 

c. EFFECT OF TIME CONSTANT. When the 
time constant is small compared with the time 
periods of the applied voltage, the circuit cur­
rent can rise or decay as rapidly as the applied 
voltage. If the time constant is increased suf­
ficiently, the current does not follow the applied 
voltage curve because it cannot change as fast 
as this curve. Then the voltage across the in­
ductance is not proportional to the rate of 
voltage change, although it is still proportional 
to the rate of current change. The circuit acts 
less like a differentiator. These effects are 
illustrated below by working out two response 
curves. 
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66. Time Constant Short Compared to 
Rise Time 

a. The pulse shown in A of figure 52 now is 
applied to the R-L circuit shown in figure 59. 
R is 10,000 ohms, Lis 10 mh, and the time con­
stant is 1 usee. When the pulse is first applied 
to this circuit, the full input voltage is de­
veloped across L. This generates a back emf and 
delays the flow of current. At 1 usee, the applied 
voltage is 1 volt. The voltage across the induct­
ance is about -1 volt. The rate of current in­
crease in the circuit, di/dt, caused by a 1-volt 
potential across L, is l/10 times 10-8, which is 
.1 times 108 ampere per second, or .1 rna per 
usee. 

b. From 1 to 2 usee, the current increases to 
about .1 rna, and the voltage drop across R is .1 
times 10,000, or 1 volt. The voltage across the 
inductance at 2 usee is, then, 2 volts (applied 
voltage) minus 1 volt (iR drop), or 1 volt. The 
current, therefore, continues to increase at a 
rate of .1 rna per usee and the voltage across the 
resistance increases at the same rate as the 
applied voltage. Hence, the voltage across L re­
mains constant from 1 to 10 usee (fig. 60). This 
voltage is negative due to the increasing cur­
rent. 
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Figure 60. Output of differentiator with low time 
constant. 

c. At 10 usee, the applied voltage remains at 
10 volts. The current in the circuit rises from 
.9 rna to about 1 rna at 11 usee and stays at this 
value. The voltage across the inductance de-

clines to zero during this time, since eL become!:\ 
zero when the current is constant. 

d. At 40 usee, the applied voltage decays at 
a rate of .5 volt per usee. At first the entire 
voltage appears across L. At 41 usee, the volt-­
age across L is .5 volt, and the current drops at 
a rate of 5/10 times 10-3, or .05 rna per usee. 
The voltage across the resistance, therefore, de­
clines at a rate of .5 volt per usee, the same as 
the decay rate. The inductance voltage is main· 
tained at .5 volt from 41 to 60 usee. The current 
declines to zero from 60 to 61 Nsec (fig. 60). 
Note that the· output voltage waveform obtained 
is similar to that of the short time-constant 
R-C differentiator. 

67. Time Constant Equal to One-Half 
Rise Time 

a. When the time constant of the L-R circuit 
is increased to 5 usee by decreasing R to 2,000 
ohms, the voltage across the resistance cannot 
increase as fast as the applied voltage. At 1 
usee, for example, the current increases at a 
rate of .1 rna per usee. A current of .1 rna across 
a 2,000-ohm resistance corresponds to an iR 
drop of only .2 volt. Therefore, at 2 usee the 
voltage across the inductance decreases to 2 
minus .2, or 1.8 volt, and the current increases 
at the higher rate of .18 rna. It is possible to 
obtain the response of the circuit to the entire 
pulse voltage in this manner. Except for 
polarity, the R-L differentiator is essentially 
the same as the R-C differentiator (fig. 58). 

b. The effect of the time constant in an R-L 
differentiator circuit is exactly the same as it iS 
in the R-C differentiator circuit. The major dif­
ference between the two circuits is that in the 
R-L circuit the resistance is increased, while in 
the R-C it is decreased, to reduce the time con· 
stant. Also, the output voltages are opposite in 
polarity. 

Section Ill. INTEGRATING CIRCUITS 

68. Integrating Circuits 

a. DEFINITION OF INTEGRATING CIRCUIT. An 
integrating circuit is a storage circuit in which 
the output voltage is proportional to the total 
amount of energy stored. For example, the volt-
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age across a capacitor is proportional to the 
total charge in it. The greater the amount of 
charge, the higher the amount of energy stored, 
and the higher the voltage across the capacitor. 
If a constant amount of current (flow of charge 
per second) is supplied to a capacitor, the volt-
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age across the capacitor increases at a constant 
rat~. The voltage across the capacitor builds 
up, or is integrated, ~nd the output is taken 
across the capacitor in an R-C circuit. Simi­
larly, the current in an inductor-is proportional 
to the total voltage across it. Therefore, if a 
constant voltage is applied across an inductor, 
the current in the inductor increases at a con­
stant rate. The output of the R-L integrator is 
taken across the resistor. 

b. OUTPUT FOR COMMON WAVEFORMS. When 
a constant, or d-e, voltage is applied to an in­
tegrator, the output voltage increases in a 
straight line (A of fig. 61) . The rate of increase 
of the output voltage is proportional to the mag­
nitude of the d-e voltage. When a constantly 
increasing voltage is applied to the integrator, 
as in B, the rate of storage increases continu­
ously and the resultant voltage has a parabolic 
waveform. The storage voltage due to a sine­
wave input varies sinusoidally, but is shifted in 
phase 90 o, as in C. 

c. OUTPUT FOR RECTANGULAR PULSE. When 
a rectangu,lar pulse is applied to an integrator, 
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Figure 61. Integrator waveforma. 
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the output·'is a triangular pulse (fig. 62). The 
voltage rises linearly over the duration of the 
pulse. It ·then declines along a similar curve 
when the pulse voltage becomes zero again. 
+10 
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> 

0 
0 10 20 30 40 50 60 

TIME (U SEC)-
A INPUT 

1 +1t : I I I I I ~ 0 0 10 20 30 40 50 60 0 
> TIME (USEC)- B OUTPUT 

TM 669-62 
Figure 8£. Integrator output-rectangular pulse input 

(stable condition). 

69. Types of Integrating Circuits 

a. There are two basic types of integrating 
circuits (fig. 63). They are the R-C circuit in 
A and the R-L circuit in B. These circuits act 
as integrators when the time constant is long 
with relation to the maximum input waveform 
period. A long time constant means that the 
circuit operates over the initial sections of the 
charge and discharge curves. These curves are, 
essentially, equal to a straight line as long as 
the circuit time constant is 10 times the maxi­
mum waveform period. When the circuit time 
constant is reduced, a section of the resultant 
curve becomes curved. This indicates that the 
circuit is not an ideal integrating circuit. 

E 

R-C CIRCUIT 

A 

E 

R 

L 

R- L Cl RCUIT 

8 
~-. ·., 
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Figure 89. Types of integrators. 
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b. For a given time constant, both the R-L 
and R-C integrating circuits provide, theoretic­
ally, similar output voltages. Therefore, it is 
necessary to review the characteristics of only 
one of these circuits. All of the principles 
evolved are equally true for both integrators. 
Since the R-C integrator is used widely, this 
circuit is described in detail. 

70. Time Constant Long Compared with 
Duration Time 

a. The time constant of the integrating cir­
cuit is related to the longest period of the input 
waveform. In most pulse waveforms, the dura­
tion period is the longest time. Since the rise 
and decay times are short in comparison with 
the duration period, and since the time constant 
is very large, the pulse rise and decay times 
have little effect upon the output of the inte­
grator circuit. 

b. The rectangular pulse in A of figure 62 is 
applied to an R-C integrator with a time con­
stant of 300 usee. R is 30,000 ohms and C is 
.01 p.f. At the first instant, the capacitor voltage 
is zero so that the current in the circuit is equal 
to E/R, which is 10/30,000, or .33 rna. The volt­
age across the capacitor resulting from a .33-ma 
current increases at a rate of Q/C of .33 times 
10-0/.01 times 10-6, or .033 volt per usee. At 10 
usee, the voltage across the capacitor is about 
.33 volt. This voltage is not sufficient to de­
crease the current in the circuit appreciably. 
The voltage across the resistor is 10 minus .33, 
or 9.67 volts, and the current is then .32 rna. 
This current decrease is negligible and can be 
neglected for most practical purposes. The cur­
rent decrease becomes appreciable only when 
the capacitor can charge to 1 volt. Up to 30 usee, 
therefore, the current can be assumed to be con­
stant, and the capacitor voltage increase can be 
assumed to be linear (fig. 64). 

c. At 30 usee the applied voltage drops to 
zero. The capacitor starts to discharge along 

rL-+--1--+::----":' ±--' ~ §; 0 10 20 30 40 50 60 
TIME (USEC) ---,~ TM 669-64 

Figure 64. Large time-constant integrator output. 

72 

the standard discharge curve. The discharge 
curve is much more gradual than the charge 
curve, and the capacitor voltage reaches .9 
volt at about 60 usee and .37 volt at 300 usee. 
In the integrator circuit, an output voltage is 
obtained for a period of time many times 
greater than the pulse duration time. Hence, 
the time between successive pulses must be 
very large, or the output of one pulse will add 
to the succeeding pulse. 

d. When the time between 'successive pulses 
is too short, a charge still exists in the capa­
citor when the second pulse appears. The 
charge in the capacitor increases until the 
amount of charge added during the duration 
period is equal to the discharge during the 
pulse rest period (par. 56d). For a 10-volt, 
30-usec square wave, the output will have the 
same shape as in figure 62 when the stable con­
dition is reached, but the triangular wave will 
vary from + .5 volt to -.5 volt instead of from 
zero to 1 volt. 

71. Time Constant Equal to Duration 
Period 

a. The time constant of this R-C integrator 
is reduced to 30 usee by decreasing the value of 
R to 3,000 ohms. The initial current with this 
value of resistance is 10/3,000, or 3.3 rna. The 
rate of capacitor charge is then 10 times as 
much as it was previously, or .33 volt per usee. 
The capacitor charge is approximately linear 
for only about 3 usee, and the capacitor volt­
age is equal to 1 volt. 

b. With the capacitor voltage equal to 1 volt, 
the current drops to 9/3,000, or 3 rna, and the 
capacitor rate of charge decreases to .3 volt 
per usee. The output voltage, therefore, no 

8 
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Figure 65. Large time-constant R-C integrator output. 
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longer increases linearly with relation to time, 
and becomes more curved as the time increases 
(fig. 65). 

c. At 30 usee, the capacitor voltage is only 
6.4 volts, since the capacitor increase is not 
linear for the entire period of time. The ap­
plied voltage drops to zero, and the capacitor 
discharges in accordance with the standard 
discharge curve. At 80 usee (fig. 65) there is 
still charge in the capacitor. At 120 usee, the 
capacitor voltage reduces to about .3 volt, and 
it does not drop to .1 volt until about 160 usee. 

Note that the output voltage remains appre.. 
ciable in this circuit for a period of time four 
times greater than the duration time. 

d. Compare the curves given in figures 64 
and 65. Note that the time constant affects the 
response in two ways. First, as the time con­
stant increases, the circuit acts less like an 
ideal integrator; second, increasing the time 
constant also increases the output voltage which 
is desirable in many applications. The time 
constant used in practical circuits attempts to 
compromise between these two effects. 

Section IV. D-C RESTORERS 

72. Introduction 

a. In the applications considered thus far, 
the time constant had one specific value for 
any given current and affected various por­
tions of the applied voltage differently. To ob­
tain a particular output it is desirable occa­
sionally to have one time constant over one 
portion of the input voltage waveform, and 
another time constant for another portion of 
this waveform. 

b. The time constant of a circuit can be 
varied through the use of an element such as 
a diode. When the voltage on the plate of a 

·~ 
E 

'POSITIVE 

-, 
E 

+o----------J 

diode is positive with relation to its cathode, 
the diode acts as a low resistance, and the cir­
cuit time constant is short (A of fig. 66). When 
the voltage on the plate is negative with rela­
tion to its cathode, the diode acts as a high 
resistance, and the circuit time constant is 
large, as in B. The d-e restorer, described 
below, illustrates the use of a varying time 
constant to obtain a desired output voltage. 

73. Definition of D-C Restorer 

a. D-C COMPONENT OF WAVEFORM. A non­
sinusoidal waveform is composed of a d-e volt-

·~ 
E 
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-r 
E 

+o-----------' 
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R 

NEGATIVE INPUT B 
TM 669-66 

Figure 66. Resistance of diode. 

AGO 144M 73 



age plus a number of harmonics. The pulse 
series (A of fig. 67) shows that the d~c com~ 
ponent is equal to the average value of the 
pulses. For example, each pulse is +50 volts 
for one~half the time and zero for the other 
half. The average value is, therefore, +25 
volts. 

INPUT A 

+ 25 

or--r---t-----lf---l---

-25 r--
D-C COMPONENT REMOVED 

B 
TM 669-67 

Figure 67. Removal of d-e component. 

b. COUPLING CAPACITOR EFFECT. 

(1) Generally, circuits using vacuum tubes 
have a coupling capacitor between the 
plate of one tube and the grid of the 
next. This capacitor is used to pre~ 
vent the high d-e plate voltage from 
being applied to the grid of the fol­
lowing tube. When a pulse series is 
being coupled from the plate of one 
tube to the grid of the next, this cou­
pling capacitor also removes the d-e 
component of the pulse series. 

(2) For example, assume that the positive 
pulse series (A of fig. 67) is passed 
through a capacitor. The d-e com­
ponent is removed, the pulse extends 
from -25 volts to +25 volts, and 
the average value is zero, as in B. 
This effect was . shown previously in 
figure 54. 

c. D-C RESTORER. In many applications, re~ 
moval of the d-e component is not desirable. 
For these applications, a d-e restorer circuit 
is used which reapplies a d-e voltage to the out-
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put of the blocking capacitor in such a manner 
that . the original d-e component . of the PUlse· 
form is obtained. 

74. Positive Diode D-C Restorer 

a. D-e restorer circuits can be used to :re­
store either a positive or negative d-e voltage. 
The circuit shown in A of figure 68 is a posi­
tive d-e restorer. The values of R and C Pl'o­
vide a long time constant compared with the 
waveforms applied to the circuit. However , 
when the voltage across the resistor is posi­
tive, the plate is positive with relation to the 
cathode, the diode acts as a low resistance, and , 
since it parallels R, the time constant of this 
circuit is very short. 

OUTPUT 

D-C RESTORER A 

+50 -- ,...._-
(/) +25 

~ 
~ or-------;.------"~....----v--

f -25 TIME­

OUTPUT 

iii 
~ 
0 
> 

(.) 

<11 

B 

251 
o~-----~~='~------~~~==~--

TIME-

CAPACITOR VOLTAGE C 

TM 669-68 

Figure 68. Positive d-e restorer. 

b. The series of pulses in A of figure 67 is 
applied to a d-e restorer that has a time con­
stant 10 times that of the duration period. 
When the first pulse is applied, all of the voltage 
appears across R, since there is no charge in 
C. The diode acts as a very high resistance 
during this time, since the cathode is positive 
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with relation to the plate. Therefore, the cir­
cuit has a large time constant and the capaci­
tor charges to only 5 volts over the duration 
time. ·The output voltage then drops to 45 
volts (B of fig. 68). 

c. When the applied voltage drops to zero, 
the capacitor starts to discharge through R. 
This develops a -5 volt potential between the 
cathode and plate of the diode since the dis­
charge current flows in the opposite direction. 
The diode plate is now positive with relation 
to the cathode and acts as a low resistance. The 
capacitor discharges rapidly because of the 
short time constant and, when the next pulse 
is applied to the circuit, no charge exists in 
the capacitor. The same procedure is repeated. 
Consequently, the capacitor loses all the ch~rge 
during the pulse rest period that it gained over 
the duration time. The result is the series of 
pulses in B of figure 67. 

d. In the d-e restorer circuit, the capacitor 
discharges completely between pulses because 
of the low time constant provided by the diode 
when it is conducting. This circuit thereby in­
corporates all the advantages of good pulse 
reproduction provided by the large time-con­
stant, high-pass filter, at the same time elimi­
nating its main disadvantage of a long dis­
charge period. 

e. If the diode is not placed across the re-

sistance, the circuit remains a large time-con­
stant, high-pass R-C circuit. The capacitor dis­
charges very slowly and there is some charge 
on it when the succeeding pulse is applied to 
the circuit. This charge adds to that normally 
obtained during the duration time (fig. 54). 
For example, the capacitor voltage is 8 volts 
instead of 5 volts at the end of the second pulse. 
The output voltage then becomes 42 volts in­
stead of 45 volts. During each succeeding pulse, 
the capacitor charges to a higher voltage until 
the average voltage level is reached. 

f. For the pulse series shown in A of figure 
67, the average value is 25 volts, and hence the 
capacitor charge eventually reaches 25 volts. 
With 25 volts across the capacitor, the charge 
and discharge curves are exactly alike, since 
there is a +25-volt potential during pulse dur­
ation, and -25 volts during the rest period. 

g. This procedure of changing the time con­
stant at the desired time is used in conjunction 
with other circuits to maintain a desired por­
tion of the output waveform and eliminate an 
undesirable feature. For example, the long dis­
charge period of the integrator (fig. 65) can be 
reduced by use of such a circuit. This can be 
accomplished by taking the output of the d-e 
restorer (A of fig. 68), across the capacitor. 
The sawtooth voltage is thereby obtained, as 
in C. 

Section V. SUMMARY AND QUESTIONS 

75. Summary 

a. The time constant indicates how rapidly 
current or voltage in a circuit can change. 

b. A short time constant can be defined as 
less than one-seventh the value of a given 
reference time. 

c. A long time constant is over seven times 
the reference time. 

d. An R-C circuit is called a low-pass filter 
when the output is taken across the capacitor. 
It is a high-pass filter when the output is taken 
across the resistor. 

e. Changing the time constant of a high­
pass filter changes the waveshape of the output 
voltage; the longer the time constant the more 
closely the original waveshape is reproduced. 
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f. Changing the time constant of a low-pass 
circuit also changes the waveshape of the out­
put voltage; the shorter the time constant, the 
more closely the original waveshape is repro­
duced. 

g. A differentiator is a circuit whose output 
voltage is proportional to the rate of change of 
the input voltage. 

h. A capacitor, an inductor, or a transformer 
can be used to obtain the differentiating action. 

i. A short time-constant, high-pass R-C cir­
cuit is known as an R-C differentiator. 

j. The shorter the time constant of the R-C 
differentiator, the more closely the output volt­
age follows the ideal differentiated output. 

k. A shorter time constant also means that 
a lower output voltage is obtained. 

75 



l. A short time-constant R-L circuit, with 
output voltage taken across L, can be used as 
a differentiator. 

m. An R-L differentiator acts like an R-C 
differentiator when the same time constant is 
used. 

n. An integrating circuit is a storage cir­
cuit in which the output voltage is proportional 
to the total amount of energy stored. 

o. A long time-constant, low-pass R-C cir­
cuit, with voltage output obtained across R, can 
be used as an integrator. 

p. The longer the time constant o~ the inte­
grator, the more closely the output approaches 
ideal integration, and the lower the output volt­
age. 

q. By changing the time constant of a circuit 
for different portions of a waveshape, it is pos­
sible to achieve a desired output voltage. A 
circuit that does this is the d-e restorer. 

r. A d-e restorer circuit is used to restore 
the d-e component removed by a coupling 
capacitor. 

s. In this circuit a diode is placed across the 
output. The diode acts as a low resistance when 
the plate is positive with relation to the cath­
ode, and as a low resistance when the plate is 
negative with relation to the cathode. 

t. In a positive d-e restorer, the circuit has 
a long time constant when the cathode is posi­
tive with relation to the plate, and a short time 
constant when the cathode is negative with re-
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lation to the plate. The converse is true for a 
negative d-e restorer. 

76. Review Questions 

a. How does the time constant indicate with 
reference to a pulse voltage? 

b. What is the output waveform of a short 
time-constant high-pass R-C circuit to a rec­
tangular pulse voltage? 

c. How does increasing the time constant of 
a high-pass filter affect the pulse waveform? 

d. What time constant provides the best 
pulse reproduction in a low-pass R-C filter? 

e. Define a differentiating circuit. 
f. What is resistance used for in an R-C dif­

ferentiator? 
g. What is the effect of increasing the time 

constant in an R-C differentiator? 
h. Describe the output of an R-L differenti­

ator with a time constant of 2 usee to a pulse 
with a rise time of 10 usee, a duration time of 
50 usee, and a decay time of 4 usee. R is 2,000 
ohms and L is 4 mh. 

i. What is an integrating circuit? 
j. What types of integrating circuits are 

commonly used? 
k. What is the relative time constant of an 

R-C i~tegrator? 
l. What principle does a d-e restorer illu­

strate? 
m. Why is it desirable to have a long time 

constant while the positive pulse is applied to 
a positive d-e restorer, and a short time con­
stant after the pulse is removed? 
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CHAPTER 7 

FREQUENCY ANALYSIS OF WAVEFORMS 

77. Introduction 

Until transient-response methods became 
widely used, nonsinusoidal waveforms were 
analyzed by the frequency-response method, 
and this method still is used to analyze non­
sinusoidal waveforms. In this chapter, there­
fore, the output waveforms from R-C and R-L 
circuits will be obtained by means of the fre­
quency-response method. 'These waveforms 
then will be compared with those obtained ·us­
ing transient-response methods. 

78. Fourier Theorem on Waveform 
Composition 

a. 'FOURIER THEOREM. The theorem that any 
nonsinusoidal waveform can be represented 
by a series of harmonically related sine waves 
plus a d-e voltage first was developed by a 
French physicist named Joseph Fourier. Con­
sequently, this theorem is called the Fourier 
theor.em and the series of sine waves which 
comprise the nonsinusoidal waveform is called 
the Fourier series of the waveform. 

b. AMPLITUDE AND PHASE. The Fourier 
series indicates not only the frequencies of the 
harmonic components, but also the amplitude 
and phase of each component. In the graphical 
development of a sawtooth from a series of 
sine waves (fig. 2), the amplitude of each har­
monic is selected carefully to obtain the desired 
result. If different amplitudes are used, a dif­
ferent waveform results. Therefore, it is im­
portant to know not only the harmonic content 
of the waveform, but also the amplitude of 
each component. Similarly, the phase relations 
between the various harmonic components must 
be correct in order to reproduce the waveform. 

c. SINE-WAVE SYMBOLS. The meaning of the 
mathematical term C sin (wt + O) is essentiai 
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for the understanding of the Fourier series. 
In this term, the symbols have the following 
meaning: 

(1) Bin: The symbol Bin means that the. 
waveform varies sinusoidally and is 
a function of the sine of an imgle. . 

(2) w: The symbol w represents the angu­
lar velocity of the sine wa~e, , and is 
equal to 2rrf. An angular· velocity, w, 
corresponds to the ·fundamental fre­
quency or /, 2 w corr,esponds to the 
second harmonic, or 2f, and so on. 

(3) C: The symbol C indicates the maxi.'. 
mum amplitude of the sine wave, and· 
is a constant for each harmonic. 

( 4) 8 :· The symbol 8 is the phase angle 
of the sine wave at t z:;:; 0. In figure 
69, for example, one sine wave has 
zero amplitude at t = 0, and 8 is zero. 
The other sine wave starts at its maxi­
mum negative valu'e at t = 0, and 8 is 
-90°, or -rr/2 radians. Note that the 
phase angle can be expressed either in 
degrees or in terms of radians, where 
360° = 2rr radians. In the Fourier 
series, it is often convenient to express 
8 in terms of rr radians. For example, 
90 ° = rr/ 2, 180° = 71', and 360° = 2rr, 
etc. The term radian usually is 
omitted. 

(5) The term 10 sin (2007rt + 'Tr/2) repre­
sents a waveform which varies sinu-

f f 2007r 100 soidally at a requency o 27r , or 

cps. It has a maximum amplitude of 
10 volts, and it starts at t = 0 with a 
phase angle of rr/2, or +90°. 

d. FOURIER SERIES. The Fourier series for 
nonsinusoidal periodic waveforms states rela­
tions between the frequency, amplitude, and 
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Figure 69. Addition of first and third harmenio. 

phase of the harmonic components. Mathemati­
cally, the Fourier series is written in the fol­
lowing manner: 

S,"""' Co+ Ct sin (wt + fh ) + C2 sin (2 wt 
+ 82) + Ca sin (3 wt + 88 ) + ... + C,. 
sin (nwt + s.). 

S, is the amplitude of the nonsinusoidal wave 
at any time t. Co is the d-e component of the 
wave. Ct is the maximum amplitude of the fun­
damental wave, or first harmonic. Sin wt is the 
fundamental sine wave, and 61 is the phase of 
the fundamental sine wave. C2 is the maximum 
amplitude of the second harmonic, sin 2 wt is 
the second harmonic sine wave, and 82 is the 
phase of the second harmonic. The number in 
each term (1, 2, 3, ... n) indicates the frequency 
of the harmonic compared to the fundamental. 
For example, sin (3 wt + 88 ) is the third har­
monic, sin (nwt + 8,.) is the nth harmonic sine 
wave. 

79. Symmetry of Waves 

a. GENERAL. A number of methods are used 
to determine the maximum amplitudes of the 
harmonics (C0 , C1, C2, and so on) in the Fourier 
series of any particular waveform. A large 
number of these coefficients can be determined 
by inspection of the graph of the waveform. 

b. ZERO-AXIS SYMMETRY. When a periodic 
waveform has the same shape above and below 
the zero-amplitude axis, the waveform is said 
to have zero-axis symmetry. The waveform 
shown in figure 70 is an example of zero-axis 
symmetry. The amplitude is +2 at t = 0, and 
it declines to zero amplitude at t ==- 2. The wave 
passes through zero to -2 at t = 4. The posi­
tive portion of this waveform is the same as 
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Figure 'lO. Types of symmetry. 

the negative portion. Consequently, it has zero.. 
axis symmetry. 

C. QUARTER-WAVE SYMMETRY. A waveform 
has quarter-wave symmetry when the quarter~ 
waves in a half-cycle are symmetrical (B of 
fig. 70). The half-cycle occurs from zero to 
t = 4. If an axis is drawn down the center of 
this half-cycle (dotted line in B) , the two quar~ 
ter-waves are exactly alike. Similarly, when a 
vertical axis is drawn at t = 6, the quarter~ 
wave from 4 to 6 is symmetrical to the quarter­
wave from 6 to 8. Consequently, this waveform 
has quarter-wave symmetry. 

d. MIRROR SYMMETRY. A waveform has half~ 
wave, or mirror, symmetry, as in C, when the 
positive half-cycle is symmetrical to the negative 
half-cycle around the zero-amplitude axis. The 
positive half-cycle from zero to 4 is exactly the 
same as the negative half-cycle from 4 to 8, ex­
cept for change in polarity. Note that the wave­
form in B, which has quarter-wave symmetry, 
does not have half-wave symmetry because the 
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positive half-cycle is not the same as the nega­
tive half-cycle. 

80. Effects of Symmetry on Harmonic 
Composition 

Either the d-e component, or a large number 
of harmonic-frequency components can be elimi­
nated from the waveform analysis if the wave­
form has a given symmetry. 

a. ZERO-AXIS SYMMETRY EFFECT. 

+ 
30 

1 
20 

10 
Cf) 

( 1) The effect of zero-axis symmetry is 
shown in figure 71. In this figure, two 
sine waves of voltage are plotted. Sine 
wave 1 is symmetrical about the zero 
axis. Sine wave 2 has exactly the 
same shape, but is displaced 10 volts 
above sine wave 1. Sine wave 2 is 
not symmetrical around the zero-volt­
age axis. 

SINE-WAVE 2 
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o 
> 10 

l 20 

30 

(2) 

(3) 

AGO 1446A 

TIME- TM 669-71 

Figure 71. Effect of d-e component. 

If a d-e voltage of 10 volts is added 
to sine wave 1, the two sine waves 
coincide. Hence, sine wave 2 equals 
sine wave 1 plus 10 volts. The addi­
tion of a d-e voltage to a sine wave does 
not distort its waveshape in any way. 
The d-e voltage can only raise (when 
positive) or lower (when negative) 
the position of the curve with relation 
to the zero-voltage axis. 
When a waveform is symmetrical 
with relation to the zero-voltage axis, 
the d-e voltage component is equal to 
zero. Sine wave 2 is symmetrical about 
the axis formed by the dotted line at 
10 volts. A waveform that is sym­
metrical about a voltage axis other 

than zero has a d-e component equal to 
the voltage at the axis of symmetry. 

b. EFFECT OF EVEN HARMONICS ON WAVE­
FORM SYMMETRY. A and B of figure 72 shows 
the resultant curves when a second harmonic 
is added to the fundamental sine wave in dif­
ferent phase relationships. The resultant wave­
forms do not have half-wave symmetry. Wave­
forms lacking half-wave symmetry are also 
obtained when the fourth, sixth, or any even­
ordet· harmonic is added to the fundamental. 
From this it can be deduced that an even-order 
harmonic causes the resultant curve to lack 
half-wave symmetry. 
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Figure 7£. Effect of 61/tm harmonica. 

c. EFFECT OF ODD HARMONICS ON WAVE­
FORM SYMMETRY. A and B of figure 73 shows 
the resultant curves when a third harmonic is 
added to the fundamental in different phase 
relationships. Each curve has half-wave sym­
metry, but only the curve where the phase dif­
ference is zero (both waves starting with zero 
amplitude at t = 0) has quarter-wave sym­
metry. Half-wave symmetry is obtained when 
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the fifth, seventh, or any odd-order harmonic 
is added to the fundamental. An addition of 
odd harmonics always produces a half -wave 
symmetrical waveform. 
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Figure 73. Effect of third harmonic. 

d. ANALYSIS FROM SYMMETRY. 

(1) A waveform that has zero-axis sym­
metry does not have a d-e component. 
If the waveform has symmetry about 
another horizontal axis, the d-e com­
ponent is equal to the value at this 
axis. 

(2) A waveform that has half-wave sym­
metry has no d-e component and no 
even-order harmonic component. 

(3) A waveform that has both half- and 
quarter-wave symmetry has no d-e 
and no even-order harmonic com­
ponent, and all its odd-order har­
monics are in phase (start with zero 
amplitude at t = 0). 

( 4) A waveform displaying half-wave 
symmetry about a horizontal axis 

other than zero has a d-e compone:n~ 
equal to the value at the axis of sym"' 
metry, but it does not have any eve:n-­
order harmonics. 

81. Determination of Coefficients Not 
Equal to Zero 

a. GENERAL. 

(1) From symmetry, it is possible to note 
which of the Fourier series coefficients 
( C0 , C11 •• • C,.) are equal to zero. De~ 
termination of coefficient values that 
are not equal to zero is more difficult. 
The d-e component, C0 , can be worked 
out by examination of the waveform. 
A number of methods, such as the 
graphical, numerical, and envelope, 
can be used to evaluate the harmonic 
coefficients. However, all of these 
methods involve long and cumber~ 

some mathematical procedures. Hence, 
they are rarely used. 

(2) In practice, these coefficients are ob~ 
tained by means of an electronic in~ 
strument or a Fourier series graph. 
The instrument, known as a spectrum 
or harmonic analyzer, is capable of 
separating and displaying the ampli~ 
tude and phase of each harmonic con­
tained in a nonsinusoidal waveform. 
When available, a Fourier series 
graph .is used .which plots amplitude 
versus number (1, 2, .. n) of har­
monic. Several of these graphs are 
described below. 

,b. D-C COMPONENT. 

(1) Definition of average value. The d-e 
component of any periodic wave is 
equal to the average amplitude of the 
wave during 1 complete cycle. The 
average amplitude is equal to the sum 
of all values during 1 cycle divided by 
the number of values taken. In a wave 
displaying half-wave and zero-axis 
symmetry, 1 half-cycle is equal and 
opposite to the next half-cycle. The 
sum of 1 cycle is, therefore, zero. 

(2) Square wave. In the square wave of 
voltage (A of fig. 74) the amplitude 
of the pulse, A, remains constant dur-
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ing the pulse width, P, and is zero 
during the remainder of the cycle. The 
time in usee, or period for 1 complete 
cycle is designated as T and, in the 
square wave, 2P = T. The average 
value of a square wave is the ampli­
tude times P /T, or Eav = AP /T. Since 
PIT is equal to one-half and the ampli­
tude is A, Eav is equal to A/2. The d-e 
component is, therefore, A/2. 

-P-~T 'I 
1 : _____ ] ____________ ;--____ ---. ____ ---
~ ! 

<f) 

~ 
0 
> 

0 TIME--
SQUARE WAVE A 

0 2 4 6 8 
TIME (U SEC) ----

RECTANGULAR WAVE B 

Figure 74. D-e components of squM"e and rectangular 
waves. 

(3) Rectangular wave. In a rectangular 
wave, the average amplitude, Eav. is 
also equal to AP /T. For example, the 
rectangular wave in B of figure 74 has 
a pulse width of 5 usee, a period of 8 
usee, and a maximum amplitude of 8 
volts. Eav is, therefore, 8 times 5/8, or 
5 volts. 

c. FOURIER SERIES GRAPHS. 

(1) Square wave. 
(a) In the Fourier series graph for a 

square wave of voltage (A of fig. 
75), the square wave displays zero­
axis symmetry, and has no d-e com­
ponent. Since it has quarter-wave 
symmetry, all phase angles (811 82 
.. . 8,.) are zero. It also has half-wave 
symmetry, and all the even-har­
monic components are zero. 

(b) The first term in the Fourier series 
is C1 sin wt. It is shown, in A, that 
the magnitude of the first harmonic 
is 4A/ P. If the square wave occurs 
at a frequency of 1,000 cps, the first 
harmonic is then a 1,000-cycle sine 
wave with an amplitude of 4A/P 
volts. The third harmonic, occulT­
ing at a frequency of 3,000 cps ( n 
= 3), has an amplitude of 4A/3P 
volts. Similarly, the fifth harmonic 
has an amplitude of 4A/5P volts. 

(2) Sawtooth voltage. In the Fourier 
series graph for a sawtooth voltage, 
in B, this wave has zero-axis sym­
metry so that the d-e component is 
equal to zero. It does not have half­
wave symmetry, and the Fourier 
series contains both even and odd har­
monics. It is shown that the funda­
mental sine wave has an amplitude of 
4A/ P volts. The second-harmonic 
amplitude is 2A/P volts, the third 
harmonic is 4A/3P, and so on. 

(3) Triangular voltage. In the Fourier 
series graph for a triangular wave, in 
C, amplitude of the fundamental is 
8A/ P 2 volts, the third, seventh, and 
eleventh harmonics are negative, and 
the others are positive. Furthermore, 
it is apparent that the magnitudes of 
the higher harmonics of this wave­
form decrease much more rapidly than 
the square- or sawtooth-voltage har­
monic magnitudes. This is due to the 
fact that the triangular pulse rises and 
decays more gradually. When there 
is a sharp change in voltage, the 
higher-order harmonics have a much 
greater effect. 

82. Frequency Response of R-C and R-L 
Circuits 

a. GENERAL. 

(1) When a nonsinusoidal wave is applied 
to a circuit containing inductance and 
/or capacitance, it is necessary to ex­
press the nonsinusoidal voltage in 
terms of a Fourier series in order to 
use conventional impedance concepts 
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(frequency-response method). It is 
known that inductive reactance is 
equal to 21r!L. The factor, f, in this 
relation is the frequency of the signal 
in pure sine waves. If f represents a 
waveform that is not purely sinu­
soidal, the impedance relationship 
21r!L is not true. Similarly, the capa-

citive reactance is 27r~C , and f the 

frequency, can represent only pure 
sinusoidal waves. 

(2) The Fourier series makes it possible 
to use these conventional impedance 
relationships when a nonsinusoidal 
waveform is applied to the circuit. In 
the Fourier seri'es, each term repre­
sents a pure sine wave; therefore, the 
impedance of the circuit to each term 
ean be determined. Knowing the ef­
fect of a circuit upon these terms, the 
over-all output waveform can be de­
termined. 

b. Low-PASS R-C OR R-L CIRCUIT. 

E 

( 1) Consider the R-C and R-L circuits in 
figure 76. Each of these circuits acts 
as a voltage divider with part of the 
input voltage existing across R, and 
the other part across L or C. When R 
is very much greater than 21r!L, or 

c 

21r~C' most of the input voltage exists 

across R. 

R 

E 

L 

R-C CIRCUIT 

A 

R-L Cl RCU IT 

B 
TM 669-76 

Figur• 76. Low-pa.., filttr. 

(2) In the R-C circuit, at low frequencies, 
e0 (A of fig. 76) is practically equal 

to the input voltage when the capaci­
tive impedance is very large. In the 
R-L circuit, at low frequencies, e., 
in B, is practically equal to the input 
voltage when the inductive impedance 
is very low. These circuits do not 
attenuate the low frequencies appre­
ciably. Hence, they are called low-fre­
quency, or simply low-pass filters. 

(3) As the frequency increases in the R-C 
circuit, more of the input appears 
across R and less voltage appears 
across the output. As the frequency 
increases in the R-L circuit, more of 
the input appears across L, and, also, 
voltage appears across the output R. 
High frequencies, therefore, are at­
tenuated, or reduced, by the low-pass 
filter. 

( 4) The low-pass filter passes low-fre­
quency harmonics, but greatly atten­
uates the high-frequency harmonics. 
Poor high-frequency response affects 
the waveform when the voltage 
changes most rapidly. Therefore, the 
low-pass filter will affect the practical 
pulse more during the relatively short 
rise and decay time than during the 
duration time. 

(5) The bandwidth of this circuit usually 
is defined as that frequency band for 
which the attenuation is less than half. 
However, bandwidth also can be de­
fined as that frequency band for which 
the attenuation is less than 10 percent, 
or some other factor. Note that the 
attenuation is exactly half when the 
input voltage is divided equally be­
tween R and C, or between R and L. 
This occurs when R is equal to 21r!L, or 

2'lr~c· The bandwidth, therefore, is de­

fined sometimes as that frequency at 
which 

R f
0 

= (for R-L) 21rL 
1 f

0 
= (for R-C) 

21rRC 
where f 0 is the bandwidth. 

(6) The bandwidth of the R-C circuit in­
creases as the time constant, R-C, is 
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decreased. The greater the c.ircuit 
bandwidth, the better the high-fre­
quency response, the better the re­
production of pulse rise and decay 
times. Note that these principles are 
the same as those developed. using the 
transient-response methods in chap­
ter 6. 

c. HIGH-PASS R-C OR R-L CIRCUIT (fig. 7'il). 
(1) When the output voltage is taken 

across R in the R-C circuit or L in 
the R-L circuit, the circuit is known 
as a high-pass filter. In A, high fre­
quencies are passed with little atten­
uation since the capacitive impedance 
is small, and in B the inductive imped­
ance is large and the high frequencies 
are passed with little attenuation. 
These circuits highly attenuate low­
frequency harmonics when most of 
the voltage · exis.ts across C in an R-C 
circuit and across R in an R-L circuit. 

R-C Cl RCUIT R-L CIRCUIT 

A B 
TM 669·77 

Pigure 77. High-pass filter. 

(2) These circuits have little effect on 
practical pulse rise and decay times 
because of good high-frequency re­
·sponse, but may cause a drop over the 
duration time due to poor low-fre­
quency response. Again, these facts 
agree with those previously obtained 
by means of the transient-response 
method ( ch. 6) . 

83. Conclusion 

This text covers two common methods of de­
termining the response of circuits to nonsinu­
soidal waveforms. The transient-response 

84 

methed provides this response directly through 
the use of fundamental relationships and equa­
tions. The frequency-response method involves 
breaking down the nonsinusoidal wave into its 
Fourier series and determining the effect of 
each wave upon the circuit using standard im­
pedance relationships. 

84. Summary 

a. The representation of any nonsinusoidal 
wave as a series of harmonically related sine 
waves is known as a Fourier series. 

· b.·· A wave with zero-axis symmetry is one 
which has the same waveform above and below 
the zero-voltage axis. 

e. Quarter-wave symmetry exists if each 
quarter-wave in a: half-cycle i's symm·etrical. 

: ¢. ,.Half-wave symmetry exists when the posi­
tiv,e half-cycle is symmetrical to the negative 
half-cycle. 

e. When a waveform ·has zero-axis symme­
try, the d-e component is .zero. 

f. When a waveform is symmetrical around 
a voltage axis other than zero, the waveform 
has a d-e component equal to the voltage at this 
axis. 

g. A waveform that has half-wave symmetry 
does not have any even-harmonic components. 

h. All phase angles in a waveform that has 
quarter-wave symmetry are equal to zero. 

i. The d-e component of the Fourier series 
is equal to the average voltage of the wave in 
1 cycle. 

j. The other terms in the Fourier series usu­
ally are determined by a harmonic analyzer or 
a Fourier series graph. 

k. An R-C circuit with output taken across 
C, or an R-L circuit with output taken across 
R, passes low-frequency harmonics but attenu­
ates high-frequency harmonics. These circuits 
are known as low-pass filters. 

l. An R-C circuit with output taken across 
R, or an R-L circuit with output taken across L, 
passes high-frequency harmonics but attenu­
ates low-frequency harmonics. These circuits 
are known as high-pass filters. 
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85. Review Questions 

a. What does the term 15 sin (lO<hr + 
~) mean? 
2 

b. What is zero-axis symmetry? 

c. How does half-wave symmetry affect the 
composition of the wave? 

d. How is the d-e term in the Fourier series 
evaluated? 

AGO 1U6A 

e. What two methods are used in practice to 
determine the coefficients of the harmonic terms 
of a nonsinusoidal waveform? 

f. Why is an R-C circuit with output taken 
across C known as a low-pass filter? 

g. How does a high-pass filter affect a wave­
form? 

h. What is the difference between the tran­
sient-response and frequency-response methods 
of analyzing nonsinusoidal waveforms? 

15 
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