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CHAPTER 1
ANALYSIS OF NONSINUSOIDAL WAVEFORMS

1. Introduction
(fig. 1)

Voltages having complex waveshapes fre-
quently are used in electronic equipment. Since
these wavashapes do not follow the conventional
sine-wave pattern they are called nonsinusoidal
waves. Examples are distorted sine waves,
square waves, rectangular waves, trapezoidal
waves, and exponential waves. Originally, non-
sinusoidal waveforms were regarded as unde-
sirable distortions of sinusoidal waves. Today,
however, they are used in many complex cir-
cuits, and their study has been extended to
i(;i}?termine new ways of producing and utilizing

em.

2. Methods of Analyzing Nonsinusoidal
Waves

a. Reactance and frequency concepts used
for sine waves cannot be applied directly to
nonsinusoidal waves. For sine waves, the cur-
ren(:, flowing through either an inductor or ca-
pacitor is equal to the applied voltage divided
by the respective reactance. Inductive reac-
fcance is equal to 2 = fL, and capacitive reactance
18 equal to 15 = fC, when f is the frequency of a
pure sine-wave voltage. If the waveform is not
sinusoidal, these formulas do not hold true and
cu?rent cannot be determined by the relation-
ships used for pure sine waves. Hence, special
tgc.hniques are required to determine the con-
ditions existing in a circuit when a mon-
sinusoidal voltage is applied.

b. To study the basic concepts necessary to
an understanding of nonsinusoidal waveforms
two methods can be used. In one, the wave is
expressed in terms of a series of pure sine
waves, and the sum of the series is equivalent
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to the nonsinusoidal wave. This method per-
mits the direct use of the standard impedance
and frequency relationships mentioned above,
since the nonsinusoidal wave is reduced to
several pure sine waves. The other method,
developed in this text (chs. 2 to 6), is known as
the transient-response method. A transient is
a nonsinusoidal wave that appears momentarily
when circuit conditions are changed. For ex-
ample, when a switch is turned on or off in a
circuit, the resulting nonsinusoidal waves are
known as transients. The transient-response
method develops relationships between current
and voltage which can be applied direct to non-
sinusoidal waves,

3. Harmonic Composition of
Nonsinusoidal Waves

a. DEFINITION OF PERIODIC WAVES. There
are two types of nonsinusoidal waves—the
aperiodic wave, which appears at irregular
intervals, or only once, and the periodic wave
(fig. 1) which is repeated at constant intervals.
The amplitude of the wave, measured on the
vertical or Y-axis, is plotted against time, mea-
sured on the horizontal or X-axis. The time
axis is calibrated in millionths of a second, or
usec (microseconds), rather than seconds. The
unit usec is used because most transient wave-
forms occur in very short time periods. The
vertical or Y-axis is measured in terms of vol-
tage or current.

b. FUNDAMENTAL AND HARMONIC FREQUEN-
ci1ES. The rate at which a periodic waveform is
repeated is known as the fundamental frequen-
cy. If a waveform is repeated 1,000 times a
second, the fundamental frequency is 1,000 cps
(cycles per second). The second harmonic of
this waveform has a frequency equal to twice
the fundamental frequency, or 2,000 cycles.
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The third harmonic is three times the funda-
mental frequency, or 3,000 cycles; the fourth
harmonic is four times the fundamental fre-
quency, or 4,000 cycles, and so on. Generally,
the frequency of any harmonic is 7 times the
fundamental frequency, where n is 1, 2, 3, 4, or
any other whole number.

¢. COMPOSITION OF A SAWTOOTH (fig. 2).

(1) Any nonsinusoidal waveform that oc-
curs periodically can be constructed by
combining a sine wave at the funda-
mental frequency, sine waves at the
harmonic frequencies, and, if neces-
sary, a d-¢ (direct current) voltage.
The sine waves must have the correct
amplitude and phase relationships.
The sawtooth is obtained by the addi-
tion of a fundamental sine wave and
its harmonics.

(2) A of figure 2 shows the addition of
the fundamental and its second hara
monic. The resultant curve, S2, re-
sembles the sawtooth more than the
fundamental alone (curve 1). The
peaks of curve S2 are pushed to one
gide. B shows the resultant curve, S3,
when the third harmonic is added to
the fundamental and the second har-
monic. In this curve the peaks are
pushed farther to the side and the
deviation from the sawtooth is small-
er. Each succeeding curve from C to
G includes one more harmonie. As each
harmonic is added, the resultant curve
more nearly resembles the sawtooth
voltage. Curve S7, in F and G, con-
tains the fundamental plus the second,
third, fourth, fifth, sixth, and seventh
harmonics. The more harmonics
added, the closer the resultant curve
approaches the sawtooth. The saw-
tooth can be reproduced exactly, how-
ever, only by the addition of an infinite
number of harmonics.

d. COMPOSITION OF SQUARE WAVE,

(1) Another common waveform used in
electronic equipment is the square
wave (B of fig. 1). This wave is com-
posed of a fundamental frequency and
an infinite number of harmonic fre-
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quencies. In this waveform, however,
all the even harmonic-frequency com-
ponents— second, fourth, sixth, eight,
and so on—are equal to zero. Only
the odd harmonics—first, third, fifth,
seventh, and so on—are contained in
the square wave.

(2) In A of figure 38 the fundamental and
the third harmonics are plotted, and
the resultant is curve S8. Three cycles
occur in curve 8 for each cycle of
curve 1. The resultant curve, S3, ap-
proaches the square wave. In B, the
fifth harmonic is added to the third
and first, and a fair approximation of
the square wave is obtained. The sides
of the resultant curve, S5, are steeper
than before. C shows the waveform
when the seventh harmonic is added.
Addition of this harmonie increases
the steepness of the sides of composite
curve S7. The more odd harmonics
added, the more the resultant curve
resembles the square wave. Again, an
infinite number of harmonics is neces-
sary to obtain a perfect reproduction
of the square wave. A practical square
wave or other nonsinusoidal wave-
form has a finite number of harmonics
and the reproduction of these wave-
forms can be excellent. In practice, 10
harmonics usually are sufficient for
good reproduction. ,

¢. OTHER WAVEFORMS. By adding sine waves
of the proper frequency, amplitude, and phase
it is possible to compose many other waveforms
used in electronic equipment (ch. 7). Figures
2 and 8 show that, for all harmonic composi-
tions, the amplitude, and, therefore, the im-
portance, of each succeeding harmonic become
less and less. The first, or fundamental, har-
monie has the largest amplitude and the fol-
lowing harmonics have progressively smaller
amplitudes.

4. Effect of Circuit Bandwidth on
Nonsinusoidal Wave

@&. When a nonsinusoidal waveform is applied
to a circuit, the number of harmonic-frequency
eomponents that appear at the output depends
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Figure 8. Harmonic composition of a square wave.

on the circuit bandwidth. The bandwidth repre-
sents the range of frequencies that a circuit will
pass with a minimum of attenuation. For ex-
ample, consider the effect of a cireuit with a
3,000-cycle bandwidth upon a square wave re-
peated 1,000 times per second. Since the cir-
cuit will pass only frequencies up to 3,000 cps
with minimum attenuation, only the fundamen-
tal (1,000-cps) and the third harmonic (3,000-
c¢ps) appear at the output of this circuit. Al-
though a square wave is applied at the input,
the output waveform (A of fig. 4) is distorted
badly. If the bandwidth of the circuit is in-
creased to 7,000 cycles, the first, third, fifth,
and seventh harmonic frequencies will be
passed, and the resultant waveform (B of fig.
4) will show less distortion.

b. When the bandwidth of the circuit is in-
creased, more harmonics are passed, and the
output waveform more closely resembles the
input waveform. Perfect reproduction of the
input waveform at the output requires a cir-
cuit with an infinite bandwidth. This circuit
cannot be achieved in practice, and actual cir-
cuits have bandwidth limitations.

¢. The practical bandwidth necessary to pass
a nonsinusoidal wave depends on two factors:
one, the importance of harmonic relations; two,
the function of the waveform in the circuit.
The upper frequency limit depends on the fast-
est change occurring in the waveform. The
lower frequency limit depends on the repetition
frequency of the waveform. Since the ampli-
tude of each harmonic component usually de-
creases as the order of harmonics increases,
the effect of a higher harmonic is much less
than that of a lower harmonic. The tenth
harmonic has a much smaller effect on the wave-
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form than the second harmonic frequency, the
hundredth harmonic has a smaller effect than
the tenth harmonic, and so on.

Ad. A fairly good representation of the wave-
form can be obtained by using a finite number
of harmonics. The effect of the higher-order
harmonics depends on the composition of the
wave. In some waveshapes, the amplitudes of
the higher harmonies decrease rapidly and a
narrow bandwidth provides good reproduction
of the waveform. In other waveshapes the am-
plitudes of the higher-order harmonics decrease
gradually, and a wider bandwidth is required to
obtain good reproduetion of the waveform.

e. The minimum bandwidth required also de-
pends on how the waveform is to be used. If
the waveform ecan be modified without serious-
ly affecting the operation of the equipment, a
narrower bandwidth can be used. If the wave-
form must be reproduced with a high degree
of fidelity, a wider bandwidth is necessary.

5. Pulse Bandwidth Requirements

a. DEFINITION OF A PULSE. A pulse is de-
fined as a sudden rise and fall of voltage or
current. The square wave and the rectangular
wave (B of fig. 1) are examples of pulse wave-
forms that are used in many equipments, such
as radar, instrument landing systems, and com-
munication links.

b. PULSE PARAMETERS. The pulse rise time,
t,, is the period required for a pulse to rise
“rom 10 percent to 90 percent of its maximum
amplitude (fig. 5). The pulse duration, ¢,, is the
time the pulse remains at maximum amplitude.
The decay time, ¢, is the time required for the
pulse to decay (fall) to zero. These times, ,,
ts, t;, are the parameters for a pulse. A para-
meter is a characteristic property which re-
mains constant, or is held constant, during the
discussion. The wavefront or rise time of the
pulse, t,, is known as the leading edge of the
pulse, and the decay time, ¢, as the trailing
edge of the pulse.

¢. EFFECT 0F HARMONICS ON PULSE RISE AND
DEcAY TIMES. !

(1) In the composition of the square wave,
as higher-order harmonics are added
the rise and decay times of the re-
sultant curves become shorter (fig. 3).
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Pigure 5. High-frequency response to rectangular wave.

For example, in C, curve ST has a
shorter rise time than curve S5. In
B, curve S5 has a shorter rise time
than curve S3. Adding higher-order
harmonics to this wave shortens the
rise and decay times. For this reason,
shape of the pulse during the rise and
decay times is determined by the high-
frequency response of a circuit. If the
circuit has poor high-frequency re-
sponse, the higher-order harmoniecs
are not reproduced, and the rise and
decay times are lengthened (C of
fig. 5).

(2) A rectangular pulse with finite rise
and decay times is shown in A of
figure 5. Practical circuits modify the
shape of this pulse and when a circuit
has good high-frequency response, the
corners of the pulse are rounded enly
slightly, as in B; the pulse rise and

5




decay times are not greatly modified.
When the circuit has poor high-fre-
quency response, as in C, the rise and
decay times increase greatly with a
further rounding of the pulse corners.

(8) The following rule-of-thumb method
determines how high a frequency must
be passed by a circuit to reproduce &
pulse with rise time of t,;

1
fo = a1, °PS,

where t, is in seconds. This formula
gives the high-frequency end of the
bandwidth required. The frequency
fu is known as the high-frequency re-
sponse, the upper-frequency limit, or
the upper limit of the circuit. This
formula also applies to the trailing
(;dge of the pulse having decay time of
f.

(4) Insome radar equipment, a pulse with
rise time of .5 usec is used. To repro-
duce the leading edge of this pulse, the
high-frequency response of the circuit
must be

1 1

fu= 2t~ 2(.5 x 10-°)
fr =1 x 10%ps — 1 me (megacycle).
The upper-frequency limit of the cir-
cuit must be 1 mc to reproduce the
leading edge of a pulse having a rise
time of .5 usec.

d. EFFECT oOF HARMONICS ON PULSE DURA-
TION TIME.

"+ (1) The duration time t, of the pulse de-
pends on the low-frequency response
of the circuit. Figure 6 shows a
square wave passed through a circuit
having poor low-frequency response.
Note that the curve is not flat over the
duration period. To obtain good re-
production of the waveform, the cir-
cuit must have good low-frequency, as
well as good high-frequency response.

. (2) The lowest frequency [y, that a circuit
must pass to reproduce a pulse can be
obtained by the formula

1
fn= L
where prt (pulse recurrence time) is
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Pigure 6. Effect of poor low-frequency response to
g square wave.

in seconds. This is the same as saying
that

fr = prf,
since the pulse recurrence time is the
reciprocal of the prf (pulse recurrence
frequency). When the lower-frequen-
¢y limit of the circuit equals the pulse-
recurrence frequency, satisfactory re-
production results. A pulse having a
repetition frequency of 1,000 cps re-
quires that the lower limit of the band-
width be 1,000 cps.

6. Sawtooth Bandwidth Requirements
(fig. 7)

@. The principles discussed in paragraph 5
can be extended to cover other types of non-
sinusoidal waveshapes. The high-frequency re-
sponse affects the pulse during the rise and de-
cay times when the voltage changes most rapid-
ly. The low-frequency response affects the
pulse duration when the voltage remains essen-
tially constant. Extending these principles, it
can be stated generally that the high-frequency
response affects any waveshape when the vol-
tage is changing most rapidly. The low-fre-
quency response affects the waveform when
the voltage change is gradual.
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b. These principles can be used to determine
the effect of the high- and low-frequency re-
sponse on a sawtooth waveform (fig. 7). The
voltage for this waveform increases gradually
until the maximum amplitude is reached, and
then falls sharply to zero. The low-frequency
response affects the rising portion of the saw-
tooth, and the high-frequency response affects
the decay (or flyback) time. B of figure 7 shows
the effect of poor low-frequency response on the
sawtooth., This waveform is obtained by
subtracting the first, second, and third har-
monics. In C a poor high-frequency response
causes the voltage to decay more gradually and
run into the rise time of the next cycle. '

SAWTOOTH

POOR LOW-FREQUENCY RESPONSE

POOR HIGH-FREQUENCY RESPONSE
C
™ 669-7
Figure 7. Effect of bandwidth on sawtooth.

¢. The bandwidth of a circuit used to pass
a sawtooth voltage should be low enough to pass
the fundamental, or 1/%,, and sufficiently high
to pass a frequency of 1/2t;,, These equations
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are the same as those given for a pulse. For
example, consider the bandwidth required to
pass a sawtooth voltage with a pulse period,
t,, of 1,000 usec and a decay time, t;, of 5 usec.
The low-frequency response required is
1 1

e R T e R L

and the high frequency response required is
1 1

fa = 2%, T 10x 160 = 100,000 cps.

The band of frequency to be passed then equals
fa —fL or 99 ke.

7. Summary

a. Any waveform that does not vary sinu-
soidally is known as a nonsinusoidal wave.

b. Nonsinusoidal waveforms have two gener-
al classifications: waveforms that are inten-
tionally nonsinusoidal and waveforms that
should be sinusoidal but are distorted by the
equipment.

¢. Nonsinusoidal waves can be analyzefi by
either the harmonic-analysis or the transient-
response method.

d. A periodic wave is a wave that is repeated
at constant intervals.

¢. Nonsinusoidal periodic waves can be con-
structed from a series of harmonically related
sine waves.

f. The lowest frequency in this harmonic
series is the fundamental, or first harmonic
frequency, and it is equal to the waveform re-
petition frequency.

g. It is possible to obtain good reproduction
of a nonsinusoidal waveform by using a finite
number of harmonics.

h. The bandwidth of the circuit passing a
nonsinusoidal wave should be wide enough to
pass the highest and lowest harmonics neces-
sary for good waveform reproduction.

i. Good reproduction of a pulse during rise
and decay time depends on the high-frequency
response of the circuit.

j. Good reproduction of a pulse over duration
time depends on the low-frequency response of
the circuit.




8. Review Questions

"a. What is a nonsinusoidal wave?

b. What is a periodic wave?

¢. Why cannot conventional impedance re-
lationships be used with nonsinusoidal waves?

d. A pulse occurs at a rate of 1,000 times per
second. What is the frequency of the fifth har-
monic?

e. What is meant by the bandwidth of a cir-
cuit?

f. How does the waveform to be passed de-
termine the necessary upper and lower fre-
quency limits of bandwidths?

g. What is the effect of the amplitudes of
the harmonics on bandwidth requirements?

h. Give the bandwidth requirements for pass-
ing a pulse repeated 1,000 times a second, hav-
ing rise and decay times or 2 usec, and duration
time of 200 usec. The pulse is flat over the
duration time.

AGO 1445A



CHAPTER 2
TRANSIENT RESPONSE

9. Steady-State and Transient Response

Electrical circuits have two response charac-
teristics: The steady-state response is the long
time effect of a voltage, or current, on a circuit;
the transient response is the effect on a circuit
of changing a voltage or current from one
steady state to another.

(. STEADY-STATE RESPONSE.

(1) When a d-c voltage is applied to a cir-
cuit, after a period of time the cur-
rent measured in the circuit is 20 ma
(milliamperes). As long as the input
voltage remains unchanged, the cur-
rent remains at 20 ma, and 20 ma is
the steady-state response of the cir-
cuit to this particular input.

(2) The d-c voltage is now removed, and
after a period of time the current
drops to zero. As long as the voltage
across the circuit is zero, the current
is zerc. The steady-state response of
this ecircuit in zero current for zero
voltage.

D. TRANSIENT RESPONSE. When the d-c volt-
age first is applied to the circuit, however, the
current cannot increase immediately to 20 ma.
A period of time is required for the current to
reach this value. Similarly, after the input volt-
age drops to zero, the current cannot drop im-
mediately to zero. The period of time required
for a circuit to go from one steady-state condi-
tion to another is known as the transient time.

10. Purpose of Studying Transient
Response

a. To determine the response of a circuit to
a nonsinusoidal waveform, it is necessary to de-
scribe this waveform in terms of a series of
harmonically related sine waves (ch. 1). Since
nearly all of the a-c¢ (alternating-current) wave-
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forms used in early electrical equipment were
sinusoidal, standard impedance relationships
were based on the sine wave. All steady-state
response characteristics can, therefore, be ob-
tained by using a-c¢ theory.

b. During transient times the voltages are
nonsinusoidal, and therefore, the study of tran-
sients is the study of the responze of networks
to nonsinusoidal voltages. Although the har-
monic-series method can be used to determine
the transient response, this method is cumber-
some, and the easier transient-response method
of analysis is preferable.

11. Types of Transients

a. The original term transient was used to
describe what occurred during the period of
time immediately after a piece of equipment
was turned on or off, or after some unusual
disturbance occurred in the equipment. Today,
the term transient has been expanded to mean
virtually any nonsinusoidal voltage. The reason
for this is simple. When nonsinusoidal voltages,
such as pulse or sawtooth waveforms, first were
used in electronic equipment, it was found that
the methods developed to study transients could
be applied to all nonsinusoidal waveforms.
The meaning of transient or pulse response was
then taken to include the effects of these non-
sinusoidal waveforms.

b. When a d-c voltage is applied to or re-
moved from a circuit, a transient occurs before
the circuit reaches its steady-state condition.
Similarly, a transient occurs when a sine-wave
generator is turned on. These transients, as well
as pulse and sawtooth voltages, are examples of
nonsinusoidal waveforms that can he analyzed
by transient-response methods.

12. Response of Simple R Circuit
@. BASIC PRINCIPLES. The study of transient
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response is based on the fundamental, or na-
tural, behavior of the three basic elements, re-
sistamce, inductance, and capacitance when
voltage is applied. The natural behavior of
these elements relates the current through tie
element to the applied voltage, or the voltage
across any element to the current flowing
through it. It is from these fundamental rela-
tions that all impedance equations which as-
sume sinusoidal currents and voltages are de-
rived. This manual will use these fundamental
relations to determine the response of circuits
to nonsinusoidal waveforms.

b. OHM’S Law.

(1) The natural behavior of a resistive
circuit is defined by Ohm’s law, which
in one form states that the voltage
across a resistance is equal to the cur-
rent flowing through it times the re-
sistance. This shows that a simple
linear relation exists between current
and voltage at any time in a resistive
circuit. A resistive circuit therefore
does not require time to adjust to a
change in voltage or current. Conse-
quently, a resistive circuit has no tran-
sient response.

(2) The current and voltage waveforms in
a resistive circuit are similar in shape
and related in amplitude by the value
of resistance R. In figure 8, resistor R
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1s 10 ohms and the numerical value of
the current waveform at any time is
one-tenth the corresponding value of
the voltage waveform. For example,
after 8 usec, & is 15 volts and I is 1.5
amperes. Similarly, the voltage after
13 usec is 5 volts and the current is .5
ampere. At any instant of time, the
current is equal to the voltage divided
by the resistance, regardless of
whether the waveform is d-¢, a-c, or
pulsed, and the current waveform is
gimilar to the voltage waveform.

13. Response of Simple L Circuit

@. ANALOGY OF INDUCTANCE AND MASS.

(1) The relationship between current and
voltage in an inductance is shown in
the analogy illustrated in figure 9. In-
ductance L is represented by mass M
(a truck), voltage F' is represented by
force I exerted against the mass, and
current / is represented by the velo-
city, V, at which the mass (truck)
moves. The speed, or velocity, of the
truck is equal to the distance it travels
per unit time. Assume that no resist-
ance, or its equivalent friction, exists
in the system.

(2) A greater force is required to start a

—Ot— M —-0O—

™™ 669-9

Figure 8. Response of simple R eircuit.
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Figure 9. Analogy of inductance and mass.

(3)

(4)
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truck moving than is required te keep
it moving. That is why the first gear
is used to start the truck and the third
gear keeps it moving. The force also
varies with the weight of the truck.
The heavier the truck, the greater the
force required.

For example, once a truck reaches a
speed of 40 miles per hour no force is
required to maintain this speed if
there is no friction between tires and
road. When the speed of the truck is
increased to 60 miles per hour, a force
must be exerted in the forward direc-
tion. In other words, it is necessary
to step on the gas. In the absence of
friction, however, if this force is main-
tained, the car speed will increase in-
definitely. The speed at any time is a
function of the force applied to the
truck and the time it is maintained.
Despite friction, a truck continues to
travel after the gas pedal has been re-
leased. To stop it, the brakes must be
applied to exert a counter force, and
the force needed depends on the speed
and weight of the truck.

The following, therefore, are funda-
mental principles: A truck tends to
maintain its steady-state conditions.
When at rest (zero speed), a force is
necessary to build up the speed to 40
miles an hour. If it is traveling at 40
miles an hour, a force is required to

bring it to zero speed. The speed of
the truck increases indefinitely when
constant force is applied; the speed is
proportional to the force applied to the
truck.

b. FUNDAMENTAL INDUCTANCE EQUATIONS.

(1)

(2)

(3)

The principles applied to the truck in
the preceding discussion are true for
a simple inductance circuit. Electrons
at rest in an inductance act just as the
truck does. They tend to remain at
rest and oppose movement, or flow of
current. Similarly, when electrons are
moving, they tend to maintain their
movement and oppose any change in
current. When ne current is flowing
in the circuit and a voltage (force) is
applied, the inductance tends to pre-
vent current from flowing in the cir-
cuit. This epposition te the applied
voltage is known as back emf, or back
electromotive force, and is dependent
on the size of the inductor. The larger
the inductance, the greater the oppo-
sition to any change. Similarly, when
a current is flowing through an induct-
ance and the applied voltage drops to
zero, the back emf tends to maintain
the current flow.

When a voltage is applied across a pure
inductance, the current through the
inductance increases continuously (fig.
10). For example, a 5-volt battery
with zero internal impedance is con-
nected across a pure inductance, in A.
An ammeter is placed in the circuit to
measure the current flow, and the
reading on the ammeter increases
steadily. At the end of 1 second it
reads 1 ampere; at the end of 2 sec-
onds, 2 amperes; at the end of 5 sec-
onds, 5 amperes. At the end of every
second the current has increased by 1
ampere. This circuit, therefore, has
a rate of current increase of 1 ampere
per second, as in C. Note that the cur-
rent waveform is different from the
waveform of the applied voltage, in B.
The value of inductance, L, can be
determined by finding the ratio of the
applied voltage (5 volts) to the rate
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Figure 10. Response of simple L circuit.

of current increase (1 ampere per sec-
ond), or 5 henrys. When the induct-
ance in this circuit is increased to 10
henrys (with battery voltage con-
stant), the rate of current increase
becomes .5 ampere per second. This
demonstrates an important fact: the
larger the inductance, the greater its
opposition te a change in current flow,
and the smaller the rate of current in-
crease for a given applied voltage.
Since the current increases every sec-
ond, the value of current dt any instant

(4)

depends on how long the voltage has
been applied to the circuit; the longer
the voltage is applied to the circuit,
the higher the value of current in the
circuit.

Three fundamental relationships have
been evolved :

(a) An inductance opposes any change

()

(c)

(5)

in current.

When a voltage exists across a pure
inductance, the current through the
inductance must change.

The current flowing in a pure in-
ductance at any given instant de-
pends on the length of time the volt-
age has been applied to the circuit.
From these fundamental relationships
it is possible to determine the response
of an inductance to any voltage wave-
form. It is important to note that
these relationships assume the exist-
ence of a pure inductance. Actual in-
ductors always have series resistance,
and the current does not increase in-
definitely when a d-¢ wvoltage is ap-
plied (ch. 8).

14. Response of Simple C Circuit

a. ANALOGY OF CAPACITANCE AND SPRING.

(L

(2)

The relation between charge, current,
and voltage in a capacitor is illus-
trated by analogy in figure 11. The
capacitor is represented by a spring;
voltage E is represented by a force, I,
against the spring. The charge, @, is
represented by distance S to which the
spring is stretched. The current in the
circuit is equal to the amount of charge
flowing into the capacitor per second,
and can be represented by the distance
per second that the spring is stretched.
It is assumed that no resistance, or its
equivalent friction, ewxists in the
system.

When a constant force, F, is applied
to a spring, it begins to stretch. It
stretches easily at first and the dis-
tance it stretches per second is large.
The farther the spring is stretched,
the smaller the distance covered each
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Figure 11. Analogy of capacitance and spring.

second. Stretching the spring devel-
ops a counter force which is opposite
to the applied force and tends to re-
turn the spring to its original condi-
tion. Finally, the spring cannot be
stretched any farther, and at this time
the counter force is equal to the ap-
plied force. (If the applied force is
increased, the spring can be stretched
farther.)

(3) When this applied force is released,

the spring returns to its original posi-
tion with a counter force equal to the
applied force. The velocity is large at
the beginning of the return cycle and,
as the spring comes closer to its ori-
ginal state, the counter force decreases
and therefore the velocity (distance
per second) decreases.

(4) The total distance, S, that the spring

is stretched depends directly on the
force, I, and inversely on the stiffness,
K, of the spring. Therefore, the velo-
city of the spring depends directly on
the force and inversely on the stiffness.

) The following, therefore, are funda-

mental principles:
(a) When a constant force is applied to
a spring it stretches to some dis-
tance, S, depending on I and K, and
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maintains this position so long as
the force is applied.

(b) The counter force developed by the

spring is proportional to the total
distance, S, that the spring is
stretched and the spring stiffness, K.

(¢) After the spring has been stretched,

it can be moved only by changing
the applied force. When the force
is increased, the spring stretches
farther; when the forceis decreased,
the spring contracts. The velocity
with which the spring changes its
position is proportional toRehe
change in the applied force. If the
change in applied force ig very
large, the spring moves at a high
velocity; if the force is small, the
spring changes its position slowly.

b. FUNDAMENTAL CAPACITANCE EQUATIONS.

(1)

(2)

The fundamental principles cited
above for the action of a spring are
equally true for the simple capacl-
tance circuit. When a d-c voltage is
applied across a capacitor, a current
starts to flow. The current flow 1is
large at first, but decreases as the ca-
pacitor charges and becomes Zero
when the voltage charge on the capa-
citor is equal and opposite to the ap-
plied d-c voltage. Thereafter, although
the d-c voltage continues to be applied
across the capacitor, no further cur-
rent flows: A capacitor cannot pass @
d-c current. When the d-c voltage is
removed and the capacitor is dis-
charged, the current flow again is
large at first and decreases to zero as
the capacitor becomes completely dis-
charged.

When a greater amount of charge is
applied to a capacitor, the voltage
across it increases. For example, a
constant-current generator is con-
nected across an ideal capacitor (fig.
12). The generator supplies a current
of .0005 ampere, or .0005 coulomb per
second. A voltmeter is connected
across the capacitor, and the reading
on this voltmeter increases steadily.
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Figure 12. Voltage response of simple C circuit with
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current constant.

(3) The voltage increases 5 volts for every

.0005 coulomb of charge added to the
capacitor, or 5 volts per second. Capa-
citance C is equal to the current
(charge per second) divided by the
voltage rate of change.

Q)

o ‘
Therefore, C equals 100 microfarads
(.0006 ampere/5 volts). When a
smaller capacitance of 10 microfarads
is uged, the voltage increases at a rate
of 50 volts per second. The smaller
the capacitor, the greater the voltage
across it for a given amount of charge.
The total charge in coulombs at any
time ¢ is equal to I', where I is the

(4)

(5)

(6)

current in amperes and £ is the time
in seconds. When a current of .0005
ampere flows for 2 seconds, the total
charge is 2 times .0005, or .001 cou-
lomb. When the current is applied
for 5 seconds, the total charge is 5
times .0005, or .0025 coulomb. The
longer the current flows, the greater
the charge, and the greater the volt-
age across the capacitor.

If the constant-current generator (fig.
12) is replaced by a voltage generator,
and an ammeter is placed in the series
circuit, the following can be noted:
When the generator voltage is con-
stant, the ammeter reads zero current.
When the voltage output increases at
a rate of 50 volts per second (fig. 13),
the ammeter reads 50 ma. As long as
the voltage increases at a rate of 50
volts per second, the ammeter reads
50 ma. After 10 seconds, the generator
voltage reaches 500 volts and stays at
this value for 5 seconds. During this
period the voltage is not changing and
the ammeter reads zero. After 15 sec-
onds, the voltage begins to decrease
at a rate of 25 volts per second. The
ammeter now reads 25 ma in the re-
verse direction, since the applied volt-
age is decreasing and the capacitor is
discharging.

Capacitance C in the circuit is equal
to current I divided by the wvoltage
change. The capacitance is, therefore,
50 times 10-* amperes divided by 50
volts per second, or 10-* farads (1,000
microfarads). If the capacitance in
the circuit is 100 microfarads and the
voltage rate of the change is 50 volts
per second, the ammeter will read 5
ma. Therefore, the smaller the value
of capacitance, the smaller the current
flow for a given voltage change. The
current flow in the circuit is propor-
tional to the magnitude of wvoltage
change.

Three fundamental relationships have
been established :

(a) A capacitor cannot pass d-c.
(b) The voltage across a capacitor is
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Figure 18. Current response of simple C circuit with
variable voltage.

proportional to the amount of charge
in the capacitor.

(¢) The current flowing into a capacitor
is proportional to the voltage change
across the capacitor.

(7) From these fundamental relationships
it is possible to determine the response
of any capacitor to any voltage wave-
form. It is important to note, how-
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ever, that these relationships assume
the existence of pure capacitance.
Practical capacitances have = some
series resistance which modifies the
current and wvoltage responses (ch.
4).

15. Energy Considerations

a. IN RESISTANCE. When current flows
through a resistance, some of the electrical en-
ergy is changed to heat. The amount of power
lost as heat when a current, I, flows through a
resistance, R, is equal to I2R watts. The energy
in watt-seconds or joules is equal to J2Rt. Since
no practical circuit can be without resistance,
a certain amount of electrical energy must be
lost as heat.

b. IN INDUCTANCE. When a current starts
to flow through an inductance, a magnetic field
is created around the inductor that increases as
the current increases and collapses as the cur-
rent decreases. The energy supplied to a pure
inductance is stored in this magnetic field, and
at any time, with current I flowing through in-
ductance L, is equal to LI2/2 watt-seconds.
When the current through the inductance -
creases, the magnetic field builds up, and energy
is stored. When the current in the inductor de-
creases the magnetic field collupses, and the
energy is returned to the line. No power is ex-
pended in a pure inductance. It is alternately
stored in the magnetic field when the current
increases, and returned to the line when the
current decreases.

¢. IN CAPACITANCE. All of the energy sup-
plied to a capacitor is stored between the capa-
citor plates in the form of an electrostatic field.
The energy in a capacitor increases as the
square of the voltage. If the voltage across the
capacitor is F and the capacitance is C, the
electrostatic energy stored in the capacitor is
CE2/2 watt-seconds, or joules. When a capaci-
tor is charging, the electrostatic field becomes
stronger, and energy is stored. When a capaci-
tor is discharging, the electrostatic field becomes
weaker, and energy is given up. No power is
expended in a pure capacitance. When it is
charging, the energy is stored between the
plates, and on discharge the energy is returned
to the line.
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16. Summary

a. Electrical circuits have two response
characteristics, steady-state and transient.

b. The steady-state response is the long-time
effect on voltage and current in a circuit, caused
by a change in the input.

¢. The transient time is the time required for
a circuit to go from one steady-state condition
to another.

d. The current or voltage in the circuit dur-
ing the transient time is known as the transient
response.

e. The transient response method can be used
for the study of nonsinusoidal waveforms.

f. The study of transient response utilizes the
fundamental, or natural, behavior of resistance,
inductance, and capacitance when voltage is
applied.

¢g. The natural behavior of a resistance is
designated by Ohm’s law: E-IR. This means
that a resistance has no transient response.

h. An inductance opposes any change in cur-
rent flow.

7. The voltage across an inductance is equal
to L times the rate of change in current flow.
j. A capacitance cannot pass direct current.

k. The voltage across a capacitor is equal to
the total charge divided by the capacitance.
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. The electrical energy lost as a result of re-
gistance is equal to I?Rt watt-seconds.

m. In a pure inductance, energy is stored in
the magnetic field built up by the current flow.
The energy stored is equal to LI?/2 watt-sec-
onds.

n. The energy stored in a perfect capacitor is
stored in an electrostatic field between the capa-
citor plates. The stored energy is equal to
CE*?/2 watt-seconds.

17. Review Questions

a. What is steady-state response?
b. What is transient response?
¢. What is the transient-response method?

d. Can the transient-response method be used
to analyze sawtooth and pulse waveforms?

e. What basic law describes the behavior of
resistance?

f. State the three fundamental relationships
of inductance.

g. Explain why a capacitor cannot pass di-
rect current.

h. What law governs the natural behavior
of a capacitor?

i. When is energy stored in an inductor?
4. When is energy stored in a capacitor?

AGO 1445A



CHAPTER 3
RESPONSE OF R-L CIRCUIT

18. Definition of Unit Step Voltage
(fig. 14)

Transient response methods are used to de-
termine the current and voltage in a circuit
when the equipment is first turned on or off
and to determine the current and voltage in a
circuit resulting from a pulse. A circuit with
d-c voltage applied through a switch is shown
in A. When the switch is open, the voltage ap-
plied to the circuit is zero. When the switch is
closed, the battery voltage, F, is applied to the
circuit instantaneously. When the switch is
opened, the applied voltage again is instan-
taneously zero. B shows the resultant volt-
age applied to the circuit, and C shows a rec-
tangular pulse identical with the waveform in
B. The instantaneous rise in the applied voltage
when the switch is turned on is the same as the
positive step wvoltage of a rectangular pulse.
When the switch is turned off, the instantaneous
fall to zero is known as a negative step voltage.
The rectangular pulse also can be called a step
voltage, and when F is equal to a unit measure
of voltage, the waveform is known as a unit
step voltage. -

19. Positive and Negative Step Voltages

The response of a circuit is essentially the
same for an on-off d-c transient as for a rectan-
gular pulse, and the step voltages can be either
positive or negative. A positive step voltage
occurs when the rectangular pulse first is ap-
plied to the circuit (A of fig. 14). Similarly,
when the switch is turned off or the rectangular
pulse ends, as in B, the instantaneous voltage
change from F to zero is called a negative step
voltage. A rectangular pulse consists of a posi-
tive and a negative step voltage, occurring suc-
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Figure 1}4. D-¢ switching and rectangular pulse.

cessively. The addition of these two step volt-
ages is shown in figure 15.

20. Basic Voltage Equation
(fig. 16)

a. To determine the response of any circuit
to a step voltage, the basic voltage equation
derived from Kirchhoff’s law must be used.
This equation states that the sum of the voltage
drops in any closed circuit is equal to the ap-
plied voltage. For example, a voltage, E,, is
applied across a series R-L circuit (fig. 16).
The voltage drop across R is designated as eg,
and the voltage drop across L is designated as
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step voltages.

er. Accoxjding to the basic voltage equation, at
any instant, the sum of e, and e, must be equal
to K, the applied voltage. Expressed mathe-
matically,

E b =€ 1 er.
The voltage across resistance

e = iR,
where ep is in volts, and 4, is the current in
amperes flowing in the circuit at any time ¢.

b. Voltage e; across the inductance is ex-

pressed by the formula

where ey, is in volts, L is in henrys, and di/dt is
in amperes per second. The symbol d signifies
the rate of change of any quantity. The basic
voltage equation for the series R-L circuit then

becomes
4 di
Eb = 'lqR + L d—;

at any instant of time ¢.

21. Response of Series R-L Circuit to

Positive Step Voltage
(fig. 16)

@. GENERAL DESCRIPTION,
(1) When the positive step voltage, in B, is
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Figure 16. Charge of series R-L circuit,

applied to the series R-L circuit, in A,
a voltage, F,, appears across the cir-
cuit. Current attempts to flow, but the
inductance opposes this current by
building up a back emf that equals E,,
at the instant £, is applied to the cir-
cuit, and
E(, —_— O, == 0.

Consequently, the voltage drop across
R is zero, and no current is flowing in
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(2)

the series circuit. The values of cur-
rent and voltage at every instant are
shown in B, C, D, and E.

As current starts to flow, a voltage,
er (equal to 7,7), appears across R.
This voltage drop represents the dif-
ference between E, and a decreasing
er. As the voltage drop across R in-
creases, the rate of current change in
the circuit decreases; 7; increases at a
slower rate; voltage ep builds up
gradually until the entire input volt-
age is dropped across R, and the
steady-state condition is reached. Volt-
age ep then is equal to the applied
voltage, I, voltage ey, is zero, and cur=-
rent 4; is maximum and equal to E,/R
since di/dt now is zero.

b. DETAILED DESCRIPTION.

(1)
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Current during first usec. The volt-
age, current, and rate of current
change at a number of successive in-
tervals during the transient periods
will be discussed in detail to show
how these characteristics change with
time. The value of current at each
instant can be obtained from figure
17, since this is an enlarged version
of the curve in C of figure 16. This
value of current then is used to find
the voltage and current rate of change
by means of the equation

. di
TS A Ezz_'

Actual values for F, L, and R are
given to clarify the discussion. F is
1 volt, L is 10 mh (millihenrys), and
R is 1,000 ohms. At the instant that
E is applied to the series R-L circuit,
t equals zero and the current is zero;
therefore, the voltage equation be-
comes

di di
E=—'0><R+L—d—t"=L d/t'
and
E_di
THR I T

With voltage E across the inductance,
the current begins to flow. From the

(@)

(8)

equation above, the rate at which the
current increases is
at gt [
dt~ L~ 10X 10®
per second— .1 ma per usec.

This is the maximum rate of current
increase, or, the current has its maxi-
mum rate of change when ¢ is zero.

= 100 amperes

Current during second usec. After 1
usec, figure 17 shows that the current
is .096 ma, and the voltage equation
becomes

I'volt = (.096 X 10-%) x 103 - L*Z%.

Therefore,

o -“% —1—.096 — .904 volt across L,
and

di 904

— =—— —90.4 amperes per
dt 10 X 10® goeond — .0904 ma

per usec.
At the end of 1 usec, the voltage
across the resistor is .096 volt and
the voltage across the inductor is .904
volt. The rate of current change is
.0904 ma per usec. Note that the cur-
rent changes at a slower rate.

Current after 5 usec. It is not neces-
sary to determine the current at every
microsecond, but it is helpful to note
the voltage, current, and rate of cur-
rent change at 5- and 10-usec inter-
vals. After 5 usec, the current flow-
ing in the circuit is .394 ma and the
voltage in the circuit at this time is
1—=103x%.394 X 102+ L%,

or

di

L e .606 volt,
and
di 6067 " .
it x—1—6—>—< 05 = .0606 ma per usec.

At the end of 5 usec, the voltage
across the resistor is .394 volt and the
voltage across the inductor is .606
volt. The rate of current change is
.0606 ma per usec. Note that the rate
of current increase is much lower by
this time, and the voltage drop across
R is greater.
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Figure 17. Current in series R-L circuit.

(4) Current rate after 10 usec. When ¢

equals 10 usec, the current flowing in
the circuit is .632 ma. The voltage
equation is then

1 =1,000 X .632 X 103 + L -%:—
er is now equal to .632 and e is,
therefore, only .368. Most of the ap-
plied voltage is now across R, and the
rate of current increase is

di .368

i 10 % 10°F — .0368 ma per usec.

(6) Current rate after 20 usec. After 20

usec the current is .871 ma, the voltage
across the resistor is .871 volt, and the
voltage across the inductor is only .129
volt. The rate of current increase is
.0129 ma per usec.

(6) Current rate after 40 usec. After 40

usec the current flow is .982 ma and
the rate of current increase is .00182
ma per usec. Theoretically, the cur-
rent never stops increasing, although
it never quite reaches 1 ma. From a
practical viewpoint, when the current
becomes .999 ma (after 70 usec), it is
considered to be equal to 1 ma, and ey,
is considered to be zero.

22. Series R-L Circuit Time Constant

a. A period of time is required for the cur-
rent in a series R-L circuit to reach its steady-
state value. A ratio known as the time constant
has been derived, which allows an immediate
prediction whether a long or short period of
time is required for the circuit to reach a steady-
state. When the time constant is short, the cur-
rent rises rapidly to its steady-state value.
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When the time constant is long, the current rises
slowly to its steady-state value.

b. The time constant is defined as being
numerically equal to L/R, where the time con-
stant is in seconds, L is in henrys, and R is in
ohms. For example, if L is 10 mh and R is
1,000 ohms, the time constant is

. 10 X 10-3 3
L/R =~ 1,000 — 10 X 10-® seconds == 10 usee.

23. Time Constant and Response Curve

a. EFFECT OF INDUCTANCE. Inductance in a
circuit prevents the current from rising im-
mediately to its steady-state value. The larger
the inductance, the greater the opposition to
a change in current, and the longer the period
of time required for the current to reach its
steady-state value. The final, or steady-state
value of current for this circuit is equal to
E/R. Increasing the value of L increases the
time required to reach the steady-state condi-
tion. Decreasing the value of L decreases the
time required to reach the steady-state condi-
tion.

b. EFFECT OF RESISTANCE. If the same value
of inductance is used and the value of resist-
ance is increased, the rate of current increase
remains the same when t is zero. However,
the steady-state value of current is reached in
a shorter period of time. Increasing the value
of R decreases the time required to reach the
steady-state condition. Decreasing the wvalue
of R increases the time required to reach the
steady-state condition.

¢. EFFECT OF TIME CONSTANT.

(1) The time constant L/R is increased
either by increasing L or decreasing
R. Increasing the time comstant i~
creases the time required to reach the
steady-state condition. Decreasing the
time constant decreases the time re-
quired to reach the steady-state condi-
tion.

(2) Circuits with the same time constant
require the same period of time to
reach the steady-state condition. For
example, the time constant of a series
circuit with L of 10 mh and R of 1,000
ohms is 10 usec. With 1 volt applied
to the circuit, 70 usec are required for
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the current to reach .999 ma, or 99.9
percent of the steady-state current
(E/R equals 1 ma). If the inductance
is increased to 20 mh and the re-
sistance is increased to 2,000 ohms,
the time constant of the new circuit
is also 10 usec. Therefore, 70 usec are
required to reach 99.9 percent of the
steady-state current. The steady-state
current is only .5 ma (E/R equals .5
ma), or one-half of the steady-state
value of current for the previous cir-
cuit; since L is doubled and the rate
of current increase is halved, the same
time is required to reach the steady
state.

(8) The period of time required for the
current in any R-L circuit to reach
99.9 percent of the steady-state value
can be expressed in terms of the time
constant, In the example given above,
L/R is 10 usec, and the 99.9 percent
value is reached in 70 usec. The time
70 usec can be expressed as 7 L/E, or
7 time constants. No matter what
the values of L and R, the time re-
quired to reach 99.9 percent of the
steady-state value is always 7 L/R.

(4) In L/R time, the current always will
increase to 63.2 percent of its steady-
state value. If L/R is 50 usec, the cur-
rent reaches 63.2 percent of its steady-
state value in 50 usec.

24. Universal Time-constant Chart

a. GENERAL,

(1) When a step voltage is applied to a
series R-L circuit, it is possible to
determine the values of %, ez, and ey
through the use of the universal time-
constant chart (fig. 18). On this chart,
the horizontal axis is plotted in terms
of time constants, L/R equals 1. The
vertical axis is plotted in terms of
relative voltage or current, and 100
percent corresponds to the applied
voltage, E, or the current.

(2) The rising curve, A, represents either
current 7; or voltage ep across the re-

\ sistance. Curve B, represents voltage
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e, across the inductor. This graph is and the current will reach 63.2 percent

valid for only a step voltage input. of its final value at this time.

b. Tiiim CoNSTANT EQUAL To 10 USEC, (2) At the instant E is applied, t equals

(1) Anillustrative problem follows to show Geh0 e is 100 percent, or 1 volt, e

how these curves are used. The cur- and 4, are zero (fig. 19).
rent and voltage in a series circuit (8) When t is 1 usec, one-tenth of L/R
with L of 10 mh, R of 1,000 ohms, and time has elapsed (L/R equals 10 usec),
E of 1 volt will be determined. One At this time, e is 90 percent of maxi-
time constant equals mum or .9 volt, e is 10 percent, or
1.5\ 10-2 .1 volt, and %, is 10 percent, or .1 ma.

PERCENT OF FULL VOLTAGE OR CURRENT
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is simplified in table I. The points
listed are shown on the universal time-
constant chart,

Table I. Calculation of Voltage and Current by Use of
Universal Time-constant Chart

t L2 7) ‘R L
fn usec /R % v % v %  m8

2 | 2/10=.2( 82 .82 | 18 .18 | 18 .18
6 | 6/10=.6| 556 .55 | 46 .45 | 45 .4b
10 (10/10=1 | 36 .36 | 64 .64 | 64 .64
20 |20/10=2 | 14 .14 | 86 .36 | 86 .86
40 | 40/10—=4 2 02" 98 98| 98 .98

(6) When 70 usec have passed, 7 time con-
stants have elapsed, e;, reduces to zero,
and ep and ¢, become 100 percent, as
shown in the chart (fig. 18). Actually
ey, is not zero nor is ey equal to 1 volt
at this time. All the points indicated in
table I are plotted in figure 19, where
they are connected by a smooth ex-
ponential curve. Since it is impossible
to indicate a very small percentage on
the chart, the steady state is almost
reached when t is equal to 50 usec.
The current and voltages during the
transient time of any series R-L cir-
cuit can be determined by substituting
the appropriate values of E, L, and R.

25. Energy Considerations

a. From figure 18, it is possible to determine
the expenditure of power in the series circuit
at any given time. Each circuit element re-
ceives power at any time equal to the current
flowing through it multiplied by the voltage
across it. The power expended in the resist-
ance is therefore %,ep, or 7,2z, and the power
expended in the inductance is equal to 7:e;. The
power received by the resistance is dissipated
in heat; the power received by the inductance
is transformed into a magnetic field around it.

b. When the step voltage first is applied to
the R-L circuit, the current is small, and most
of the energy supplied to the circuit is stored
in the magnetic field around the inductance.
However, as the current increases, more power
is dissipated in the resistance, and a smaller
portion is stored in the inductance. Finally,
when the current reaches the steady-state value,
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e;, is zero, no more energy is supplied to the
magnetic field, and all the energy is dissipated
in the resistance. As long as current flows in
the circuit, however, a magnetic field exists,
and energy remains stored in this field. This
energy is equal to LI?/2 watt-seconds, where
is the steady-state current. The energy stored
in the magnetic field at any time t is En =
Li2/2 watt-seconds. The fact that there is no
voltage drop across L means that no more
energy is being stored, or that the magnetic
field is not increasing.

26. Response of Series R-L Circuit to
Negative Step Voltage

a. CIRCUIT. B of figure 20 shows a negative
step voltage applied to a series R-L circuit.
Prior to the application of the negative step
voltage, the circuit was operating in its steady-
state condition, switch SW, in A, was in posi-
tion 1, and current I in the circuit was equal
to E/R. When SW is placed in position 2 the
negative step voltage drops the input voltage
from E to zero volts.

b. GENERAL DESCRIPTION.

(1) When the voltage drops to zero, the
current in the circuit also tends to
drop to zero because no further energy
is being supplied. The inductance re-
sists any change of current flowing
through it and attempts to maintain
the current flow. The energy for main-
taining this current flow is the energy
that has been stored in the magnetic
field around the inductor. The induc-
tor, therefore, acts as a source of emf.
To maintain the current flow, a cer-
tain amount of power must be ex-
pended in the resistance. Since any
dissipated energy must come from the
energy stored in the magnetic field,
the stored energy is gradually dissi-
pated, and the current drops to zero.

(2) As the emf of the inductance decreases
(fig. 20), the current 7, becomes
smaller, and the voltage drop across
the resistance decreases in direct pro-
portion. Note that the current flow
is maintained in the same direction as
the current produced by the applied
voltage, ¥. As current continues to
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(6) Current after 10 usec. Att equals 10

usec, Tjﬁ equals 2 and the current
has decreased to 14 percent of its initial
value, or .014 ma, as in curve B. The
voltage across R is .14 volt. The rate
of current change is then .0028 ma per
usec and is becoming smaller. Theo-
retically, the current in the circuit
never reaches zero; however, when ¢

t
equals 35 usec, /R equals 7, and the

current has decreased to .1 percent of
the initial value. At this time, the cur-
rent has dropped to a value of .0001
ma, and for all practical purposes has
reached its steady-state value, which
is congsidered to be zero.

(6) Voltage curves. The voltage curves
for ep and e;, decline along the same
curve as current. Therefore, curve B
can be used to determine the voltage
across either the resistance or the in-
ductance for any time expressed in

t
terms of L/R; t equals 0, or /R

equals 0, corresponds to the time when
the negative step voltage is applied to
the circuit.

d. SIGNIFICANCE OF TIME CONSTANT. The
time constant, L/R, for the negative step volt-
age response has the same significance that it
has for the positive step response. The period of
time required for the circuit to reach the steady-
state condition depends directly on the magni-
tude of the time constant. A longer time con-
stant means that a longer period of time is
required to reach 99.9 percent of steady-state
value; a small time constant means that the
steady-state condition is reached in a short time.

27. Precautionary Measures When
Switch Is Used

a. When the negative step voltage is obtained
by opening a switch (A of fig. 21), precaution-
ary measures must be taken. After the switch
is opened, current attempts to continue flowing
in the R-L circuit because of the action of the
inductance, and no path exists for the current
flow. This causes the voltage across the in-
ductance to build up to the point where it breaks
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down the air between the switch contact and
the blade, and an arc is created across th
switch, e
SPARK GAP

M

OFF
ON R

]
L
r

NEGATIVE STEP VOLTAGE
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|
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: 1 ™ 669-2¢
Figure 21. Field discharge resistor circuit.

Q. The magnitude of the inductive voltage
which will cause arcing depends on the distance
between the switch blade and the contact and
the speed with which the switch is opened
When the switch is opened slowly, arcing car;
occur before the separation is very great, and
only a relatively small voltage is required. If
the switch is opened rapidly, a much higher
voltage is required because a larger air space
(greater resistance) is involved.

¢. When the switch is opened, the resistance
in the circuit is increased, since the open switch
acts as a high series resistance. The inductance
tends to maintain the same value of current
flow in the circuit and, since the series re-
sistance is higher, ep is larger, and, from the
basic voltage equation, e, equals e; and the emf
developed across inductor L must be greater.
The increased R lowers the time constant to
such a value that the spark is practically in-
stantaneous. The larger the air gap in the
switch, the higher the series resistance, the
shorter the time constant, and the larger the
emf developed by the inductance.

d. This last consideration emphasizes the
practical danger of allowing an inductive circuit
to be opened too rapidly. When the direct cur-
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rent in the inductive field circuit of a large
generator is interrupted, the voltage across the
inductor can rise to several thousand volts.
If the normal voltage in the field is only 125
volts, this transient voltage can puncture the
insulation between leads, turns, or the field
winding and its iron core.

e. To avoid damage of this kind, a field dis-
charge resistor, R2 (B of fig. 21), is used in
many equipments., The switch connects a re-
sistor in the circuit when it is opened, and
permits the energy stored in the inductance to
discharge through this resistor. When the
switch is opened, the blade makes contact with
the field resistor before contact is lost with the
battery. In this way the switch is moved from
closed to open position without interrupting
the current through the inductance. The field
current then will gradually decrease to zero as
the energy stored by the inductance is dissi-

pated in the form of heat in resistors R1 and
R2.

28. Step-by-step Procedure for
Determining Transient Response
a. GENERAL.

(1) The value of current in the R-L circuit
at any instant of time has been deter-
mined directly from an exponential
curve. No attempt has been made to
derive this curve because higher
mathematics are involved. When a
universal time-constant chart is not
available, an approximation of the re-
sponse curve may be obtained by use
of the basic voltage equation. This
method is developed step-by-step and
can be used for determining transient
responses.

(2) The step-by-step method is useful also
for obtaining the response of circuits
to pulse voltages which do not have
the ideal step-voltage form. The curves
in figure 18 are valid only for a step
voltage in which the voltage is as-
sumed to rise and decay instantaneous-
ly. In practical equipment, zero rise
and decay times cannot always be as-
sumed, and the step-by-step procedure
provides the approximate response of
an R-L circuit to any waveform,
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(8) In this procedure, it is assumed that
the current does not increase continu-
ously, but increases in small steps, and
this can be understood by working out
a response problem. For example, the
current in an R-L circuit for E of 1
volt, L of 10 mh, and R of 1,000 ohms
is determined below.

b. CURRENT DurING FirsT USEC. At the
instant that the positive step voltage is applied
to the circuit, the current is zero and the full
voltage appears across L. The initial rate of
current increase is F/R, or 1/10 times 10-3 or
100 amperes per second, or .1 ma per usec. It
is also assumed that, at the end of 1 usec, the
current increases from zero to .1 ma.

¢. CURRENT DURING SEcOND USEC. With a
current of .1 ma flowing in the circuit, there
is a voltage drop across R of .1 times 10-3 times
1,000, or .1 volt. The voltage drop across L is
9 volt and the rate of current change is re-
duced to .9/10 times 10-3, or .09 ma per usec.
The current still is increasing and at the end
of 2 usec it becomes .1 - .09, or .19 ma.

d. TABLE OF CURRENT FROM 2 T0 10 USEC.

(1) The currents and voltages at the end

of each microsecond step are shown
in table II,

Table I1. Step Voltages at End of Each USEC with
L/R Equal to 10 USEC

$ (usec) | e, (v) e, (v) EZ_: (ma/usec) i, (ma)
2-3 .19 81 .08 194 .08 = .27
3-4 27 8 07 274 .07 =.84
4-5 34 .66 07 341,07 = 41
b5-6 41 .59 .06 A14- .06 = 47
6-7 A7 b3 .05 AT+ .06 = .52
7-8 bH2 A48 .05 524 .06 = .57
8-9 b7 A3 04 BHT4 .04 = .61
9-10 .61 .39 .04 614 .04 = .65

(2) In a similar manner, it is possible to
plot all values of current until the
steady-state condition is reached. The
currents indicated above are shown
in figure 22, Check these values with
those given for the same period of
time in figure 17. The values obtained
by the step-by-step method are slightly
higher, but very close to the actual
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values. For example, at 10 usec in
figure 17 the current is .64 ma; in
figure 22, the current is .65.

The time interval of the step should
be one-tenth the time constant of the
circuit. In this procedure, 1-usec steps
are used because the time constant of
the circuit is 10 usec; if the time con-
stant is 100 usec, 10-usec steps should
be used.

(3)

29. Use of Step-voltage Procedure for
Other Waveforms

The procedure outlined above can be applied
to any waveform. A good approximation of
the series R-L response to the sloping voltage
(fig. 23) can be determined by the followin
procedure. ‘

a. Redraw the sloping voltage in terms of a
series of small step voltages (B of fig. 23).

b. Determine the voltage equation for ¢ equals
1 usec (E=i,R—|—L% i

¢. Using this equation, determine the rate of
current increase at ¢ equals 1 usec, and the cur-
rent in the circuit at ¢ equals 3 usec, assuming

that the rate of current increase is maintained
for 2 usec.

d. Determine the voltage equation at ¢ equals
3 usec, using the value of current obtained in
step ¢, and the new value of input voltage, E.

e. Using this voltage equation, determine the
rate of current increase at ¢ equals 3 usee, and
the total current in the circuit at ¢ equals 5 usec.

f. Repeat this procedure for each step volt-
age. If the time constant of the circuit is less
than 20 usec, the spacing of the step voltages
should be made at least .1 L/R. If L/R is 10
usee, .1 times 10, or 1-usec steps should be used.

30. Application of Step-voltage

Procedure
(fig. 23)

The voltage shown in A is applied to an R-L
circuit with R equal to 500 ohms and L equal to
10 mh. Using the step-by-step method, the fol-
lowing response is obtained.

a. CURRENT RATE AT 1 USEC. From the step
representation, in B, the voltage at 1 usec is 1
volt and the current during the first usec is
zero. Since there is no voltage drop across R,

o
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Figure 22. Step-by-step response of series R-L circuit,
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Figure 23. Plotting step-by-step response.

di/dt is equal to 1/L, or 1/10 times 10-3, or .1
ma per usec. By 3 usec, therefore, the current in-
creases to .2 ma. Although a voltage of 1 volt
is assumed to exist at 1 usec, actually it is only
.5 volt, as shown in A.

b. CURRENT RATE AT 3 USEC. At 3 usec the
current is .2 ma, and the voltage drop across the
resistor is .1 volt. At this time, however, the
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applied voltage has increased to 2 volts. There-
fore, the voltage across L is 2 minus .1 volt, or
1.9 volts. The current rate of increase then is
1.9/10 times 10-%, or .19 ma per usec.

¢. TABLE OF VALUES FROM 5 To 29 USEC.
Table III indicates the values of current, volt-
age, and current rate from t equals 5 to t equals
29 usec. These values are plotted in C. Similarly,
any L-E transient response can be approxi-
mated.

Table 111. Step Voltages of R-L Circuit at 2-USEC

Intervals
¢ (usec) 4, (ma) dmiﬂ(v) E (v):':, ) {%‘ ;?e:{
b | .2 4+.19 x2= 58| .29 L P
T | b58+4.27 X2=1.12| .56 4 |34 34
9 |1.124-.34 %2=1.8 9 4 3.1 31
11 (1.8 4.31 x2=242| 1.23 4 2,77 A
13 | 2.424.277%2=2.97| 1.49 4 | 249 25
156 |2.974.25 X2=3.47| 1.73 4 Wegior 23
17 | 8.474.23 %x2=3.93| 1.97 4 2.03 20
19 |3.934.20 x2=4.33| 2.165 4 1.83 183
21 |4.334-.183%2=4.7 | 2.35 4 1.65 165
23 [4.7 +.166%x2=5.03| 2.5 4usI1%h A5
25 |5.034-.156 X2=5.33 2.67 4 1.27 13
27 |[5.334.18 xX2=5.59| 2.8 412 a2
29 |5.59-4.12 ><2:5.83l 2.9 4 11 w1

31. Summary

a. On-off switching of a d-¢ voltage or a rec-

tangular pulse can be represented by step volt-
ages.

b. The basic voltage equation required for
determination of response of an R-L circuit to

a step voltage is ' — ,R + L%.

¢. The current and resistor voltage start at
zero and increase exponentially in the circuit
after the step voltage is applied.

d. The inductor voltage starts at E and de-
clines to zero exponentially.

e. The time constant of the circuit is defined
as L/R.

f. The time required to reach steady-state
conditions depends directly on the magnitude of
L/R. A large time constant means that long
periods are required to reach steady-state con-

AGO 1445A



ditions; a small time constant means that short
periods are required to reach steady-state con-
ditions.

g. When time is expressed in terms of L/R,
it is possible to determine the relative eurrent
and voltages in the circuit from the universal
time-constant chart.

h. The energy received by the circuit at any
time is equal to ¢,e, - 4,1,

7. Energy received by resistance is dissipated
into heat; energy received by the inductance is
stored in the magnetic field around it.

7. When a negative step voltage is applied to
the series R-L circuit, reducing input voltage
from E to 0, the current in the circuit is main-
tained by the back emf developed across the in-
ductance.

k. As the energy stored in the inductance is
fed back to the line, I, e, and e, decline in ac-
cordance with an exponential curve.

I. When the negative step voltage is obtained
by opening a switch, a very large voltage can
be developed across the inductance since no path
exists for the current flow. The voltage in-
creases until the air gap across the switch is
broken down and an arcing between switch con-
tact and blade occurs, providing a current path
for the inductance discharge. As a precaution-
ary measure, a field discharge resistor is placed
in some circuits which enables the inductor to
digcharge.

m. The basic equations outlined in this chap-
ter can be used to determine the response of the
R-L circuit to other types of input voltage wave-
formsy- 91 :

ACO 1445A

32. Review Questions

a. What is a positive step voltage?

b. Describe the current flowing in a series
R-L circuit with L = 50 mh and R == 7,500 ohms
at 1 usec after a step voltage of |5 volts is ap-
plied to the circuit.

¢. What is the steady-state condition of this
circuit and how long does it take to reach 99.9
percent of the steady-state condition?

d. How does the value of L determine the
time required to reach the steady-state condi-
tion?

e. Using the universal time-constant chart,
plot 4, ez, and e; for a positive step voltage,
E = 8 volts, R = 10,000 ohms, and L = 25 mh.

f. How much energy is dissipated in the re-
sistor at ¢ — 10 usec in the example given in
question e?

9. How much energy is stored in the induct-
ance when the steady-state condition is reached
in the example given in question e?

h. Why does current continue to flow in the
R-L circuit after the applied voltage has
dropped to zero?

1. What is the rate of current decrease in the
R-L circuit, with R = 500 ohms and L — 1 mh,
at 1 usec after a negative step voltage is ap-
plied to the circuit? The steady-state value of
current was 10 ma.

7. Describe the variation of current, I, eg, and
ey, in the series R-L circuit, with a negative step
voltage applied to the circuit.

k. Why is it dangerous to open the switch
rapidly in an inductive circuit?
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CHAPTER 4
RESPONSE OF R-C CIRCUIT

33. Introduction
(fig. 24)

a. PosSITIVE STEP VOLTAGE. When a d-c¢ volt-
age is applied to an R-C circuit, as in A, for a
period of time, the steady-state current in the
circuit is zero because the capacitor cannot pass
a d-c current. In this steady-state condition, the
emf resulting from the charge on the capacitor
is equal and opposite to the applied voltage and
no current flows, When the d-c voltage first is
applied, however, the capacitor has no charge,
and current flows in the circuit until the capaci-
tor charges to the applied voltage. The current
and voltage change in the circuit during this
transient period is covered in the first part of
this chapter.

o/c T
g 3 i
E
C €c
S T
R-C CIRCUIT
CIRC A
¥ ;
wn
5
G
4  TIME—»
STEP VOLTAGE B

™ 669-24
Figure 24. R-C circuit with positive step input,
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b. NEGATIVE STEP VOLTAGE (fig. 28). When
the d-c voltage is removed and the capacitor is
discharged, after a period of time the steady-
state current is zero. No voltage is applied to
the circuit, no charge is left on the capacitor,
and there is no current flow in the circuit. When
the d-c voltage first is removed, the capacitor
has a charge on it equal to the applied voltage,
and this emf is applied to the circuit. Current
flows, discharging the ecapacitor, and when
there is no charge on the capacitor, current
stops flowing and the steady-state current is
zero. Current and voltage change during this
discharge period is the subject of the second half
of this chapter.

¢. BASIC VOLTAGE EQUATION. The voltage
and current in the circuit at any given instant
of time between the instant the step voltage
is applied to the circuit and the time the steady
state is reached can be determined by means of
the basic voltage equation. The voltage across
the resistance at any time is e,, the voltage
across the capacitance is eg, and the sum of these
voltages is equal to the applied voltage. The
voltage across the resistance at any instant is
equal to 7R, and the voltage across the capaci-
tance is equal to the charge, designated Q, divid-
ed by C. The basic voltage equation can be ex-
pressed in the following manner (E is the ap-
plied voltage) :

Ene,,-}-eo-ai,R—*-%—.

34. Response of Circuit to Positive Step
Voltage

a. GENERAL DESCRIPTION (fig. 24).

(1) When the positive step voltage shown
in B is applied to the R-C circuit, a
voltage, E, appears across the circuit.
At the instant the voltage is applied
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there is no charge on the eapacitor, ey
is equal to zero, the applied voltage
appears across R, and the initial cur-
rent is equal to /R (A, B, C of fig.
25).

(2) The current flowing in the -circuit

starts to charge the capacitor (C of
fig. 25). Since the emf of the capacitor
is proportional to the charge, a small
voltage, eq, appears across it. This emf
is opposite in polarity to the applied
voltage and subtracts from it. As a re-
sult, the voltage across the resistance
is £ minus e, and is equal to 7,R. Since
R is fixed, 7, must decrease and the
capacitor charges more slowly. The
greater the emf of the capacitor, the
smaller the voltage across the resistor,
the smaller the current in the circuit,
and the lower the rate of charge of the
capacitor.

(8) The charging process continues until

the capacitor is fully charged to the
applied voltage, . B and C show the
relation of ey to e, at all times during
the charging process. The emf of the
capacitor increases rapidly at first and
then gradually until it is equal to the
applied voltage, following an expo-
nential curve. The voltage across the

resistance declines along a similar ex-
ponential curve.

b. DETAILED DESCRIPTION.

(1) Current during first usec.
(a) A tabulation of voltage, current, and

rate of charge at a number of suc-
cessive intervals during the transi-
ent period will show how these char-
acteristics change with time. The
value of e, at each of these intervals
is obtained from the exponential
curve in C.

(b) To aid in the understanding of the

material, the following values for E,
C, and E are used: E is 1 volt, B is
10,000 ohms, and C is 1,000 ppf (mi-
cromicrofarads). At the instant that
E is applied to the circuit, t equals 0,
the emf of C is zero, and the initial
current in the circuit is E/R, or
1/10,000, or .1 ma.

(¢) A current of .1 ma means that .0001

coulomb flows into the capacitor in
1 second, or .0001 times 10-% coulomb
in 1 usec. Therefore, at the end of
1 usec, .0001 times 10 coulomb of
charge Q have gone into the capac-
itor. The emf of the capacitor is
equal to Q/C, or 10-19/10-®, or .1 volt,
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Figure 25. Charge of R-C eircuit,




and the initial rate of voltage charge
of the capacitor is .1 volt per usec.

(2) Current during second usec. At the

end of the first usec, the emf of the
capacitor is .1 volt and the voltage
across the resistor is 1 minus .1, or .9
volt. The current in the circuit is equal
to .9/10,000, or .09 ma. A smaller cur-
rent flow means that less charge is
flowing into the capacitor, and the rate
of charge decreases. The rate of volt-
age charge at this time is .09 times
10-9/1,000 times 10-'%, or .09 volt per
usec.

(8) Current during fifth usec. At the end

of the fifth usec, the emf of the capac-
itor is approximately .33 volt, e; then
is .67 volt, and the current flow is
.67/10,000, or .067 ma; the rate of
voltage charge is .067 volt per usec.

(4) Current during tenth usec. At the end

(5)

of the tenth usec the emf of the capac-
itor is approximately .64 volt. At this
time, e, is over half the applied volt-
age, and the current flow is less than
one-half its initial value. The current
is .036 ma and the resultant rate of
voltage charge is approximately .036
volt per usec.

Tabulation of current from 20 to 50
usec. The voltages, currents, and rate
of charge are tabulated below for 20,
30, and 50 usec after the step voltage
has been applied to the circuit:

rate of change
$ in usee 6y in v e, in v f; in ma in v per uses
t=20 .86 14 014 014
t=230 95 .05 005 005
t =150 99 01 001 0001
(6) Current at 70 usec. The curve shows
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¢q reaching B approximately 50 usec
after the step voltage has been applied

to the circuit. Theoretically, e, never

quite reaches K. However, at 50 usec,
eo is 99 percent of E, and at 70 usec,
eo is 99.9 percent of K. It is impossi-
ble to show such small percentage dif-
ferences on a graph, and therefore, the

curve reaches F at about 50 usec. For
practical purposes, it is safe to assume
that the steady state is reached at 70
usec. At this time the current is as-
sumed to be zero, and the emf of the
capacitor is equal and opposite to the
applied voltage.

35. R-C Circuit Time Constant

a. GENERAL. A period of time is required for
the emf of the capacitor and the current in the
circuit to reach their steady-state values. A
product known as the time constant has been
evolved which allows immediate prediction
whether a long or short period is required for
the circuit to reach a steady state. When the
time constant is short, the voltage rise and the
current decline to steady-state values are rapid.
When the time constant is long, the voltage rise
and the current decline are gradual.

b. DEFINITION.

(1) The time constant is equal numerically
to RC when R is in ohms, if C is in
farads, and the time constant is in sec-
onds. For example, if R is 100,000 ohms
and C is .00001 farad (10 uf), the time
constant in seconds is 100,000 times
.00001, or 1 second. This is a long time
constant, since B and C are large in
value.

(2) Usually, capacitance in micromicro-
farads is used, and the time constant
frequently is expressed in usec. When
R is in ohms and C is in microfarads,
the time constant is in usec. For ex-
ample, if R is 1,000 ohms and C is 100
pef (L0001 pf), the time constant in
usec is 1,000 times .0001, or .1 usec. A
time constant as short as .1 usec some-
times is used in pulse circuits.

36. Time Constant and Response Curve

a. EFFECT OF CAPACITANCE. When the capac-
itance is large, a large amount of charge is re-
quired to develop a given emf across it. When
the capacitance is small, a relatively small
charge can develop the same emf (E = Q/C).
To reach a given value, E, more charge (cur-
rent flow for a longer period of time) is re-

. quired for a large than for a small capacitance.
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Increasing C increases the time vrequired to
reach the steady-state condition. Decreasing C
decreases the time required to reach the steady-
state condition.

b. EFFECT OF RESISTANCE. The amount of
current, or charge per second, that can flow into
a given capacitor is controlled by the series
resistance. When the resistance is large, a small
current flows and a longer period of time is re-
quired to charge the capacitor. When the re-
sistance is small, the capacitor charges rapidly,
and a large amount of charge flows into it per
second. Increasing R decreases the rate of
charge of the capacitor, and increases the time
required to reach the steady-state. Decreasing R
increases the rate of charge, and decreases the
time required to reach the steady-state.

¢. EFFECT OF TIME CONSTANT.

(1) The time constant RC is increased by
increasing either R or C, or both. In-
creasing the time constant increases
the time required to reach the steady-

state.

the steady-state.

(2) Circuits with the same time constant
require the same period of time to
reach the steady-state condition. For
example, the time constant of a circuit
with C of 1,000 puf and R of 1,000
ohms is 1 usec. With 1 volt applied to
the circuit, 7 usec are required for ey
to reach .999 volt, or 99.9 percent of
steady-state voltage (1 volt). If the
resistance is increased to 10,000 ohms
and the capacitance is reduced to 100
upf, the time constant again is 1 usec,
and 7 usec are required to reach 99.9
percent of the steady-state voltage.
The current flow has been cut to one-
tenth its previous value, ‘but the
amount of charge has also been cut and
the same amount of time is required
to reach the steady-state.

(8) The period of time required for e, to
reach 99.9 percent of the steady-state
value in any series R-C circuit can be
expressed in terms of the time con-
stant. In the example given above, the
time constant, RC, is 1 usec¢ and the
99.9 percent value is reached in 7 usec.
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Decreasing the time constant
decreases the time required to reach

.The time 7 usec can be expressed as 7
time constants, or 7 RC. No matter
what the values of R and C, the time
required to reach 99.9 percent of the
steady-state is always 7 RC.

(4) The emf of the capacitor always
reaches 63.2 percent of the applied
voltage after a period of time equal
to the time constant has elapsed (¢ =
RC). For example, if the applied volt-
age is 10 volts and RC is 3 usec, the
emf of the capacitor will rise to 6.32
volt in 8 usee. If F is .1 volt, and RC
is 10 usec, e is .0632 volt 10 usec after
the step voltage has been applied.

Note. The voltages given above for 1 time

constant and 7 time constants are true only if
a step voltage s applied to the circuit.

37. Universal Time-constant Chart

a. GENERAL. It is possible to determine the
value of e, ez, and 7, in an R-C circuit through
the use of the universal time-constant chart
(fig. 26). This chart can be used only for step-
voltage inputs. The horizontal axis is plotted in
terms of time constants. The vertical axis is
plotted in terms of relative voltage or current,
with 100 percent corresponding to E (applied
voltage) and E/R (initial current), respective-
ly. Curve A shows the increase of emf across the

‘capacitor, e, Curve B shows the decline of cur-

rent, 4, and resistor voltage, ez.
b. TIME CONSTANT EQUAL T0 5 USEC.

(1) An illustrative problem follows, show-
ing the use of the universal time-con-
stant chart (fig. 26). The currents and
voltages in an R-C circuit will be de-
termined, with R equal to 5,000 ohms,
C equal to 1,000 puf, and a step input of
10 volts. The time constant of this cir-
cuit is 5,000 times .001, or 5 usec.

(2) When the voltage is first applied, ¢ is
zero, and t/RC is also zero. Referring
to zero on the horizontal scale, it is
seen that ey, curve A4, is zero, and 4,
curve B, is 100 percent: The initial cur-
rent is 10/5,000, or 2 ma.

(8) Table IV shows the values of e, ¢z, and

;% at a number of successive times.
. Each point in this table is taken from
- figure 26.
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Figure 26. Universal time-constant chart for R-C circuit.
Table IV, Voltage and Current in R-C Circuit, with RC Equal to 5§ Useo.
E‘E oginv opinvy $§; in ma

b/6= .1 10% 0f10 =1 90% of 10 =9 90% of 2 =1.8
A Oi== e, 18% of 10 = 1.8 82% of 10 = 8.2 82% of 2 = 1.64
2/6= 4 839% of 10 = 8.8 67% of 10 = 6.7 67% of 2 = 1.34
4/6 = .8 56% of 10 = 5.6 46% of 10 = 4.5 46% of 2= .9
8/6=1.6 80% of 10 =8 20% of 10 = 2 20% of 2 = 4

16.56 = 8.2 96% of 10 = 9.6 4%0f10 = 4 4% of 2 = .08

20/6 =4 98% of 10 = 9.8 2% 0f10 = .2 2% of 2 = .04

25/6 =5 100% of 10 = 10 0 of10=0 0 of2=0

(4) When t/RC is equal to 5, curve A reads

100 percent and curve B is zero. Ac-
tually, e, does not reach 100 percent
and 1, is not zero at this time. They are
80 close to these values, however,
(within 1 percent), that the difference
cannot be indicated on the graph.

(6) All of the points determined in (2) and
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(8) above are plotted in figure 27.

smooth exponential curves, one curve
for current, or ey, and the other for the
emf developed across the capacitor,
€. These curves are known as the
transient-response curves for this R-C
circuit. Response curves for any R-C

circuit can be developed in a similar
manner,

Time in microseconds is plotted along
the horizontal axis; voltage and cur-
rent are plotted along the vertical axis.
The points obtained are connected by

38. Energy Considerations

a. During the transient period, energy is sup-
plied to the R-C circuit. Part of the energy is
dissipated in the form of heat in the resistor.
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The other portion is stored in the capacitor in
the form of an electrostatic field. At the instant
step voltage is applied, there is no charge in the
capacitor and all of the energy supplied to the
circuit is dissipated in the form of heat in the
resistor. Then, the flow of energy into the ca-
pacitor increases, the capacitor accumulates
charge, and the emf rises. The current, how-
ever, is diminishing, since the rate at which
energy is stored in the capacitor has passed a
maximum and is decreasing. Finally, when the
current is zero, no further energy is supplied to
the circuit, and no additional energy is stored.

b. The energy dissipated as heat in the re-
sistor at any instant is equal to 7, times ez. The
energy stored in the electrostatic field at any
instant is equal to 4, times eq. Referring to the
universal time-constant chart (fig. 26), note
that at first 7, and ep, curve B, are maximum
and maximum heat dissipation occurs. As time
passes, both 7; and e, decline simultaneously,
and heat dissipation diminishes rapidly.

¢. The rate at which energy is stored is a
product of curve 4, e¢, and curve B, 4,, One curve
rises as the other declines and during the first
instant 4, is maximum, but e, is zero, and no
energy is being stored. As e, rises, the product
of e, times 4;, which is the rate of energy being
stored, increases until the capacitor is charged
to 50 percent of the applied voltage. This oc-
curs when t is about .7 RC. After this time, the
decrease in 4, more than offsets the increase in
o, and the rate at which energy is stored de-
creases. Finally, when i, is zero, the rate of
energy storage becomes zero, although e, is
maximum,

d. The energy stored in the capacitor after
it is fully charged is equal to CE?/2, and the
final value of e, is equal to the applied voltage,
E. This energy remains in the capacitor as
long as the applied voltage remains across the
input, and, since the emf of the capacitor is
equal and of opposite polarity, no current can
flow in the circuit.

39. Response of R-C Circuit to Negative
Step Voltage

a. CirculT. Prior to the application of the
negative step voltage (fig. 28) to the R-C cir-
cuit, the circuit was at steady-state, and the
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capacitor was charged to a voltage, E. The step
voltage drops the applied voltage from E to zero
volts.
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Figure 27. Plot of response curve.
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Pgure 28. R-C cireuit with negative step voltage.

b. GENERAL DESCRIPTION.

(1) When the applied voltage drops to zero
(B of fig. 28) and the circuit is com-
pleted as shown in A, the emf of the
charged capacitor is unopposed, and




- current begins to flow., This current is

(2)

opposite in direction to the charging
current and equal to eq/R. The current
flowing in the opposite direction indi-
cates that charge is being removed
from the eapacitor. When charge is
removed from the capacitor, e, de-
creases, and the current in the circuit
decreases, since 4,R must be equal to
¢¢. Therefore, charge is removed from
the capacitor at a decreasing rate and
the voltage and the current decrease
until no charge is left on the capacitor.

At the instant that the applied voltage
drops to zero, a discharge current
equal toi —E/R starts to flow (A of
fig. 29) . Since the discharging current
is opposite in direction to the charging
current, it is represented mathema-
tically as a negative quantity. In B, the
voltage drop across the resistor, result-
ing from the current, is equal to the
capacitor voltage in C but is opposite
in polarity. Since the voltage across
the capacitor must decrease as the cur-
rent decreases, and since the resistive
voltage drop must be equal to the
capacitor voltage, both voltages fall
rapidly at first, then gradually as the
current decreases, and finally slowly
approach zero. Steady state occurs
when voltage and current are zero.

¢. DETAILED DESCRIPTION.

36

(1)

(2)

Use of universal time-constant chart.
The detailed response of this circuit
can be determined by use of the univer-
sal time-constant chart (fig. 26). For
the discharging circuit, 4, ep, and e, all
vary in accordance with curve B. When
t is zero, the negative step voltage is
applied to the circuit. To use this
chart, actual values for R, C, and E
are required, and in the following dis-
cussion, R is 2,000 ohms, C is .0075 pf,
and F is 6 volts, The time constant is
2,000 times .0075, or 15 usec.

Current at 1 usec. During the initial
instant, the voltage drop across the
resistor must be equal to e and of op-

]
t=o

TIME ——> C

TM 669-29

Figure 29. Discharge of R-C circuit.

posite polarity, or —6 volts. The cur-
rent is —6/2,000, or —3 ma, and the
minus sign indicates that the capacitor
ig being discharged. A current of 3 ma
means that .003 coulomb of charge is

.being drawn from the capacitor in 1

(3)

(4)

second, or .000000003 coulomb, 3 times
10-° per usec. This corresponds to a
voltage rate of discharge of (3 times
10-°) /. (75 times 10-19), or .4 volt per
usec.

Current at 5 usec. The current de-
creases as the emf of the capacitor
decreases. At the end of 5 usec ({/RC
equals 14), the current is 2.16 ma, and
the rate of voltage decrease in the
capacitor is about .29 volt per usec.
Current at 1 time constant. The cur-
rent decreases to about 37 percent of
the initial value, or 1.11 ma, 15 usec
(or 1 time constant) after the step
voltage is applied. The voltage across
the capacitor also has been decreased
to 87 percent of its original value, or
2.22 volts, and the rate of voltage de-

-decrease is about .15 volt per usec.

(5)

Current at 2 time constants. The cur-
rent and voltage decrease to 13.5 per-
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. cent of their initial values (fig. 26) 30

usec, or 2 time constants, after the step

voltage has been applied. The current
is approximately .4 ma, the voltage
approximately .8 volt, and the rate of
voltage decrease is .06 volt per usec.
The voltage is decreasing at a slower
rate at this time because of the low
value of current in the circuit.

(6) Current at 7 time constants. Theoreti-
cally, the current and voltage never
reach zero value. However, 7 time con-
stants (105 usec) after the transient
period has started, the current and
voltage reach .1 percent of the initial
values, and can be considered zero.

d. SIGNIFICANCE OF TIME CONSTANT. The
time constant RC for the negative step response
has the same significance that it has for the
positive step response. The period required to
reach the steady-state condition, or the rate at
which the voltage declines, depends directly on
the magnitude of the time constant. The longer
the time constant, the longer the period of time
required to discharge the capacitor completely
(.1 percent). The shorter the time constant, the
faster the capacitor discharges.

40. Step-by-step Procedure for
Determining Transient Response

0. GENERAL.

(1) The emf of the capacitor at any instant
of time has been determined in this
chapter directly from an exponential
curve. It is possible to obtain an ap-
proximation of this response curve by
means of the simple voltage equation,
E equals e, plus e, This method is
developed step by step, and is useful
when a universal time-constant chart
is not available. The step-by-step
method also is useful in obtaining the
approximate response of an R-C cir-
cuit to pulse voltages in which rise and
decay times are not zero.

(2) In the step-by-step procedure, it is
assumed that the current does not de-
crease continuously, but decreases in
small steps, and can be understood by
working out a response problem. The
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 voltage across a 1,000-ppf capacitor

) resulting from a step voltage of 10

volts, with R of 10,000 ohms, will be
determined.

b. VoLTAGE AT END oF 1 USEC. At the in-
stant that the step voltage is applied to the cir-
cuit, a current of 10/10,000, or 1 ma, flows in the
circuit. The capacitor is charging at a rate of
(.001 times 10-¢) /(1,000 times 10-12), or 1 volt
per usec; and at the end of 1 usec, the capacitor
charges to 1 volt.

¢. VOLTAGE AT END oF 2 USEC. With 1 volt
across the capacitor, there are only 9 volts
across the resistor and the current drops to
9/10,000, or .9 ma. The capacitor then charges
at a rate of .0009 times 10-¢/1,000 times 10-*%
or .9 volt per usec, and, at the end of 2 usec, the
capacitor has an emf of 1.9 volts.

d. TABLE oF VoLTAGE FroM 3 To 10 USEC.
The currents and voltage at the end of each 1-
usec step are recorded in table V. :

~

Table V. Currents and Voltages in 1-Usec Stepk,
Using Step-By-Step Procedure 1

e e i Charge| total charge

¢ in usee o . B | "t |ratein| . in v between

iny | inv | inma|ygee| each usec step
b= 2ito ti="8 0.0 VST .8 8 |19 + 8.=2T7
tu=8itobi=eid i 2.7 7.3 i e 2.7 T2 8.4
ti="itoit = ‘5{ 34 | 6.6 T J* 184 45T =41
ti= b ot = G[ 4.1 15.9 .6 6 (41 + .6 = 4.7
t=m6tot = 7‘\ 4.7 |53 b b |47 + .5 =52
t="Ttot= 8 52 ("48 D b |52 4 b = b7
t=i8itoit = 9| b | 48 4 A BT 4 = 6.1
t=0tota=10 i 61 (39| 4 | 4 [61+.4=65

e. RESuLTS. It is possible to plot all values of
voltage until a steady-state is reached, and these
voltages can be used to determine the response
of any R-C circuit. A graph of the voltages in
table V is plotted on a curve in figure 30 and
should be compared with the curve in A of figure
26 where the values obtained by the step-by-step
method are slightly lower.

41. Use of Step-by-step Method for Other
Waveforms

a. The procedure outlined in paragraph 40
can be applied to any waveform. Practical
pulses usually have a finite rise and decay time:

37




»

F 3

//

ec(v)—e

/(

n

) A i i e

0 S 2 4

ReEpT ZATIRY U (4 S R T

£ (U SEC)——e

Figure 30. Plot of eq, step-by-step method,

(A of fig. 81) and an approximation of the re-
sponse of an R-C circuit having a finite pulse
rise time can be obtained by the following pro-
cedure.
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Figure 81. Step representation of pulse rise time.
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(1) Redraw the sloping voltage in terms
of a series of small step voltages (B
of fig. 31).

(2) Determine the current flowing through
the circuit at the end of 1 usec (F'1/R).

(8) Using this value of current, abtain the
voltage rate of charge during the
second usec. This determines ¢, at the
end of 2 usec.

(4) Determine current flowing in circuit
at the end of 2 usec. It is equal to E2
minus e;/R (B of fig. 81).

(6) Using this value of current, determine
the voltage rate of charge during the
third usec, and obtain e, at the end of
the third usec.

(6) Repeat this procedure for each step
voltage. i

b. This procedure is slightly different from
paragraph 40 since the voltage increases with
each usec and new values of £ must be used in
each step. The step intervals should be equal to
one-tenth the time constant. When the time con-
stant is 10 usec, 1-usec steps should be used;

when the time constant is 25 usec, 2.5-usec steps
should be used,

42. Summary

a. When a step voltage is applied to an R-C
circuit, the emf of the capacitor cannot rise
Instantaneously, but requires a finite period of
time to reach the step-voltage value or steady
state.

b. The current in the circuit is, initially,
maximum and decreases as the -capacitor
charges.
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¢. The capacitor charges to the input voltage,
following an exponential curve in which the
rate of charge is greatest at the beginning and
tapers off as the capacitor accumulates charge.

d. The length of time required to charge the
capacitor to the applied voltage depends on RC,
the time constant of the circuit.

e. A long time censtant means that a long
period of time is required for the capacitor to
charge.

f. A short time constant means that a short
charging period is required.

g. When time is expressed in terms of RC, it
is possible to determine the relative current and
voltages in the circuit from the universal time-
constant chart. .

h. The rate at which energy is received by
the circuit at any instant is equal to i,e; -+ i,e0.

i. The rate at which energy is being dis-
gipated in heat is represented by ée,; the rate
at which energy is being stored in the capacitor
is represented by i:eq.

7. When a negative step voltage is applied to
the circuit, the capacitor discharges through
the resistor.

k. The time required for the capacitor to dis-
charge depends on the time constant. A long
time constant means a long discharge period.
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l. The step-by-step method of determining
the charge and discharge curves of an R-C cir-
cuit can be used for any voltage waveform.

43. Review Questions

a. Describe the current flowing in a series
R-C circuit, with R equal to 5,000 ohms and C
equal to .001 uf with a positive step voltage of
15 volts applied.

b. What is the steady-state condition of this
circuit, and how long does it take to reach 99.9
percent of the steady-state values?

¢. How does the value of C affect the period
of time required to reach the steady state?

d. How much energy has been stored in the
capacitor after 10 usec in the circuit described
in Review Question a? )

e. Using the universal time-constant chart,
determine the values for e, ez, and i, after .5,
1, 8, and b usec resulting from the application
of an 18-volt step voltage to a series R-C circuit.
R i3 100 ohms, and C is .015 pf.

f. Determine the discharge curve for the cir-
cuit in Review Question 5 up to 1.5 usec after
the applied voltage is removed. Use .1 R-C steps.

g. Determine the time constants for the fol-
lowing values of R and C: R — 1 megohm, C =
01 pf; B == 1,000 ohms, C = b uf; B= 10,000
ohms, C = .001 pf.

W
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_CHAPTER 5
RESPONSE OF R-L-C CIRCUITS

44, InfroJ uction

a. The R-L-C circuit (fig. 82) can be con-
sidered a general representation of any net-
work, sinece a certain amount of resistance,
capacitance, and inductance must be present in
every practical circuit. In the previous series
R-L and R-C circuits the distributed capacit-
ance and inductance were disregarded to avoid
complicated calculations, and L and C were con-
sidered ideal elements. However, this could not
be considered a completely accurate description
of a practical circuit. The stray capacitance
and inductance that are always present in a
circuit affect its operation, and the response
characteristics must be modified.

b. Since R, L, and C are present in any cir-
cuit, the circuit will be resonant to some fre-
quency determined by LC, and oscillations may
occur. In pulse circuits the problem of minimiz-
ing or avoiding oscillations is sometimes more
important than the problem of sustaining them
in r-f circuits. The modifications necessary to
calculate the response characteristics of these
R-L-C circuits as well as the effects of reso-
nance are studied in this chapter.

R L

T™ 669-32
Figure 82. Series R-L-C circuit,

‘40

45. Forms of Solution

a. When a step voltage is applied to a series
R-L-C circuit, two response characteristics can
result. One is known as a single surge or over-
damped response, in which the current in the
circuit rises to some amplitude and then gradu-
ally declines to zero (A of fig. 33). The other
is known as the oscillatory response, in which
the current undergoes a series of damped oscil-
lations, as shown in B. The plus and minus
signs signify the direction of current flow in
these circuits. The steady-state current of both
circuits is zero, since a d-c voltage is being
applied to a circuit having series capacitance.

t"‘
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SINGLE - SURGE RESPONSE
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+
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™ 669-33
Figure 83. Forms of R-L-C response.

b. The interchange of energy from the mag-
netic field of the inductance to the electrostatic
field of the capacitance, and then from the elec-
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trostatic field to the magnetie field, causes oscil-
lation. The element that limits the extent of
this energy transfer is the resistance in the
circuit, and the energy dissipated by the re-
sistance is lost to the circuit. When R is in-
creased, the time constant L/R is decreased and
if a large circuit resistance is used the field
energy is dissipated quickly, and oscillations
rapidly die out. As the resistance is increased, a
point is reached where the time constant is so
short that there can be only one transfer of
energy from the magnetic to the electrostatic
field. This corresponds to the single-surge re-
sponse (A of fig. 33).

c. The value of resistance at which the cir-
cuit response changes from an oscillatory to a
single-surge is known as the critical: value of
resistance. In the R-L-C circuit, the critical
value of resistance is equal to:

R. = 2~/L7C ohms,
where R, — the critical value of resistance in

ohms,

L - the inductance in henrys,
and C == the capacitance in farads.
When the value of resistance in the circuit is
lower than R, the circuit has an oscillatory
response,

d. Consider, for example, a circuit in which
R equals 1,000 ohms, L equals .1 mh, and C is
equal to 1,000 ppuf.

Then
iy ps .1 % .001
2y Y T Lol XGUYL
R =2 \/L/C =2 1,000 X 102

Since R is 1,000 ohms, and higher than the criti-
cal value of resistance, which is 632 ohms, this
circuit has a single-surge response.

e. If R equals 1,000 ohms, L equals 10 mh,
and C equals 100 puf, then

10x.001
R, =2 1/ 7005 10 — 20,000 ohms.

Since R is smaller than the critical value of
20,000 ohms, this circuit is oscillatory.

= 632 ohms.

46. Single-surge Response

¢. GENERAL DESCRIPTION.
(1) The response of an R-L-C circuit to a
positive step voltage is shown in figure
34, This response characteristic is for
a value of resistance near the critical
value. When the step voltage is first
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applied to the circuit, a back emf is
developed across the inductance equal
to the applied voltage. Therefore, at
the first instant no current flows in
the circuit, and the full input voltage
is across the inductance.
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Figure 84. Single-surge response for resistance mnear
critical value.

(2) This voltage, ez, across the inductance
causes the current in the circuit to
increase at a rate proportional to the
value of inductance L. As current
flows in the circuit, a voltage drop, ég,
appears across R, the rate of current
change decreases, and e; decreases
accordingly. Imitially, the capacitor
has little effect on the circuit, and
the response is essentially the same
as the response of an R-L circuit.

(8) At time t1, in B, the rate of current
change has diminished appreciably
from its initial value. A voltage, ¢y,
still exists across the inductance, and
therefore current is still increasing in
the circuit.

(4) At the same instant that current
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(5)

(6)

(7

(8)

started to flow in the circuit above, a
charge began to accumulate on the
capacitor. The voltage charge on the
capacitor built up slowly at first, since
the current was small, As the current
increased, the charge on the capacitor
increased, and the opposition of the
capacitor voltage to the flow of cur-
rent further reduced the voltage
across the inductance. Therefore, at
time t1 the rate of current change is
smaller than it would be if no capa-
citance existed in the circuit.

The voltages across the resistance,
capacitance, and inductance at time ¢1
are opposite in polarity to the applied
voltage. After t1, the voltages across
the resistance and capacitance con-
tinue to increase, the voltage across
the inductance decreases, and the rate
of current change decreases to zero.
At this time, the current reaches its
maximum value.

At time t2, maximum current occurs
and the current is neither increasing
nor decreasing; therefore e; is zero,
and the voltage drop across R is the
difference between the applied voltage
and the opposing voltage of the capa-
citance, ¥ minus ey equals e,. How-
ever, this condition cannot last since
the charge on the capacitance accumu-
lates, and the voltage across the capa-
citor, e, increases. As e, increases,
ep decreases, and the current de-
creases.

This decrease in current is opposed by
the inductance, and a back emf is de-
veloped across L which has the same
polarity as the applied voltage. The
energy stored in the magnetic field
around the inductance tends to keep
the current flowing in the circuit and
prevents the current from decreasing
along the R-C curve (ch. 4). Note
that the inductance does not prevent
the current from decreasing, but stops
it from decreasing as fast as it nor-
mally would in an R-C circuit (rate of
change decreases).

At time t3, the voltage across R is

(9)

equal to the applied voltage, E, plus
the voltage, e;, across L, minus the
voltage, e, across C, which is opposite
in polarity to both E and ey, or

FE -*— €, — €¢ == €p.
As time passes beyond 3, e;, continues
to decrease, reducing the current flow,
while e, increases as charge accumu-
lates on the capacitance. Finally, the
steady state is reached when the cur-
rent is zero, e; is zero, and the emf
of the capacitor is equal and opposite
to the applied voltage.
When the step voltage is applied at
time t1, the current essentially follows
the R-L circuit response curve. After
a period of time, the capacitance acts
to reduce the rate of current increase
so that a lower maximum current is
obtained than in an R-L circuit. At
time #2, the response resembles the
R-C current charge curve and the
inductor prevents the current from
decreasing too rapidly.

b. ENERGY CONSIDERATIONS.

(1)

(2)

The energy supplied to a circuit ele-
ment at any instant is equal to the
current at that instant times the volt-
age across the element. The energy
supplied to the resistance is equal to
16, and is dissipated in the form of
heat. The energy supplied to the in-
ductance is equal to 4e;, and is stored
in the magnetic field. The energy sup-
plied to the capacitor is equal to ieo
and is stored in the electrostatic field.
The energy supplied to the entire cir-
cuit is equal to 7,E.,

When the step voltage, E, first is ap-
plied to the circuit, e; and e, are zero,
and all of the energy supplied to the
circuit is stored in the inductance. As
current begins to flow, this energy is
divided into three parts. Some is dis-
sipated by the resistance, some is
stored in the electrostatic field of the
capacitor, and the major portion is
stored in the magnetic field of the
inductance. Until £2, in B, the rate
of energy stored in the magnetic field
is decreasing continuously, since ey

AGO 1445A



(3)

(4)

AGO 1445A

decreases faster than 7, increases. The
rate of energy supplied to the resistor
and capacitor is increasing continu-
ously, since 7, er, and e, are all be-
coming larger.

At time t2 the current stops increas-
ing, e;, becomes zero, and no further
energy is supplied to the inductance.
All of the energy being supplied to the
circuit is either dissipated by the re-
sistance or stored in the capacitor.
When the current starts decreasing,
the energy stored in the magnetic field
is returned to the circuit. Part of this
energy is dissipated in the resistor,
and the rest is stored in the capacitor.
The rate at which energy is dissipated
is maximum at time ¢2, since both %
and ep are maximum. The rate of
energy storage in the capacitor
reaches a maximum slightly after ¢2.
At this time e, is increasing faster
than i, is decreasing. As the current
decreases, the energy dissipated in the
resistor decreases rapidly, and the
rate at which energy is stored in the
capacitor decreases gradually, since
the reduction in current is somewhat
offset by a larger e;. When the steady
state is reached, all of the energy
stored in the inductor has been re-

turned to the circuit, The capacitor is
fully charged, and the total energy
stored is CE?/2.

47. Effect of Individual Elements on

Single-surge Response

a. RESPONSE FOR CRITICAL DAMPING.
(1) When the resistance is equal to R,

(2)

the circuit is said to be critically
damped. This occurs when the values
of R, L, and C are such that

L
R=2 1/%
B-vit.
In the response curve for a critically
damped circuit (fig. 86), the current
in terms of E/R is plotted along the
vertical axis. Time in terms of 2L/R
is plotted along the horizontal axis.
Since 2L/R equals \/LC, either one
can be considered the time constant
for this circuit.
Note that the current reaches a maxi-
mum of .74 E/R at t equals 2L/R, or
one time constant after the step volt-
age is applied to the circuit. The cur-

rent reaches zero (.001 E/R) 8.5 time
constants later.

or
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Figure 85. Critically damped circuit response curve, .

43




CURRENT

CURRENT

(8) For example, a 5-volt step voltage is

Ro=2

applied to a circuit in which L equals
1 mh and C equals'.001 pf. The value
of resistance required for critical
damping is
XUz

W === 2,000 ohms.

The time constant is 2(1 times 10-%)/
(2,000), or 1 times 10-® second, or 1
usec. The current at this time reaches
a maximum value of .74 E/R, or
1.85 ma, and then declines, reaching
zero about 8.5 usec or 8.5 time con-
stants later.

b. EFFECT OF INDUCTANCE.
(1) The inductance opposes the change in

current. Therefore, it affects the cir-
cuit at the very beginning when the
current rises to its maximum value.
The inductance then acts to maintain
the current flow after the maximum

‘value is reached and current tends to

decrease. The larger the inductance,
the more gradual the rise and decay
curves become (A of fig. 36).

E/R-
o b}
TJIME >
LARGE L
A
E/RT
TIME —reete=
SMALL L
B
™ 669-38

Figure $6. Effect of inductance on single-gurge
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response curve.

(2)

When the inductance is decreased, the
current rises and decays more rapidly.
When the inductance is decreased to
zero, the response is the same as that
for the R-C circuit. The response curve
for a smaller L, in B, is similar to the
current curve of an R-C circuit. Since
it is impossible to have a circuit with-
out a small amount of inductance, it is
physically impossible for the current
in a circuit to rise instantly from zero
to a maximum value as suggested by
the R-C curve (fig. 25). The ideal
shape of the R-C curve is approached
closely when the inductance in the cir-
cuit is made very small. Therefore, the
solution indicated in chapter 4 can be
used for most practical circuits with a
negligibly small error. This factor be-
comes important, however, in circuits
using R-C constants lower than .1 usec.

6. EFFECT OF CAPACITANCE.

1

(2)

In an R-L circuit the current theo-
retically never reaches its maximum
value. The addition of capacitance to
the circuit, however, causes the current
to reach a definite maximum value.
Capacitance algo affects the maximum
value of current that flows in the ecir-
cuit and causes the current to decline
to zero after the maximum value is
reached. The smaller the capacitance,
the smaller the maximum value of cur-
rent, and the shorter the period of

time required to reach maximum cur-
rent.

Figure 37 shows the effect upon the
response curve as the capacitance is
increased. It takes the current a longer
time to reach a maximum value, and
the maximum value is increased. Also,
after the maximum current value is
reached, the current falls toward zero
very slowly. When the capacitance be-
comes infinite, the response curve be-
comes the same as the R-L response
curve; that is, the current theoretically
never reaches its maximum value, and
never falls to zero. Note that an infinite
capacitance is the equivalent of a short
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circuit, since the voltage across such a
capacitance is always zero:

¢g=%,andQOO-=0. ;

Bl T9

CURRENT

(=]

TN e
™ 669-37

Figure 87. Ejffect of large capacitance on single-surge
response curve.,

~d. SMALL L AND LARGE C. When L is very
small and C is very large (fig. 38), the resistor
is the major controlling element in the circuit.
The current rises very quickly and then remains
constant for a relatively long period of time.
The sudden rise in current is possible since the
circuit inductance is small. Its decay is slow
because a long time is required to charge the
large capacitor (large E-C time constant). The
response curve closely resembles the input step
voltage. In fact, as L. approaches zero and C
approaches infinity, so that only resistance is
left in the circuit, the output waveform ap-
proaches the input waveform. This is to be ex-
pected since a purely resistive circuit has no
transient response, and therefore does not
change the shape of the input voltage waveform.

CURRENT ———

o

TIME S
™ €69-38

Figure 88. Effect of small I, and large C on single-
surge response curve.

¢. EFFECT OF RESISTANCE.

(1) The resistance in the circuit limits the
flow of current and prevents the
voltage from overshooting (exceeding

AGO 1445A

(2)

©

AT REST

A

(3)

the applied voltage). Also, it limits the
amount of energy that can be stored
in the magnetic field around the in-
ductance.

Compare the R-L-C circuit to a pen-
dulum (fig. 39). The steady-state con-
dition for the pendulum is when it is
at rest at the center position, as in A.
When it is pulled to one side, in B, and
released, C, the force of gravity acts
to return it to the center position.
When there is little friction, the pen-
dulum picks up speed on its downward
swing, and overshoots the center posi-
tion to swing upward against gravity.
If it is immersed in oil so that there is
a large frictional force opposing its
movement, it cannot pick up a great
deal of speed on its way down. If the
friction is great enough, the pendulum
moves slowly toward the center posi-
tion and stops there.

\
|
1 \\
i \
| \
| \
| \
1 \
| \
i I.\-\
A Ny
(.\l/ ‘\.—/
s
PULLED TO RELEASED
ONE SIDE
B c
T™ 66939

Figure 89. Pendulum.

Resistance affects the R-L-C circuit in
the same manner. When R is large
enough (above the critical value) the
current in the circuit is limited to a
very small value. The energy stored in
the magnetic field is small, since the
amount of energy stored depends on
the amount of current flow, LI%/2.
When the current in the circuit begins
to decrease, the inductance adds a
small back emf voltage to the applied
voltage. This small back emf causes
the voltage drop across the resistance
to increase. Therefore, the stored
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energy of the magnetic field cannot
cause the capacitor voltage to over-
shoot or exceed the applied voltage.
The resistance acts to slow down the
entire cycle and prevent oscillation.

48. Oscillatory Response

<s——— AMPERES —=

a. CHARACTERISTICS.
(1) When the value of the resistance in

the R-L-C circuit is below the critical
value, an oscillatory response is
obtained (fig. 40). This is a damped
sinusoidal current response in which
the current alternately swings positive
or negative. The amplitude of each
successive sine wave of current is
smaller than the previous cycle and,
eventually, becomes so small that the
current is considered to be zero, This
is the steady-stage condition.

™ ¢69-40

Figure 40. Current in slightly damped oscillatory
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circuit.

(2) Referring to the pendulum analogy

given in the previous paragraph, a low
frictional force permits the pendulum
to swing past, or overshoot, the center
position. It then comes to rest at some
point beyond the center position, and
gravity forces the pendulum to swing
back and forth several times before
coming to rest at the center point.
Similarly, when the resistance in the
R-L-C circuit is low, more energy is
stored in the magnetic field during the
current build-up time. This energy
then causes the voltage charge on the
capacitor to exceed the applied voltage,
and oscillations occur,

(3)

(4)

Qc( VOLTS)

The capacitor discharges and again
overshoots the applied voltage because
of the action of the inductance and
must charge up again, and so on.
Steady-state occurs when the capacitor
voltage is maintained at the level of
the applied voltage.

A response is considered oscillatory if
the capacitor voltage at any time ex-
ceeds the applied voltage, even though
only one oscillation may take place
(fig. 41). The only way a single oscil-
lation can be distinguished from a
single surge is by the overshoot of
capacitor voltage that takes place. This
is an important factor in many pulse
circuits.

OVERSHOOT

(

™ 669-4

TIME et

Figure 41. Single oscillation response curve.

b. DETAILED DESCRIPTION (fig. 42).

(1)

(2)

When the step voltage is applied to an
R-L-C circuit, the current begins to
increase at a rate determined by the
inductance. If the resistance is small,
there is little opposition to the flow of
current until a charge accumulates on
the capacitor. If a high value or resis-
tance is used, the rate of current
change does not diminish as rapidly.

In A, a step voltage of E volts is ap-
plied to a series R-L-C circuit at time
t0. The initial slope, or rate of increase
of the current curve is equal to E/L,
as in D. The rate of change decreases
as the capacitor charges, decreasing
the voltage across the inductance as
in B and C. The resistance in this cir-
cuit is agsumed to be sufficiently low
that the voltage drop across it can be
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neglected. A little after time t1, the
applied voltage is divided equally be-
tween the inductance and the capaci-
tance, and the current is changing at
a rate one-half its initial value.
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Figure 42. Voltage relations in ideal L-C circuit.
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(3)

(4)

(6)

(6)

At time t2 the current reaches it
maximum value and the current stops
changing. The rate of change is zerg
and therefore the voltage e, across the
inductance is zero. The voltage e,
across the capacitance is equal angd
opposite to E (neglecting any voltage
drop across R). Since e, is equal to E,
the current in the circuit attempts to
drop to zero. However, a back emf,
with the same polarity as the applied
voltage, is developed across the induc-
tance. This emf adds to the applied
voltage, and current flow continues in
the same direction. At first the current
decreases slightly, and a small emf
exists across L. Later, as the rate of
current change becomes larger, ey, in-
creases. At t4, the rate of current
change is maximum and e; is equal
to E.
The inductance helps to drive current
through the circuit until all the energy
stored during the current build-up time
(20 to 1) is exhausted. At time #4, the
energy left in the magnetic field is
reduced to zero and the current is zero.
The capacitor is charged to the sum of
E plus e;, and is opposite in polarity
to the applied voltage. The energy
stored in the magnetic field is applied
to the capacitor between t2 and 4.
The current curve from t2 to ¢4 is the
same shape as the current from 20 te
t2, except that the current is decreas-
ing instead of increasing. The same
average current flows during each of
these periods, and therefore the same
total charge is driven into the ca-
pacitor. If the capacitor voltage is
equal to E at £2, as in C, it is equal to
2F at t4.
At time 4, the current is equal to zero.
The voltage across the inductance is
equal to E, since the rate of current
change is maximum. The voltage
charge on the capacitance is —2FE, and
the applied voltage is E. Therefore,
there is a net emf of zero in the cir-
cuit:

E—2E 4+ FE =0.
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(N

(8)

(9)

(10)

.Since the capacitor. is charged to a
voltage of —2FE, or twice the applied
voltage, the capacitor begins to dis-
charge in the opposite direction. The
voltage across the inductance is ¥, and
the rate of change of current is —E/L.
At a time slightly after t5, the capaci-
tor has been discharged by a voltage
equal to E/2. ey, is, therefore, equal to
—FE/2, and the rate of current change
is diminished approximately one-half.
The maximum negative current is
reached at t6, when e, has decreased
to a point equal and opposite to E. The
inductor voltage is then zero and the
current cannot become more negative.
Since ey is equal to E, there is no net
emf in the circuit, and the current
tends to drop to zero. This creates a
back emf across the inductance, which
forces current to continue to flow, and
¢o to decrease below E.

The inductance continues to help dis-
charge the capacitor until all of the
energy stored in its magnetic field
from t4 to ¢6 is exhausted. This occurs
at t8, when the current becomes zero.
At this time the capacitor has been
completely discharged, and the con-
ditions that existed at t0 prevail again.
In the previous discussion, the effect
of resistance has been neglected. Act-
ually, resistance acts to reduce the
amplitude of the oscillatory current
during each successive cycle. At the
end of the first quarter-cycle, the
voltage charge on the capacitor is not
quite equal to E, because there is a
voltage drop, Ez, across E. From ¢2 to
t4 the capacitor charges to a voltage
double that at t2, or 2 (£ minus E}y),
or 2F minus 2E, Note that the
voltage drop across K has doubled at
t4. Similarly, at t6 the voltage charge
on the capacitor is £ —3 Ey. At 8
the capacitor voltage is not zero, as in
the ideal case, but equal to 4 Ey. The
voltage across the inductance is £ —
4 Ey, which indicates that the current
does not rise as fast during the second
cycle. The current has a smaller amp-

litude during this cycle, and the effect
of the iR drop is cumulative with each
cycle, causing smaller and smaller cur-
rent amplitudes.

¢. ENERGY IN CIRCUIT.

(1)

(2)

(3)

‘When the step voltage first is applied
to the R-L-C circuit (with R negli-
gible), most of the energy supplied by
the voltage source is stored in the
magnetic field around the inductance.
As long as the current is increasing,
energy is being stored in the magnetic
field. However, as the capacitor
charges, part of the energy is stored
also in the electrostatic field. As the
rate of current change diminishes, the
rate of energy stored decreases in the
magnetic field and increases in the
electrostatic field. Finally, at ¢2, no
further energy is being stored in the
magnetic field, and all of the energy
supplied to the circuit is being stored
in the electrostatic field.

From t2 to ¢4, the current is diminish-
ing, and the magnetic field is trans-
ferring energy to the electrostatic
field. At time ¢4 the magnetic field is
zero and the electrostatic field has been
doubled. At this time, the capacitor
voltage is twice the applied voltage.
This causes current flow in the op-
posite direction. When current is flow-
ing in the opposite direction, the elec-
trostatic field is returning energy to
the circuit. From t4 to t6, part of this
capacitor energy is stored in the in-
ductance and the rest is returned to
the voltage source.

From ¢6 to £8, both the inductance and
the capacitance are returning energy
to the voltage source. When the cur-
rent falls to zero, at 8, all of the
energy supplied to the circuit during
the first half-cycle has been returned
to the source. Since all conditions at
the end of the first cycle are identical
with conditions at zero time, the second
cycle of current is identical to the first

one, the third one with the second one,
and so on.
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(4) When the effect of resistance is con-
sidered, part of the energy during each
cycle is dissipated in the form of heat.
During the first cycle, the resistance
takes part of the energy that normally
would be stored in the magnetic field.
It also absorbs some of the energy that
normally goes from the magnetic to
the electrostatic field. Therefore, at the
end of the first half-cycle, the capacitor
has received less energy than it would
have received in the ideal case of no
resistance.

(5) The capacitor still is sufficiently over-
charged to reverse the current flow.
Again, during the negative half-cycle,
part of the energy is lost as heat. The
action continues until all the excess
energy has been transformed into heat
and current ceases to flow. The ca-
pacitor is then charged to the applied
voltage, E, and its stored energy is
CE?/2. The energy dissipated by the
resistance is also CE?/2.

49. Frequency of Oscillatory Current

@. EFFECT OF CIRCUIT ELEMENTS. The fre-
quency at which the current oscillates depends,
primarily, on the value of inductance and ca-
pacitance. It also becomes a function of the
resistance when the value of resistance is close
to the critical value. Since the current can in-
crease at a faster rate when the inductance is
small, the frequency of the oscillatory current
increases as the inductance decreases. The
voltage charge on the capacitor increases more
rapidly when the capacitance is small. Conse-
quently, the capacitor voltage becomes equal to
the applied voltage in a shorter period of time
when a smaller capacitance is used. Therefore,
the frequency of the oscillatory current in-
creases when the capacitance is decreased. The
resistance in the circuit slows up the cycle, so
that the frequency is decreased when the re-
gistance is increased.

b. FREQUENCY EQUATION.

(1) The frequency of oscillation of the
R-L-C circuit is given by the following
equation:

fam &VLC 4L=
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+(2) For-example, if L == 10 mh, C == .01

fom

S

pf, and R = 100 ohms; the frequency
of oscillation is

pe(1% 102) 20

1 KT
1/10><103>< 01X 10° 4(10X107)F
——\/100>< T0°—25C10° — 15,900 cps.
_(3) The term R2/4L? has little effect on

the frequency because it is small com-
pared with 1/LC. When the resistance
is small compared with the critical
value, the frequency equation can be
written as

: 1

e LT

(4) Although the frequency is affected

only slightly by a small amount of re-
gistance, it is reduced considerably
when the resistance is anywhere near

the critical value (R equal to 2\/L/C).
If the value of resistance in the ex-
ample given above is increased to
1,000 ohms, the frequency of this cir-
cuit then becomes
(10%)2
=A% o
fo = 13,800 cps.
When the resistance is increased
further to 1,750 ohms, the frequency
is reduced to 7,600 cps.

4 —
10 /75,
1I"

() As the resistance is increased further,

the frequency is decreased until the
resistance is at the critical value, R,.
At this time the frequency is zero. The
following chart illustrates the effect
of resistance upon the frequency of
the circuit:

Reduction in frequency

Resistance 1
(% of Ey) (%ot 3, V 1/LC)
0 ist ) 0 £ -——-——1
(zero resistance (foi== 57 VIO
“10 b
30 4.6
50 13.4
70 28.6
90 56.4 .
100 100 (no oscillation)

The resistance does not have an ap-
preciable effect upon the frequency
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until it has a value of about 10 percent
of the critical resistance.

50. Damping Factor

a. AMPLITUDE OF SINE WAVE WITHOUT R. In
an R-L-C circuit, in which the resistance is 8o
small that it can be neglected, the amplitude of
the sine wave of current is a function of the
circuit inductance and capacitance. The ampli-
tude of the current at the quarter-cycle instant,
t2, is

E E
s =777C = T(1/~/LOY"
Since 1/4/LC = 2f, this expression can be
written also as

RN
max 21I’fL ’
which is the familiar expression for the current
in a circuit using conventional impedance
notation.
b. EFFECT OF RESISTANCE.

(1) The resistance prevents the current
from actually reaching the maximum
amplitude indicated above. This effect
is cumulative, decreasing the ampli-
tude of successive cycles until the amp-
plitude is reduced to the point where
it can be considered equal to zero. This
effect is known as damping, and the
resultant sine wave is known as a
damped sine wave. The degree of
damping, or the speed with which the
amplitude reduces to zero, is deter-
mined by the value of resistance. In
figure 43, A illustrates a slightly
damped wave caused by a relatively
low value of resistance. As the resis-
tance increases, the damping effect
increases. B shows a highly damped
wave caused by a resistance just below
the critical value.

The effect of damping is indicated by
a dotted exponential curve which
shows how the reduction in current
amplitude takes place in the circuit.
Figure 44 can be used to determine
the response of any oscillatory circuit
by expressing time in terms of L/R,
the circuit time constant. When this
is done, the maximum current in per-

(2)
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Figure 48. Damped sine wave.

cent can be determined at any time.
From this curve, it is noted that the
amplitude reduces to zero when ¢t i8
about 5 time constants, or 10 L/R.
Actually, the amplitude is about 1 per-
cent of maximum at this time, but
such a small percentage cannot be
shown on the graph. Theoretically, the
amplitude never reaches zero, but it
can be assumed to be zero when the

time elapsed is 7 time constants, or
14 L/R.

The time required for a series R-L-C
circuit to reach a steady-state (zero
amplitude) is dependent primarily on
the values of R and L. If R is in-
creased, the time constant 2L/R i8
decreased, and the sine wave i8
damped more strongly. Varying C af-
fects the frequency of the oscillatory
current.

To obtain the response of an oscilla-
tory circuit, first determine the fre-
quency, assuming that R is zero for
resistance lower than 10 percent of
the critical value. Otherwise, use the
equation including resistance (par.
49b). Calculate the value of maximum
current, using this frequency and as-
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suming that no resistance is in the cir- maximum amplitude 25 usec, or one-
cuit. Then include the effect of resist- eighth of a time constant, after t.he
ance, using the damping factor curve step voltage is applied to the cir-
in figure 44. cuit. The damping factor aftgr one-
; (5) The response of an R-L-C circuit with eighth of a time constant 18 .87'5
: L of 25 mh, C of .01 4f, and R of 250 percent (fig. 44), and the amplitude
| ohms, to a step voltage of 10 volts will of the first half-cycle is 87.5 percent
; now be determined. of 6.4 ma, or 5.6 ma (fig. 46).
(a) The critical value of resistance, (¢) The first negative peak occurs after
! 24/L/C, for this circuit is about three-eighths of a time .constant,
8,160 ohms, so that an B of 250 when the current is only 69 percent
ohms can be assumed to be zero in of maximum, or about 4.4 ma. Sim-
determining the frequency. ilarly, as in figure 45, each .half-
48 CaA0T cycle reaches a lower amplitude.
f=3 yvieT 10,000 cps. Fourteen cycles after the step volt-
Maximum current age has been applied to the circuit,
E 10 the current reduces to zero (.0064
I t or .0064 ma) :

T 2xfL " 27 X 10,000 X 25 % 10%’

ampere, or 6.4 ma.

(b) The time constant of this circuit is

AGO 1445A

2(25 times 10-%) /250, .0002 second,
or 200 usec. The time required to
complete 1 cycle of oscillation is
equal to 1/f, or 100 usec. The sine
wave, therefore, reaches .its first

(6) Increasing the resistance increases
the damping factor and decreases the
current flow in the circuit, even dur-
ing the first cycle. A smaller current
flow means that the voltage across the
capacitor at the end of the first quar-
ter-cycle is lower, or that the over-
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Figure 5. Oscillatory response curve.

shoot is less. Hence, in many circuits
where overshoot must be minimized,
the value of resistance ig 1ncreased

51. Summary

@. The series R-L-C circuit actually is repre-
sentative of any series network, since all cir-
cuits must have some 1nductance, capacitance,
and registance.

b. An R-L-C circuit may have two forms of
response: the single- -Surge response and the
oscillatory response.

c. A single-surge response occurs when the
value of resistance in the circuit exceeds the
critical resistance.

d. In a single-surge response, the current
rises to some maximum value and then decays
to zero.

e. The rise time of the current is determined
by the resistance and inductance; the capaci-
tance serves to reduce the maximum value of
current obtained.

f. The decay period is determined by the re-
gistance and capacitance; the inductance main-
tains the current flow in the circuit.
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g. At the first instant, all of the energy sup-
plied to the circuit is stored in the magnetic
field of the inductor.

h. As current flows, energy is dissipated as
heat by the resistance and stored in the capaci-
tor in the form of an electrostatic field.

2. When the current reaches its maximum
value, no further energy is supplied to the in-
ductance, and all energy supplied to the circuit
is either dissipated across the resistance or
stored in the capacitor.

J. During the decay period, the inductor re-
turns to the circuit all the energy stored in it
during the current build-up period.

k. The resistance acts mainly as a brake in the
circuit, preventing current from rising to rela-
tively high values, by controlling the amount of
energy stored in the inductor. Consequently,
the resistance prevents overshoot of the capaci-
tor voltage.

I. In an oscillatory circuit, the resistance is
low, overshoot occurs, and the current under-
goes a series of damped oscillations.

m. In the ideal oscillatory circuit (having no
resistance), there is a continuous interchange
of energy between the magnetic field of the in-
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ductor and the electrostatic field of the capaci-
tor.

n. The capacitor voltage varies from zero to
2F and then back to zero again in one cycle,
when a low resistance is in the circuit.

o. The resistance acts to reduce the current
amplitude by dissipating part of the energy flow
of each successive cycle.

p. The frequency of oscillation is dependent
on L and C when the resistance is less than 10
percent of the critical value.

~q. When the resistance becomes an appreci-
able portion of the critical value, it reduces the
frequency.

7. The resistance damps the sine wave so that

the oscillations reduce to zero after a period of
time equal to 14 L/R.

52. Review Questions

a. Why is the R-L-C circuit studied?
b. What two general types of response are
obtained ?

¢. What is the critical value of resistance for
L of 100 mh and C of 1,000 puf?

AGO 1445A

d. How does the inductance affect the single-
surge response?

e. How does the capacitance affect the sin-

gle-surge response?

f. Give one important characteristic of the
osclllatory response.

g. Explam 1 cycle of osc1llat10n of this re-
sponse, assuming that R is zero.

h. What is the frequency of oscillation for R
of 500 ohms, L of 75 mh, and C of .001 p£?

7. What is the frequency of this circuit when
R is increased to 5,000 ohms?

7. 'What is a damped sine wave, and how is
the damping affected by the value of resist-
ance?

k. With R of 500 ohms, and L of 75 mh, how
long does it take for the oscillations to reduce to
.1 percent of maximum amplitude?

I. Determine the response of the circuit given
in Review Question % to a step voltage of 15
volts.

m. Determine the response of this circuit
when R is increased to 5,000 ohms. ;
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CHAPTER 6

APPLICATION OF R-L AND R-C CIRCUITS

Section |. EFFECT OF TIME CONSTANT ON PULSE RESPONSE

53. Time Constant

@. In the circuits discussed previously (R-L,
R-C, and R-L-C), the time required to reach
either a maximum or a minimum of current or
voltage depended on the circuit time constant.
When this time constant is small, the current
or voltage can change rapidly, and a short pe-
riod of time is required to reach the steady-
state.

b. In an R-L circuit to which a step voltage
has been applied, the time constant is a meas-
ure of the time required for the current to rise
or fall to its steady-state value. In the R-C cir-
cuit to which a positive step voltage is applied,
the time constant is a measure of how fast a
capacitor charges or discharges. The time con-
stant may be used to describe either the rise
time or the decay time of a current or voltage.

54. Relation of Time Constant to Pulse

Figure A of 46 shows a rectangular pulse;
B, C, and D illustrate the response of three dif-
ferent circuits to this pulse.

a. IDEAL RECTANGULAR PULSE.

(1) Until now, discussion has been lim-
ited to the circuit response when a
positive or a negative step voltage is
applied and maintained for a long pe-
riod of time (long compared to the
time constant) . However, when a peri-
odic rectangular pulse, shown in A, is
applied to the circuit, other factors
must be considered. The time constant
of the circuit is used to determine the
amplitude of the output voltage since
this voltage may not reach a value
equal to the applied voltage E during
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the rise time. The time constant also
is used to determine the time required
for the voltage to decay, since the out-
put voltage may not decay to zero be-
fore the next pulse is applied to the
circuit.
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Figure 46. Response to ideal rectangular pulse.

(2) In B, the output voltage reaches F a

short time after the pulse is applied
and decays to zero when the pulse is
removed. The output voltage reaches
E more slowly in C, and does not decay
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| to zero by the time the next pulse is

: applied to the circuit. In D, the volt-
age does not reach E, but does decay
to zero before the next pulse occurs.

i The output obtained in any circuit de-

f pends on the circuit time constant
compared with the pulse duration and
the time between pulses, or pulse pe-
riod.

b. ACTUAL PULSE. An actual pulse has finite
rise and decay times (fig. 47) and the circuit
time constant can affect various portions of
this pulse differently. The time constant deter-
mines whether the circuit voltage can rise as
rapidly as the applied voltage. It is used also
to determine the decay time and whether the
output waveform droops over the duration
period.

¢. SHORT AND LoNG TIME CONSTANTS.

(1) Time constants often are referred to
as being short, long, or of the same
length as some reference period of
time. A short time constant is defined
in this text as being less than one-

1 seventh that of the reference period.

| A long time constant is over seven

| times the time constant of the refer-
ence period. For example, a 1-usec
time constant is short compared with
one of 10 usec, but long compared
with one of .1 usec, and of the same
magnitude as a 2-usec period.

(2) The reference period of time is deter-

' mined by the applied voltage. For ex-
ample, the pulse shown in figure 47
has a rise time of .2 usec, a duration
time of 20 usec, and a decay time of 3.5
usec. This pulse is applied to an R-C
circuit with a time constant of 1.5
usec. The circuit, therefore, has a long
time constant with relation to the rise
time, a short time constant with rela-
tion to the duration time, and a time
constant of magnitude equal to the
decay time.

55. Effect of Time Constant on Ideal
Rectangular Pulse

The effect of the time constant of an R-C and
an R-L circuit upon an ideal rectangular pulse is
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Figure 4?. Pulse with rise and decay times.

described to show the variation in output wave-
form that occurs when the time constant is
changed.

a. TYPES oF R-C AND R-L CIrcuIitrs. Two
sources of output voltage are available from
either the R-C or the R-L circuit (fig. 48). The
output can be taken across R, and ey is propor-
tional to the current flowing in the circuit. The
output voltage also can be taken across C or L
as in B, and is proportional to the charge in
the capacitor for ey, or the rate of change of
current for er.

b. RESPONSE OF R-C CIRCUIT.

(1) For example, a square wave occurring
at a frequency of 1,000 cps and with
an amplitude of 10 volts (A of fig. 49)
is applied to an R-C circuit with a
time constant equal to the pulse period,
or 1,000 usec. The output voltage dur-
in the first 2 cycles is shown across the
resistor in B and across the capacitor
in C,

(2) When the pulse is first applied to the
circuit, the full input voltage appears
across R, since C has no charge. There-
fore, ex is equal to E, and e¢ is equal
to zero. The capacitor begins to charge
to a value determined by the universal
time-constant curve (fig. 26, curve
A). As the voltage across the capaci-
tor, ey, increases, the voltage across
the resistor, ez, decreases. At 500 usec,
or one-half a time constant, the pulse
decays to zero; the capacitor, accord-
ing to the universal time-constant
curve, has charged to 40 percent of F,
or 4 volts, and ez has dropped to 60
percent of E, or 6 volts. If a discharge
path is provided during the pulse rest
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Figure 48, Output voltage sources in R-C and R-L circuits.

period, E equal to 0, the capacitor dis-
charges and causes a negative voltage
to appear across R equal to 40 percent
of E, or 4 volts. The circuit follows
the R-C discharge curve (fig. 26, curve
B), and is more gradual than the
charge curve for the first pulse. The
reason for this is that the capacitor
charges from zero toward E during

- the pulse duration and discharges

from 40 percent of E toward zero dur-
ing the pulse rest time. At 1,000 usec,

‘or one-half a time constant after the

pulse decays, the capacitor has dis-

~charged to 60 percent of the charge

it held at the end of 500 usec. There-
fore, it discharges to .4 times .6E
or 24 percent of E at 1,000 usec. )
A of figure 50 shows the effect on the
output of varying the time constant
with the same applied voltage that
was shown in figure 49. The time con-

stant is reduced: to 50 usec, or oneé-
tenth the pulse duration. After the
step voltage is applied, eo will reach E
in 850 usec, since seven time constants
are required to charge the capacitor
to the applied voltage. During this pe-
riod the voltage across the. resistor
ex, declines to zero. Similarly, during
the rest period of the pulse, F equal
to 0, the capacitor discharges com-
pletely, following the universal time-

- constant decay curve. This is because

(4)

the pulse rest period is longer than
seven time constants, the period nec-
essary for complete discharge.

In B, the output voltage resulting
from the square wave is shown when
the time constant is increased to 5,000
usec. The capacitor can charge only
slightly during the pulse duration, and
it discharges slightly during the pulse
rest period. Comparing B and C of:
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Figure 50. Effect of time constant on square wave.
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figure 49 with A and B, of figure 60,

‘it is seen that variations in the shape

of the output waveform can be ob-
tained when the time constant of the
circuit is made short or long with rela-
tion to the period of the applied volt-

age.

¢. RESPONSE OF R-L CIrculT (fig. 51).
(1) When the 1,000-cps square-wave in-

put is applied to an R-L circuit with a
time constant of 1,000 usec, at the
first instant a back emf equal to E is
developed across L, and no current
flows. Therefore, e, is equal to F, and
ex is equal to zero. Current begins to
flow in the circuit at a rate determined
by the universal time-constant chart
(fig. 18, curve A). At 500 usec, or
one-half a time constant later, the
current has increased to 40 percent of
its steady-state value, E/R. The volt-

- 500 1000 1500

TIME (U SEC)—>

APPLIED VOLTAGE (E) A

VOLTS —

OUTPUT ACROSS R (€g)

OUTPUT ACROSS L (€ )
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Figure 51. Response of an R-L circuit to a square wave.
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..:age across the resistance, ez, is equal

'£0.40 percent of E, as shown in B, and

. . e, has declined to 60 percent of E, as
. .shown in C.

@)

(3)

When ‘the pulse voltage decays to
zero, an emf develops across the in-
ductance, which acts to maintain the
current flow. This voltage is negative
with relation to the voltage drop across
R, and equal to ez. Therefore, when

‘the pulse drops to zero, e, equals

—eg, or 40 percent of —F. The de-
crease of voltage across e; and ep is
determined by the standard current
decay curve of the R-L circuit.

Compare figure 49 (response of R-C
circuit with 1,000-usec time constant)
with figure 51. Note that exactly the
same curves are obtained except that
the eg curve in the R-C circuit becomes
the e, curve in the R-L circuit, and the
€o curve becomes the e curve. Sim-
ilarly, the response of the R-L circuit
with time constants of 50 and 5,000
usec is exactly the same as the R-C cir-
cuit response with the same time con-
stants. Again the e; curve becomes the
ey, curve, and the e, curve becomes the
er curve,

56. High-pass R-C Filter

In practice, pulses have finite rise and decay
times. When e is taken as the output voltage
(A of fig. 48), the R-C circuit is known as a
high-pass filter. A high-pass filter allows any
current above a certain frequency to pass to the
desired circuit and opposes or diverts the flow
of all currents of frequencies below this value.

a. SHORT TIME CONSTANT.
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(1)

The pulse shown in A of figure 52 is
applied to a high-pass filter with a
time constant of 1 usec. R is 100 ohms
and C is .01 xf. Since the time constant
of this circuit is small compared with
the pulse rise time of 10 usec, the
voltage across the capacitor can in-
crease as fast as the input voltage
rises.

TIME (USEC)—»
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o _MAhHh o o

(0]

10720 — 30——a40— . 50— 60
PULSE INPUT A

I}

~—VOLTS—>
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TIME (USEC)—»
OUTPUT VOLTAGE (eR) B

T™ 669-52

Figure 52. Effect of low time constant on praotical

pulse in high-pass circuit.

(2) The voltages and current in this cir-

cuit can be obtained by the step-by-
step method, as shown in table VI

Table VI. Voltages and Current in High-Pass R-C

Filter With Short Time Constant.

&z’, E(v) | 6g(v) | ep(v) |i,(amp) ea.nﬁ ?: m)
1 1 0 1 01 1
2 2 1 1 01 1
8 3 2 1 01 1
4 4 3 1 01 1
b b 4 1 01 1
6 6 b 1 01 1
7 7 6 1 01 1
8 8 g 1 01 1
9 9 8 1 01 1
10 10 9 1 01 1
11 10 10 0 0 0

When the voltage first is applied to the
circuit, current begins to flow. The
flow of current increases after the
first step to the point where the rate
of capacitor voltage charge is equal to
the rate of increase of the applied volt-
age. At 1 usec (first step), the applied
voltage is 1 volt. The voltage across the
capacitor is assumed to be zero, but
the rate of voltage charge is 1 volt per
usec. At 2 usec, E has increased to 2
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(3)

(4)

(6)
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volts, and the capacitor voltage to 1
volt. At 3 usec, E has increased to 3
volts, and e, to 2 volts. The capacitor
voltage increases at exactly the same
rate as the input voltage, except that
it is delayed at the very beginning.

The current flowing in the circuit is
equal to the voltage difference between
E and e, divided by R. Since the volt-
age difference remains essentially con-
stant after 1 usec, the current in the
circuit remains constant after 1 usec.
The voltage difference at 1 usec is 1
volt. The current is, then, 1/100, or
.01 ampere. The same current flows at
2 usec, 3 usec, and so on up to 10 usec.
The voltage across R during this pe-
riod of time is always about 1 volt (B
of fig. 62).

At 10 usec, the applied voltage reaches
the maximum value of 10 volts and re-
mains constant for the next 30 usec.
Since there is only a 1-volt difference
between ¢, and E at this time, the ca-
pacitor charges up to the input voltage
a short time after 10 usec. When ¢q
is equal to E, the voltage across R is
zero, and the current reduces to zero.
The output voltage and current then
remain zero up to 40 usec.

At 40 usec, the applied voltage begins
to decay. Again, because of the low
time constant, the capacitor can dis-
charge as fast as the voltage decreases.
During the decay period (A of fig.
62), the voltage decreases more grad-
ually than it increased during the rise
time. The current flow in the circuit
is maintained at a value that enables
the capacitor to discharge at the same
rate as the applied voltage. If the volt-
age decreases more gradually, a
smaller current is required to reduce
the capacitor discharge voltage ac-
cordingly. Furthermore, since the cur-
rent flow is in the opposite direction
to the original current flow, it develops
a negative voltage across R, as in B.
Note that the decay voltage is one-half
the value of the rise voltage, since the

(6)

decay time is twice as long as the rise
time.

At 60 usec, the applied voltage is zero,
the capacitor is almost discharged
completely, and the current in the cir-
cuit reduces rapidly to zero. Compare
the input and output pulse waveforms,
which are completely different. Sim-
ilar waveforms are obtained across R
whenever the time constant of a high-
pass R-C circuit is small compared
with the rise and decay times.

b. TIME CONSTANT EQUAL TO RISE TIME.

(1)

When the time constant is equal to
the rise time, the capacitor cannot
charge quite as fast as the applied
voltage increases. The pulse shown in
A of figure 52 is applied to a high-pass
R-C circuit with a time constant of 10
usec. R is now 1,000 ohms, and C is .01
pf. Table VII shows the step-by-step
values of current and voltage in this
circuit:

Table VII. Voltage and Current in High-Pass R-C
Filter with Time Constant Equal to Rise Time.

¢t Rate of T‘m
(uses) E(v) | eg(v) [ egy(v) |[f,(amp) ':m mr:e
1 1 0 1 .0010 .10
2 2 .10 1.9 0019 .19
8 3 29 2.7 0027 27
4 4 .56 34 0034 34
b b 90 4.1 .0041 41
6 6 1.3 4.7 0047 AT
7 (f 1.8 5.2 0062 52
8 8 2.3 6.7 L0067 b7
9 9 2.9 6.1 0061 .61
10 10 3.5 6.5 0065 6b
11 10 4.1 5.9 .0069 b9

(2) When the pulse is applied to the cir-

cuit, current begins to flow. Since the
resistance in the circuit has been in-
creased, the current cannot increase as
fast as it did in the short time-con-
stant circuit. The flow of charge into
the capacitor is lower, and ¢, cannot
increase as fast as the applied voltage,
E, is increasing. Hence, the voltage
difference between E and e, is increas-
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ing continuously between zero and 10
usec. Since at 1 usec, the applied volt-
age is 1.volt .(A of fig. 52) and the
capac1tor voltage is .01 volt, the volt-
age difference is about 1 volt. At 2
usec, E is 2 volts, e is .1 volt, and the
difference is 1.9 volts. The voltage
difference is the voltage, ez, across R,

_or the output voltage. This voltage is

shown in A of figure 53.
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Figure 53. Effect of time constant in high-pass circuit.
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(3) Although the voltage difference in

creases rapidly between zero and 6
usec, it increases slowly between 6 and
10 useec. This reduction in voltage dif-
ference is due to the increase of cur-
rent in the circuit. As current in-
creases, the charging rate of the ca-
pacitor approaches the- voltage-in-
crease rate. The current in the circuit
at any time is equal to the voltage dif-
ference, £ —eq, divided by the resist-
ance. At 1 usec, it is about .001 am-
pere, and increases to approximately
.005 ampere at 6 usec. From 6 to 10
usec, the current increases gradually
from .005 to .0065 ampere. This can
be seen in table VII.

(4)

(5)

(6).

From 10.to 40 usec, the apphed volt-
age is.constant, and the capacitor volt-
age charges to E. As ¢, increases, the
voltage difference and current rate de-
crease. At 40 usec, the capacitor volt-
age has not reached F (time for com-
plete charge is 7 RC, or 70 usec), and
there is a small output voltage, ep, of
4 volt (eg is 9.6 volts). Therefore, a

small current still flows in the circuit.

At 40 usec, the applied voltage begins
to decrease. At 41 usec E declines to
9.6 volts and is equal and opposite to
the capacitor voltage. The output volt-
age, therefore, is zero at this time.
After 41 usec, the applied voltage be-
comes smaller than the capacitor volt-
age, the difference voltage becomes
negative, and the current flows in the
opposite direction. Again, the long
time constant prevents the capacitor
from discharging as fast as the ap-
plied voltage decreases. However,
since the pulse-decay period is longer
than the pulse-rise period, the rate of
capacitor discharge approaches to the
rate of voltage.

The output voltage reaches a maxi-
mum of —3.8 volts at 60 usec (A of
fig. 53). It is —3.1 volts at 50 usec,
and —3.7 volts at 55 usec. This indi~

cates that at approximately 55 usec,

the rate of discharge is almost equal to
the rate of decay. At 60 usec, the ap-

_ plied voltage is zero and the capacitor

)

has discharged to 3.8 volts. The ca~
pacitor continues to discharge after
60 usec until e; becomes zero. The volt~
age difference, and consequently the
circuit current and output voltage, de-
crease as the capacitor discharges, fol-
lowing the R-C exponential discharge
curve.

The output voltage curve (A of fig.
53) is typical of the waveform of any
high-pass R-C circuit whose time con-
stant is of the same magnitude as the
pulse rise time. When the pulse dura-

- tion time is increased, the current and

output voltage fall to zero before the
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decay time starts. Conversely, if the
duration time is decreased, the output
voltage during the decay time remaing
positive for a longer period of time,
and negative for a shorter period of
time.

¢. LONG TIME CONSTANT.

(1)

(2)

(3)

(4)
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When the time constant is long com-
pared with the rise and duration time,
the capacitor charges to a small frac-
tion of the total applied voltage. Most
of the voltage exists across R, and the
output waveform closely resembles the
input pulse voltage.

The pulse shown in A of figure 52 is
applied to a high-pass R-C circuit with
a time constant of 100 usec. R is now
10,000 ohms, and C is .01 pf. Because
of the high resistance in this circuit,
the current flow is small. For exam-
ple, when E is 1 volt, the current is
only 1/10,000 or .0001 ampere. This
low value of current results in a low
rate of change of the capacitor voltage.
During the entire rise time, the ca-
pacitor charges up to only .5 volt, and
the voltage difference at 10 usec is 9.5
volts. The voltage difference, or output
voltage, during this period of time fol-
lows the input voltage, as in B.

From 10 to 40 usec, the capacitor
charges slowly toward the applied
voltage. Because of the long time con-
stant, however, ¢, is only 8 volts at the
end of 40 usec. This means that the
difference voltage, and the output
voltage and current, drop about 2.5
volts during this period of time.

After 40 usec, the applied voltage
starts to decay and the output voltage
follows the same rate of voltage de-
crease. However, since the voltage
across the capacitor was 8 volts at 40
usec, the applied voltage does not equal
the capacitor voltage until the pulse
has been decaying for 13 usec. At 53
usec, ¥ equals eg, and the difference
voltage, circuit current, and output
voltage are, therefore, zero. After 53
usec, the applied voltage becomes less

(6)

than the capacitor voltage. Since the
capacitor discharges slowly (long time
constant), the difference voltage in-
creases to —3 volts at 60 usec. At this
time E is equal to 0 and ey is 3 volts.
The capacitor then discharges slowly
toward zero.

After 100 usec, or one time constant,
the capacitor charge decays to 1.1
volts. After 700 usec, or seven time
constants, the output is zero. If this
pulse appears periodically, and the
pulse rest period is less than 700
usec, the trailing edge (decay time)
of the output waveform runs into the
leading edge (rise time) of the next
pulse. When the time constant of a
circuit is increased, the capacitor will
charge to a smaller voltage, and there-
fore, a smaller negative output voltage
is obtained. This results in a closer
approximation of the input waveform.
The longer the time constant, the bet-
ter a high-pass R-C circuit reproduces
the input waveform.

d. PERIODIC PULSES.

(1)

(2)

When the pulse occurs periodically,
the capacitor may not be able to dis-
charge completely by the time the next
pulse is applied to the circuit. The re-
sponse of a high-pass long time-con-
stant R-C circuit to a series of pulses
is shown in A of figure 54. The time
constant is 100 usec.

The first pulse that is applied to the
circuit follows the waveform shown in
B of figure 53. Upon application of the
second pulse, however, the capacitor
still has —2.5 volts of charge obtained
during the first pulse (B of fig. 54).
When the second pulse is applied, the
output voltage rises 9.5 volts (the ca-
pacitor charges slightly during rise
time) to approximately 7 volts, and
there is a net voltage of 3 volts across
the capacitor. During the 30-usec
duration time, .3 of one time constant,
the capacitor charges to 25 percent of
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Figure 54. Response of high-pass, large time-constant filter to periodic pulse.

T volts, or 1.8 volts. The output volt-
age across R then drops 1.75 volts to
5.2 volts. The output voltage dropped
about 2.5 volts during the same period
of the first pulse because of the higher
net voltage across C.

The pulse decays 10 volts, from 120
usec to 140 usec, and the output volt-
age follows a similar curve to —4.8
volts. During the rest time, which is
.2 time constant, the capacitor dis-
charges about 18 percent of 4.8, or .9
volts. The output voltage, conse-
quently, goes from —4.8, to —3.9
volts. The output voltage decreased .6
volt during the first rest period and .9
volt during the second rest period.

With each succeeding cycle, the
charge added to the capacitor over the
duration period decreases, and the ca-
pacitor discharge voltage during the
pulse rest period becomes larger. After
a few cycles, a point is reached when
the charge added to the capacitor dur-
ing the duration period is equal to the
discharge during the rest period. This
condition corresponds to the stable re-
sponse of the circuit (or its steady
state). A circuit can have a steady-
state response to a periodic pulse as
well as to a step voltage.

¢. SUMMARY OF TIME-CONSTANT EFFECT ON
HIGH-PASS FILTER. Compare the output volt-
ages obtained in a high-pass filter for short,
equal magnitude, and long time constant rela-
tive to rise times (figs. B of 52, and A and B of
53). Increasing the time constant has two ef-
fects. First, the output waveform more closely
resembles the input waveform; second, the
magnitude of the output voltage increases. In
the short time-constant circuit, a maximum
voltage of 1 volt was obtained, with approxi-
mately 6.5 volts for an equal time constant, and
9.5 volts for a large time constant.

57. Low-Pass Filter Response

0. GENERAL. The output in the low-pass filter
is taken across the capacitor, and the effect of
the time constant on the output voltage is en-
tirely different from that for the high-pass
filter. When the time constant of the circuit is
short compared with the rise time, the voltage
across the capacitor increases at about the same
rate as the applied voltage. Therefore, very lit-
tle change in the leading edge of the waveform
results; the output and the input during the
rise time are essentially the same. When the
time constant is long compared with the rest
time, the rate of change of capacitor voltage is
decreased and there is considerable change in
the leading and trailing edge of the waveform.
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b. SHORT TIME CONSTANT.
(1) The pulse voltage in A of figure 52 is

S

VOLTS —»
o

TIME (USEC) —-
10

applied to an R-C circuit with a time
constant of 1 usec. R is 100 ohms and
C is .01 pf (the same valuations that
were used previously for a short time-
constant high-pass filter). When the
voltage is first applied to the circuit,
the current increases rapidly and the
rate of capacitor charge is equal to
the rate of applied voltage increases.
The output voltage follows the input
voltage with the exception of a slight
delay at the beginning of the cycle.
This delay is equal, approximately, to
the time constant, or 1 usec. The top
and bottom portions of both the rise
and decay times are rounded slightly
(A of fig. 55).
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Figure 55, Effect of time constant on low-pass filter.

(2) At 10 usec, the applied voltage reaches

10 volts and then remains constant for
30 usec. The voltage across the capaci-
tor is nearly equal to the applied volt-
age at 10 usec, and rises to 10 volts
shortly thereafter. The voltage across
the capacitor remains at 10 volts as
long as the pulse remains at 10 volts.

(8) At 40 usec, the pulse begins to decay,
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(4)

(1)

(2)

(3)

and the capacitor starts to discharge.
The discharging current increases un-
til the rate of voltage drop across the
capacitor is equal to the rate of volt-
age decay. The output pulse closely
follows the input pulse during decay
time. There is a slight delay at the be-
ginning of the decay time that is equal,
approximately, to the time constant, 1
usec, which causes a rounding of the
corners (A of fig. 55).

The low-pass, short time-constant
R-C circuit provides the best repro-
duction of the pulse waveform. The
only circuit with a similar response
is the long time-constant, high-pass
filter. This circuit, however, requires
a long discharge period and can run
into succeeding pulses. Varying the
time constant of a low-pass R-C cir-
cuit up to 25 percent of the rise time
(assuming that it is the smallest pulse
time period) does not change the cir-
cuit response to a great extent except
to increase the rise- and decay-time
delay periods.

¢. TIME CONSTANT EQUAL T0 RISE TIME (B
of fig. 55).

When the time constant of the low-
pass filter is increased to the same
magnitude as the rise time, the capaci-
tor voltage cannot increase as rapidly
as the applied voltage. When the ap-
plied voltage reaches its maximum
amplitude, the capacitor voltage is
only a fraction of this voltage, and the
capacitor continues to charge, or in-
crease toward E, after the pulse rise
time is over. This means that the rise
time of the output is increased.

In A of figure 52 the pulse is applied
to a low-pass R-C circuit with a time
constant of 10 usec. R is 1,000 ohms
and C is .01 pf. A lower initial current
is obtained because of the greater R,
and the voltage across the capacitor
does not become appreciable until
about 2 usec.

It then rises slowly until, as in B of
figure 55, at 10 usec or one time con-
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(4)

(6)

stant, the capacitor voltage is 3.5 volts.
The applied voltage remains constant
at 10 volts, and the capacitor follows
the standard R-C charging curve. At
40 usec, or 3 time constants later, the
capacitor charges to 93 percent of 6.5
volts, or approximately 6.1 volts, and
the total voltage across the capacitor
is, then, 9.6 volts.

At 40 usec, the applied voltage starts
to decay, the rate of capacitor charge
decreases almost immediately and, ap-
proximately 41 usec later, it stops. At
this time, the applied voltage is smaller
than the capacitor voltage, and the
capacitor starts to discharge. The rate
of discharge depends on the difference
between E and e, and the value of re-
sistance. Since R is high, the capacitor
cannot discharge as fast as the applied
voltage decreases and the voltage dif-
ference between them increases. At 55
usec, the voltage difference between
K and e is large, a relatively large
current flows, and the capacitor starts
discharging as fast as the applied
voltage decreases.

When the applied voltage reaches
zero, the capacitor is not discharged
completely, and there is still an output
voltage. The capacitor now discharges
following the R-C discharge curve and
becomes, essentially, equal to zero at
80 usec. The output voltage follows the
input voltage more closely during the
decay time than during the rise time,
since the pulse decay time is longer.
The circuit time constant of 10 usec is
only one-half the decay time of 20
usec, and better decay-time reproduc-
tion is obtained.

d. LARGE TIME CONSTANT (C of fig. 55).
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(1) When the time constant is large com-

pared with the rise and duration
times, the voltage across the capacitor
increases slightly during the pulse rise
and duration periods. Tt also dis-
charges slowly during the decay pe-
riod.

(2) In A of figure 52 the pulse now is ap-

(3)

(1)

plied to a low-pass R.¢ circuit with 8
time COnStant. of 100 usec. R is 10,000
ohms and C is .01 .f, The capac,itor
voltage increases slightly during the
rise time and does not hecome appreci-
able during the fipgt 5 usec. It in-
creases to .5 volt at 1 usec'.for the
next 30 usec it increageg a,long an
essentially straight line, which curves
slightly toward the end, anq at 40 usec
the capacitor Voltage ig 8 yolts. This
portion of the curve corresponds to
the first .3 of a time constant of the
R-C charge curve (fig, 26), Although
the over-all R-C charge curve is ex-
ponential, it is Practically straight for
a small part at the beginning of the
curve.

The applied voltage starts to decay
at 40 usec and the rate of charge de-
creases. The applied voltage, although
decaying, is greater than the capaci-
tor voltage until about 53 ygee. Con-
sequently, the capacitor charges
slightly during this portion of the ap-
plied voltage decay time, After 53
usec, however, the applied voltage i8
smaller than the capacitor voltage
and the capacitor begins to discharge:
At 60 usec, the applied voltage is zero
and the capacitor dischargeg along the
standard R-C discharge curve. Be-
cause of the long time constant, a long
discharge time is required, and at 80
usec the capacitor voltage is still 2
volts.

e. SUMMARY OF TIME-CONSTANT EFFECT ON
Low-PAss FILTERS.

Compare the three curves shown in
figure 55. Note that as the time con-
stant increases the rise and decay
times of the output voltage increase
accordingly. Although good reproduc-
tion of the input pulse is obtained with
a small time constant, an entirely dif-
ferent waveshape is obtained when a
large time constant is used. The time
constant of a circuit affects to a great
extent, the output voltage of a low-
pass filter.

(2) The relative value of time constant,
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with relation to the waveform periods,
and the element supplying the output
voltage determine the output wave-
shape. Although an R-C circuit was

used to demonstrate this effect, sim-
ilar wide variations in response char-
acteristics can be noted in an R-L cir-
cuit.

Section I1. DIFFERENTIATION

58. Introduction to Shaping Circuits

In practical applications, sometimes it is nec-
essary to change or reshape an input waveform.
Reshaping of the waveform can be accomplished
through the use of R-C and R-L networks with
appropriate time constants. Examples of shap-
ing networks are the differentiator, integrator,
and d-c restorer circuits. Each of these shapes
the waveform in a different way.

59, Differentiator

a. DEFINITION. A differentiator is a circuit
whose output voltage is proportional to the rate
of change of the input voltage or current. When
the rate of change is zero, the output is zero.
When the rate of change is a positive or nega-
tive constant value, the output is a positive or
negative constant value. When the rate of
change is increasing or decreasing, the output
- increases or decreases.

b. INPUT AND OUTPUT (fig. 56). The d-c volt-
age shown in A is applied to an R-C circuit and
the differentiator output is taken across the re-
gistor. After the circuit has reached a steady-
state, the rate of change is zero, and the differ-
entiator output, therefore, is zero. The voltage,
in B, has a constant, positive rate of increase
for equal periods of time. When this voltage is
applied to a differentiator circuit, a constant, or
d-c, voltage is obtained at the output. The mag-
nitude of the output voltage depends on the
speed of the input voltage change. The higher
the rate of change, the greater the d-c voltage
output.

¢. SINE-WAVE INPUT (C of fig. 56) . The input
to the differentiator circuit varies sinusoidally
with time. This voltage is applied to the differ-
entiator circuit, and another sine wave is ob-
tained at the output. When the input voltage is
zero, the rate of change is maximum, and the
output across the resistor is maximum. When
the input voltage is maximum, its rate of change
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Figure 56. Differentiator waveforms.

is zero, and the output across the resistor is
zero. The sine-wave output is 90° out of phase
with the sine-wave input.

60. Differentiator Output for Common
Waveshapes

@. SAWTOOTH VOLTAGE. The sawtooth in A of
figure 57 is applied to the differentiator circuit
C. The waveform rises gradually along a
straight line to some maximum amplitude. Dur-
ing this period of time the rate of change re-
mains constant at some small positive value.
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The output, therefore, is a small, positive d-c
value, whose amplitude is proportional to the
rate of change of the input. When the sawtooth
decays to zero, the rate of decrease is a con-
stant, negative value of large amplitude. The
differentiator output, during this time, is a rec-
tangular pulse and has a high, constant, nega-
tive value.
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Figure 57. Differentiator output for common waveforms.

b. PULSE VOLTAGE. The pulse voltage in B of
figure 57 is applied to an ideal differentiator
circuit C. During the rise time, the rate of in-
crease is constant, positive, and relatively large.
Consequently, a high value of positive d-c volt-
age is obtained at the output. The pulse remains
at a constant value over the duration period and
its rate of change is zero; therefore, zero out-
put is obtained from the differentiator. During
the decay period, the rate of decrease is one-
half the rate of increase during the rise time.
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The differentiator output, then, is negative, gnd
one-half the amplitude of the voltage during the
rise time.

61. Basic Types of Differentiators

Three basic circuit components can be ysed
ag differentiators. These are the capacitor, the
inductor, and the transformer. As shown pre-
viously, the current flowing into a capacitor is
equal to the capacitance, C, times the raig of
change of the applied voltage. The voltage that
exists across an inductor is equal to the in-
ductance, L, times the rate of change of curyent
through the inductor. Also, the voltage that
exists across the secondary of a transformer is
equal to the mutual inductance, M, of the trgns-
former times the rate of change of the curyent
in the primary. The output of each of these ele-
ments is proportional to the rate of change of
the input.

62. R-C Differentiator

a. BASIC CAPACITANCE EQUATION.

(1) In describing the fundamental capaci-
tor relation in chapter 2, it was noted
that when a constant current flowed
into a capacitor, the voltage across the
capacitor increased at a constant rate.
Also, when the voltage applied to a
capacitor was increasing at a constant
rate, the current flowing into the ca-
pacitor was constant. The current is
equal to the rate of change of the ap-
plied voltage, dE/dt, times capaci-
tance C, or C dE/dt. When dE/dt is
expressed in volts per second and C in
farads, the current is in amperes. The
current is also in amperes when
dE/dt is expressed in volts per usec
and C in pf.

(2) An input voltage which increases at a
rate of 10 volts per second is applied
to a 10-uf capacitor. The current flow-
ing in this circuit is then 10 times (10
times 10-%), or .0001 ampere, or .1 ma.

(3) As another example, a voltage which
increases at a rate of 1 volt per micro-
second is applied across a .01-uf ca-
pacitor. The current flowing into this
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capacitor is 1 times .01, or .01 ampere,
or 10 ma.

b. INTRODUCTION OF RESISTANCE. Since a dif-
ferentiator circuit does not require a large cur-
rent flow, a small resistor is placed in series
with the capacitor. The voltage output is taken
across the resistor and is proportional to the
current flowing through the circuit. This circuit
is the same as the high-pass filter shown in A
of figure 48, and is known as an R-C differen-
tiator.

¢. EFFECT OF TIME CONSTANT.

(1) Any high-pass R-C circuit which has
a short time constant compared with
the time periods of the applied wave-
form acts as a differentiator. In a
short time-constant circuit, the ca-
pacitor charges as fast as the applied
voltage can increase. The basic voltage
equation is E equals ez plus eq. Since
o increases as fast as E' (except at the
beginning), the capacitor voltage be-
comes much greater than the re-
sistance voltage.

(2) The current flow in the circuit is a
function of both the capacitance and
and the resistance and depends on the
relative magnitudes of ez and e;. When
€¢ is much larger than e, the current
in the circuit follows the basic capaci-
tance equation given in the previous
paragraph. When R is increased, eg
becomes larger, and the circuit acts
less as a differentiator since R has a
greater effect on the current flow. The
current flowing through R is propor-
tional to the voltage across it, not to
the rate of change of that voltage (¢
equal to E/R). Therefore, as R and e
increase and the time constant is
longer, the current in the circuit tends
to become directly proportional to the
applied voltage, rather than to the
change in this voltage. These effects
can be understood by considering the
waveforms in an R-C differentiator

- circuit as the time constant is varied.

63. R-C Differentiator with Short Time
Constant

a. The pulse in A of figure 52 is applied to an
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R-C differentiator circuit (C of fig. 57). R is
100 ohms and C is .001 uf, and the time constant
is .1 usec. At the first instant, there is no charge
on the capacitor, and the full applied voltage
appears across the resistor. At .1 usec, the
applied voltage is equal to .1 volt, and the cur-
rent is .1/100, or .001 ampere. This corresponds
to a charge of .001 coulomb per second, or 1
times 10-? coulomb per usec. The rate of voltage
charge per usec due to this current is then 1
times 10-? divided by .001 times 10-%, or 1 volt.
Since the applied voltage also is increasing at
a rate of 1 volt per usec, the current cannot
increase any further.

b. From .1 usec to 10 usec, the current is
maintained at .001 ampere and the output
voltage is .001 times 100, or .1 volt. At 10 usec,
E is 10 volts and e, is about 9.9 volts. E stays
at a constant value from 10 to 40 usec and the
rate of change is zero. The output voltage then
drops to zero after about .1 usec, which is the
time required to charge C from 9.9 to 10 volts.
The output voltage remains at zero until the
end of the duration time (40 usec).

¢. The voltage decays at a rate of .5 volt per
usec. At the beginning, the full drop in applied
voltage exists across R, and the discharge cur-
rent in the circuit is primarily a function of E.
At .1 usec, the voltage drops .05 volt, and the
current is .05/100, or .0005 ampere. The rate of
capacitor voltage decrease is .0005 times 10-¢
divided by .001 times 10-% or .5 volt per usec.
Therefore, the capacitor discharges at the same
rate that the applied voltage decreases, and the
current cannot become larger. The output
voltage, therefore, stays at .0005 times 100, or
.05 volt for the entire duration period. It rapidly
becomes zero at 60 usec, when the applied
voltage becomes zero. Hence, with the exception
of the beginning and end of the rise and decay
times, this circuit acts as an ideal differentiator
with output similar to the one shown in B of
figure 57.

64. R-C Differentiator with Long Tim

Constant !
(fig. 58)

a@. An R-C differentiator is considered to have
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a long time constant if it is equal to one-half
the smallest waveform time. For example, the
pulse shown in A of figure 52 has a rise time of
10 usec, a duration of 30 usec, and a decay time
of 20 usec. The rise time is, therefore, the
shortest waveform time period. An R-C dif-
ferentiator time constant of 5 usec is considered
long for this pulse.

b. This pulse now is applied to an R-C dif-
ferentiator with R of 500 ohms, C of .01 pf, and
the time constant is 5 usec. When the pulse first
is applied to the circuit, the entire input voltage
appears across R. At 1 usec, E is 1 volt, and the
current in the circuit increases to 1/5600, or .002
ampere. The rate of capacitor charge is .002
times 10-¢ divided by .01 times 10-%, or .2 volt
per usec. Since the applied voltage is increasing
at a rate of 1 volt per usec, the capacitor charge
rate is smaller. These values are tabulated
below.

Table VIII. Voltage and Current in Long Time-Constant
Differentiator Circuit.

(ii’:; E(v) eg(v) ep(v) |i,(amp) R(avtepz: z‘;:ga
3 1 0 1 002 2
2 2 2 1.8 .0036 .36
3 3 5 2.5 | .0049 49
4 4 1 3.0 | .0059 .59
b b 1.6 3.4 | .0068 .69
6 6 2.3 3.7 .0073 13
7 7 3.1 3.9 .0079 9
8 8 3.8 4.2 .0083 .83
9 9 4.7 4.3 .0086 .86

10 10 5.5 4.5 .0089 .89
11 10 6.4 3.6 | .0071 M1

¢. The current in the circuit increases to .01
ampere before the capacitor charge becomes
equal to 1 volt per usec. Because of the large
resistor, the current cannot possibly increase
to .01 ampere until 5 usec after the pulse is
applied to the circuit. During the first 5 usec,
however, current has been flowing in the cir-
cuit, so that a voltage of 1.6 volts exists across
C. Hence the full input voltage, E, does not exist
across R. The voltage across R is 8.4 volts, and
the current flow is .0068 ampere.

d. At 7 usec, the applied voltage has in-
creased to 7 volts, but the capacitor voltage also
has been increased and is 8.1 volts. The voltage
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across R has increased to 3.9 volts and the cur-
rent to .0079 ampere. At 10 usec, the applied
voltage is 10 volts and the capacitor voltage is
5.5 volts. The voltage across R is 4.5 volts, and
the current is .0089 ampere. With the time con-
stant equal to one-half the rise time, the ca-
pacitor never charges as fast as the applied
voltage increases and the current never reaches
the maximum permitted by the capacitor. The
resultant curve (fig. 58) during this period of
time is a rising voltage which bears little re-
semblance to the ideal differentiated curve.

R

0 20 30 40\ 50 60 70—80 90

~—eg(VoLTS)—-
o

TIME (USEC)—> T™ 669-58

Figure 58. Output of differentiator with large time
consgtant.

e. After 10 usec, the capacitor continues to
charge toward the applied voltage (10 volts)
following the universal time-constant curve.
For practical purposes, it reaches 10 volts, at
35 usec. The voltage across the resistor, from
10 to 30 usec, decreases as the capacitor voltage
increases (fig. 58).

f. The time constant of the circuit is one-
quarter of the decay period. The circuit acts
now more like a differentiator circuit than dur-
ing the rise time. At 42 usec, the applied voltage
has dropped 1 volt, and the voltage across the
resistance is about —1 volt (negative because
of discharge current). The current is 1/500, or
.002 ampere, resulting in a discharge rate of
.2 volt per usec. The rate of applied voltage de-
crease is .b volt per usec, so that current can
still increase.
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g. At 47 usec, the applied voltage is 8.5 volts
and the capacitor voltage is about 1 volt. The
voltage across R is 2.5 volts, resulting in a cur-
rent of .005 ampere, and a capacitor discharge
rate of .5 volt per usec. This rate is equal to the
decay rate and, therefore, the current cannot
decrease any further. The output voltage is
maintained at 2.5 volts until 60 usec. The input
then is zero, and the output decreases to zero in
accordance with the universal time-constant
discharge curve. The complete output of this
differentiator to the pulse input (A of fig. 52)
is shown in figure 58.

k. Compare the output voltage obtained in B
of figure 57 and figure 58. Increasing the cir-
cuit time constant (by increasing the re-
sistance) has two effects. First, the circuit acts
less like the ideal differentiator; second, a
higher output voltage is obtained. If the time
constant is increased further, differentiating
action virtually ceases. For example, the output
does not reduce to zero over the duration time
(A of fig. 53). In most differentiator circuits, it
is important that the output does drop to zero
shortly after the constant-amplitude duration
period starts.

65. Inductive Differentiator

a. BASIC EQUATION.

(1) An inductor can be used as a differen-
tiator because the voltage developed
across it is equal to the rate of change
of current, di/dt, times the inductance,
L. This output voltage is negative with
relation to the current change; that is,
if the current is increasing, the output
voltage is negative, or e, = —L di/dt.
The output is in volts when di/dt is
expressed in amperes per second and
L is in henrys. The output is also in
volts if di/dt is expressed in amperes
per usec and L in ph.

A current pulse increasing at the rate
of .1 ampere per sec is driven through
an inductor with L of 5 henrys. The
voltage across this inductor is then —
(.1 times 5), or —.5 volt.

As another example, the current de-
creases at a rate of .01 ampere per

(2)

(3)
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usec through a 50-mh inductor, which
is the same as 50,000 ph (micro-
henrys), so that the voltage developed
across the inductor is

— [(.01) x (50 X 102) ], or 500
volts.

b. NEED FOR RESISTANCE. To obtain a dif-
ferentiated output from an inductance, the cur-
rent through the inductance must rise and de-
cay as rapidly as the applied voltage. By placing
a large resistor in series with the applied
voltage the time constant L/R is made very
small. This causes the voltage developed across
the inductance to vary almost directly with the
applied voltage, since ¢;, is equal to the rate of
change of current times the inductance. The
rate of change of current is now fast because
the time constant is small, and the current curve
is the same as the voltage curve. The resultant
circuit acts as a current generator across L, and
is called an R-L, or inductive, differentiator.

¥ R

E | e T
L eL

& Ltk

T™M 669-59

Figure 59. R-L differentiator.

¢. EFFECT OoF TIME CONSTANT. When the
time constant is small compared with the time
periods of the applied voltage, the circuit cur-
rent can rise or decay as rapidly as the applied
voltage. If the time constant is increased suf-
ficiently, the current does not follow the applied
voltage curve because it cannot change as fast
as this curve. Then the voltage across the in-
ductance is mot proportional to the rate of
voltage change, although it is still proportional
to the rate of current change. The circuit acts
less like a differentiator. These effects are
illustrated below by working out two response
curves.
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66. Time Constant Short Compared to
Rise Time

a. The pulse shown in A of figure 52 now is
applied to the R-L circuit shown in figure 59.
R is 10,000 ohms, L is 10 mh, and the time con-
stant is 1 usec. When the pulse is first applied
to this circuit, the full input voltage is de-
veloped across L. This generates a back emf and
delays the flow of current. At 1 usec, the applied
voltage is 1 volt. The voltage across the induct-
ance is about —1 volt. The rate of current in-
crease in the circuit, di/dt, caused by a 1-volt
potential across L, is 1/10 times 10-3, which is
.1 times 10° ampere per second, or .1 ma per
usec.

b. From 1 to 2 usec, the current increases to
about .1 ma, and the voltage drop across R is .1
times 10,000, or 1 volt. The voltage across the
inductance at 2 usec is, then, 2 volts (applied
voltage) minus 1 volt (¢R drop), or 1 volt. The
current, therefore, continues to increase at a
rate of .1 ma per usec and the voltage across the
resistance increases at the same rate as the
applied voltage. Hence, the voltage across L re-
mains constant from 1 to 10 usec (fig. 60). This
voltage is negative due to the increasing cur-
rent.

b
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Figure 60. Output of differentiator with low time
congtant.

c. At 10 usec, the applied voltage remains at
10 volts. The current in the circuit rises from
.9 ma to about 1 ma at 11 usec and stays at this
value. The voltage across the inductance de-

clines to zero during this time, since e;, becomes
zero when the current is constant.

d. At 40 usec, the applied voltage decays at
a rate of .5 volt per usec. At first the entire
voltage appears across L. At 41 usec, the volt~
age across L is .5 volt, and the current drops at
a rate of 5/10 times 103, or .05 ma per usec.
The voltage across the resistance, therefore, de-
clines at a rate of .5 volt per usec, the same as
the decay rate. The inductance voltage is main-
tained at .5 volt from 41 to 60 usec. The current
declines to zero from 60 to 61 usec (fig. 60).
Note that the output voltage waveform obtained
is similar to that of the short time-constant
R-C differentiator.

67. Time Constant Equal to One-Half
Rise Time

a. When the time constant of the L-R circuit
is increased to 5 usec by decreasing R to 2,000
ohms, the voltage across the resistance cannot
increase as fast as the applied voltage. At 1
usec, for example, the current increases at a
rate of .1 ma per usec. A current of .1 ma across
a 2,000-ohm resistance corresponds to an @R
drop of only .2 volt. Therefore, at 2 usec the
voltage across the inductance decreases to 2
minus .2, or 1.8 volt, and the current increases
at the higher rate of .18 ma. It is possible to
obtain the response of the circuit to the entire
pulse voltage in this manner. Except for
polarity, the R-L differentiator is essentially
the same as the R-C differentiator (fig. 58).

b. The effect of the time constant in an R-L
differentiator circuit is exactly the same as it i8
in the R-C differentiator circuit. The major dif-
ference between the two circuits is that in the
R-L circuit the resistance is increased, while in
the R-C it is decreased, to reduce the time con-
stant. Also, the output voltages are opposite in
polarity.

Section Ill. INTEGRATING CIRCUITS

68. Integrating Circuits

@. DEFINITION OF INTEGRATING CIRCUIT. An
integrating circuit is a storage circuit in which
the output voltage is proportional to the total
amount of energy stored. For example, the volt-
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age across a capacitor is proportional to the
total charge in it. The greater the amount of
charge, the higher the amount of energy stored,
and the higher the voltage across the capacitor.
If a constant amount of current (flow of charge
per second) is supplied to a capacitor, the volt-
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age across the capacitor increases at a constant
rate. The voltage across the capacitor builds
up, or is integrated, and the output is taken
across the capacitor in an R-C circuit. Simi-
larly, the current in an inductor-is proportional
to the total voltage across it. Therefore, if a
constant voltage is applied across an inductor,
the current in the inductor increases at a con-
stant rate. The output of the R-L integrator is
taken across the resistor.

b. OUuTPUT FOR COMMON WAVEFORMS. When
a constant, or d-c, voltage is applied to an in-
tegrator, the output voltage increases in a
straight line (A of fig. 61). The rate of increase
of the output voltage is proportional to the mag-
nitude of the d-c voltage. When a constantly
increasing voltage is applied to the integrator,
as in B, the rate of storage increases continu-
ously and the resultant voltage has a parabolic
waveform. The storage voltage due to a sine-
wave input varies sinusoidally, but is shifted in
phase 90°, as in C.

¢. OUTPUT FOR RECTANGULAR PULSE. When
a rectangular pulse is applied to an integrator,
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Figure 61. Integrator waveforms.
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the output is a triangular pulse (fig. 62). The
voltage rises linearly over the duration of the
pulse. It-then declines along a similar curve
when the pulse voltage becomes zero again.

+0¢
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>
£ 0 10 20 30 40 50 .60
TIME (USEC)—
INPUT A
wn
80' 0 1000 120) 1DIBONEH 40 ALE0 BINE0
> TIME (USEC)—=
OUTPUT B

T™M 669-62
Figure 62. Integrator output-rectangular pulse input
(stable condition).

69. Types of Integrating Circuits

a. There are two basic types of integrating
circuits (fig. 63). They are the R-C circuit in
A and the R-L circuit in B. These circuits act
as integrators when the time constant is long
with relation to the maximum input waveform
period. A long time constant means that the
circuit operates over the initial sections of the
charge and discharge curves. These curves are,
essentially, equal to a straight line as long as
the circuit time constant is 10 times the maxi-
mum waveform period. When the circuit time
constant is reduced, a section of the resultant
curve becomes curved. This indicates that the
circuit is not an ideal integrating circuit.

R
E
CI {
R-C CIRCUIT R-L CIRCUIT
A B
TM 669-63
B Figure 68. Types of integrators.
n



b. For a given time constant, both the R-L
and R-C integrating circuits provide, theoretic-
ally, similar output voltages. Therefore, it is
necessary to review the characteristics of only
one of these circuits. All of the principles
evolved are equally true for both integrators.
Since the R-C integrator is used widely, this
circuit is described in detail.

70. Time Constant Long Compared with
Duration Time

a. The time constant of the integrating cir-
cuit is related to the longest period of the input
waveform. In most pulse waveforms, the dura-
tion period is the longest time. Since the rise
and decay times are short in comparison with
the duration period, and since the time constant
is very large, the pulse rise and decay times
have little effect upon the output of the inte-
grator circuit.

b. The rectangular pulse in A of figure 62 is
applied to an R-C integrator with a time con-
stant of 300 usec. R is 30,000 ohms and C is
.01 pf. At the first instant, the capacitor voltage
is zero so that the current in the circuit is equal
to E/R, which is 10/30,000, or .33 ma. The volt-
age across the capacitor resulting from a .33-ma
current increases at a rate of Q/C of .33 times
10-°/.01 times 10-%, or .033 volt per usec. At 10
usec, the voltage across the capacitor is about
.33 volt. This voltage is not sufficient to de-
crease the current in the circuit appreciably.
The voltage across the resistor is 10 minus .33,
or 9.67 volts, and the current is then .32 ma.
This current decrease is negligible and can be
neglected for most practical purposes. The cur-
rent decrease becomes appreciable only when
the capacitor can charge to 1 volt. Up to 30 usec,
therefore, the current can be assumed to be con-
stant, and the capacitor voltage increase can be
assumed to be linear (fig. 64).

¢. At 30 usec the applied voltage drops to
zero. The capacitor starts to discharge along

+1
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Figure 64. Large time-constant integrator output.
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the standard discharge curve. The discharge
curve is much more gradual than the charge
curve, and the capacitor voltage reaches .9
volt at about 60 usec and .37 volt at 300 useec.
In the integrator circuit, an output voltage is
obtained for a period of time many times
greater than the pulse duration time. Hence,
the time between successive pulses must be
very large, or the output of one pulse will add
to the succeeding pulse.

d. When the time between successive pulses
is too short, a charge still exists in the capa-
citor when the second pulse appears. The
charge in the capacitor increases until the
amount of charge added during the duration
period is equal to the discharge during the
pulse rest period (par. 56d). For a 10-volt,
30-usec square wave, the output will have the
same shape as in figure 62 when the stable con-
dition is reached, but the triangular wave will
vary from --.5 volt to —.5 volt instead of from
zero to 1 volt.

71. Time Constant Equal to Duration
Period

a. The time constant of this R-C integrator
is reduced to 30 usec by decreasing the value of
R to 3,000 ohms. The initial current with this
value of resistance is 10/3,000, or 3.3 ma. The
rate of capacitor charge is then 10 times as
much as it was previously, or .33 volt per usec.
The capacitor charge is approximately linear
for only about 8 usec, and the capacitor volt-
age is equal to 1 volt.

b. With the capacitor voltage equal to 1 volt,
the current drops to 9/3,000, or 3 ma, and the
capacitor rate of charge decreases to .3 volt
per usec. The output voltage, therefore, no

8..
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Figure 65. Large time-constant R-C integrator output.

AGO 1445A



longer increases linearly with relation to time,
and becomes more curved as the time increases
(fig. 65).

c. At 30 usec, the capacitor voltage is only
6.4 volts, since the capacitor increase is not
linear for the entire period of time. The ap-
plied voltage drops to zero, and the capacitor
discharges in accordance with the standard
discharge curve. At 80 usec (fig. 65) there is
still charge in the capacitor. At 120 usec, the
capacitor voltage reduces to about .3 volt, and
it does not drop to .1 volt until about 160 usec.

Note that the output voltage remains appre-
ciable in this circuit for a period of time four
times greater than the duration time,

d. Compare the curves given in figures 64
and 65. Note that the time constant affects the
response in two ways. First, as the time con-
stant increases, the circuit acts less like an
ideal integrator; second, increasing the time
constant also increases the output voltage which
is desirable in many applications. The time
constant used in practical circuits attempts to
compromise between these two effects.

Section 1VY. D-C RESTORERS

72. Introduction

a. In the applications considered thus far,
the time constant had one specific value for
any given current and affected various por-
tions of the applied voltage differently. To ob-
tain a particular output it is desirable occa-
sionally to have one time constant over one
portion of the input voltage waveform, and
another time constant for another portion of
this waveform.

b. The time constant of a circuit can be
varied through the use of an element such as
a diode. When the voltage on the plate of a

|
b I\

| ©

diode is positive with relation to its cathode,
the diode acts as a low resistance, and the cir-
cuit time constant is short (A of fig. 66). When
the voltage on the plate is negative with rela-
tion to its cathode, the diode acts as a high
resistance, and the circuit time constant is
large, as in B. The d-c¢ restorer, described
below, illustrates the use of a varying time
constant to obtain a desired output voltage.

73. Definition of D-C Restorer

a. D-C COMPONENT OF WAVEFORM. A non-
sinusoidal waveform is composed of a d-c volt-
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Figure 66. Resistance of diode.
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age plus a number of harmonics. The pulse
series (A of fig. 67) shows that the d-c com-
ponent is equal to the average value of the
pulses. For example, each pulse is 50 volts
for one-half the time and zero for the other
half. The average value is, therefore, --25
volts.

+ 50
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+' 25
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D-C COMPONENT REMOVED
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TM 669-67

Figure 67. Removal of d-¢c component.

b. COUPLING CAPACITOR EFFECT.

(1) Generally, circuits using vacuum tubes
have a coupling capacitor between the
plate of one tube and the grid of the
next. This capacitor is used to pre-
vent the high d-c plate voltage from
being applied to the grid of the fol-
lowing tube. When a pulse series is
being coupled from the plate of one
tube to the grid of the next, this cou-
pling capacitor also removes the d-c
component of the pulse series.

(2) For example, assume that the positive
pulse series (A of fig. 67) is passed
through a capacitor. The d-c¢ com-
ponent is removed, the pulse extends
from —25 volts to -}-25 volts, and
the average value is zero, as in B.
This effect was shown previously in
figure 54.

¢. D-C RESTORER. In many applications, re-
moval of the d-c component is not desirable.
For these applications, a d-c restorer circuit
is used which reapplies a d-c voltage to the out-
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put of the blocking capacitor in such a manngy
that the original d-¢ component of the pulge-
form is obtained.

74. Positive Diode D-C Restorer

a. D-c restorer circuits can be used to re.
store either a positive or negative d-c voltage,
The circuit shown in A of figure 68 is a posj.
tive d-c restorer. The values of R and C pro.
vide a long time constant compared with the
waveforms applied to the circuit. HOWeVer,
when the voltage across the resistor is posj.
tive, the plate is positive with relation to the
cathode, the diode acts as a low resistance, ang,
since it parallels R, the time constant of thig
circuit is very short.
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Figure 68. Positive d-c restorer.

b. The series of pulses in A of figure 67 is
applied to a d-c restorer that has a time con-
stant 10 times that of the duration period.
When the first pulse is applied, all of the voltage
appears across R, since there is no charge in
C. The diode acts as a very high resistance
during this time, since the cathode is positive
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with relation to the plate. Therefore, the cir-
cuit has a large time constant and the capaci-
tor charges to only 5 volts over the duration
time. -The output voltage then drops to 45
volts (B of fig. 68).

c. When the applied voltage drops to zero,
the capacitor starts to discharge through R.
This develops a —5 volt potential between the
cathode and plate of the diode since the dis-
charge current flows in the opposite direction.
The diode plate is now positive with relation
to the cathode and acts as a low resistance. The
capacitor discharges rapidly because of the
short time constant and, when the next pulse
is applied to the circuit, no charge exists in
the capacitor. The same procedure is repeated.
Consequently, the capacitor loses all the charge
during the pulse rest period that it gained over
the duration time. The result is the series of
pulses in B of figure 67.

d. In the d-c restorer circuit, the capacitor
discharges completely between pulses because
of the low time constant provided by the diode
when it is conducting. This circuit thereby in-
corporates all the advantages of good pulse
reproduction provided by the large time-con-
stant, high-pass filter, at the same time elimi-
nating its main disadvantage of a long dis-
charge period.

e. If the diode is not placed across the re-

sistance, the circuit remains a large time-con-
stant, high-pass R-C circuit. The capacitor dis-
charges very slowly and there is some charge
on it when the succeeding pulse is applied to
the circuit. This charge adds to that normally
obtained during the duration time (fig. 54).
For example, the capacitor voltage is 8 volts
instead of 5 volts at the end of the second pulse.
The output voltage then becomes 42 volts in-
stead of 45 volts. During each succeeding pulse,
the capacitor charges to a higher voltage until
the average voltage level is reached.

f. For the pulse series shown in A of figure
67, the average value is 25 volts, and hence the
capacitor charge eventually reaches 25 volts.
With 25 volts across the capacitor, the charge
and discharge curves are exactly alike, since
there is a --25-volt potential during pulse dur-
ation, and —25 volts during the rest period.

g. This procedure of changing the time con-
stant at the desired time is used in conjunction
with other circuits to maintain a desired por-
tion of the output waveform and eliminate an
undesirable feature. For example, the long dis-
charge period of the integrator (fig. 65) can be
reduced by use of such a circuit. This can be
accomplished by taking the output of the d-c
restorer (A of fig. 68), across the capacitor.
The sawtooth voltage is thereby obtained, as

in C.

Section V. SUMMARY AND QUESTIONS

75. Summary

a. The time constant indicates how rapidly
current or voltage in a circuit can change.

b. A short time constant can be defined as
less than one-seventh the value of a given
reference time.

¢. A long time constant is over seven times
the reference time.

d. An R-C circuit is called a low-pass filter
when the output is taken across the capacitor.
It is a high-pass filter when the output is taken
across the resistor.

e. Changing the time constant of a high-
pass filter changes the waveshape of the output
voltage; the longer the time constant the more
closely the original waveshape is reproduced.
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f. Changing the time constant of a low-pass
circuit also changes the waveshape of the out-
put voltage; the shorter the time constant, the
more closely the original waveshape is repro-
duced.

9. A differentiator is a circuit whose output
voltage is proportional to the rate of change of
the input voltage.

h. A capacitor, an inductor, or a transformer
can be used to obtain the differentiating action.

i. A short time-constant, high-pass R-C cir-
cuit is known as an R-C differentiator.

7. The shorter the time constant of the R-C
differentiator, the more closely the output volt-
age follows the ideal differentiated output.

k. A shorter time constant also means that
a lower output voltage is obtained.
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I. A short time-constant R-L circuit, with
output voltage taken across L, can be used as
a differentiator.

m. An R-L differentiator acts like an R-C

differentiator when the same time constant is
used.

n. An integrating circuit is a storage cir-
cuit in which the output voltage is proportional
to the total amount of energy stored.

0. A long time-constant, low-pass R-C cir-
cuit, with voltage output obtained across R, can
be used as an integrator.

p. The longer the time constant of the inte-
grator, the more closely the output approaches

ideal integration, and the lower the output volt-
age.

g. By changing the time constant of a circuit
for different portions of a waveshape, it is pos-
sible to achieve a desired output voltage. A
circuit that does this is the d-c restorer.

r. A d-c restorer circuit is used to restore

the d-c component removed by a coupling
capacitor.

s. In this circuit a diode is placed across the
output. The diode acts as a low resistance when
the plate is positive with relation to the cath-
ode, and as a low resistance when the plate is
negative with relation to the cathode.

t. In a positive d-c restorer, the circuit has
a long time constant when the cathode is posi-
tive with relation to the plate, and a short time
constant when the cathode is negative with re-
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lation to the plate. The converse is true for a
negative d-c restorer.

76. Review Questions

a. How does the time constant indicate with
reference to a pulse voltage?

b. What is the output waveform of a short
time-constant high-pass R-C circuit to a rec-
tangular pulse voltage?

¢. How does increasing the time constant of
a high-pass filter affect the pulse waveform?

d. What time constant provides the best
pulse reproduction in a low-pass R-C filter?

e. Define a differentiating circuit.

f. What is resistance used for in an R-C dif-
ferentiator?

g. What is the effect of increasing the time
constant in an R-C differentiator?

h. Describe the output of an R-L differenti-
ator with a time constant of 2 usec to a pulse
with a rise time of 10 usec, a duration time of
50 usec, and a decay time of 4 usec. R is 2,000
ohms and L is 4 mh.

7. What is an integrating circuit?

4. What types of integrating circuits are
commonly used?

k. What is the relative time constant of an
R-C integrator?

. What principle does a d-c restorer illu-
strate?

m. Why is it desirable to have a long time
constant while the positive pulse is applied to
a positive d-c restorer, and a short time con-
stant after the pulse is removed?
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CHAPTER 7
FREQUENCY ANALYSIS OF WAVEFORMS

77. Introduction

Until transient-response methods became
widely used, nonsinusoidal waveforms were
analyzed by the frequency-response method,
and this method still is used to analyze non-
sinusoidal waveforms. In this chapter, there-
fore, the output waveforms from R-C and R-L
circuits will be obtained by means of the fre-
quency-response method. These waveforms
then will be compared with those obtained ‘us-
ing transient-response methods.

78. Fourier Theorem on Waveform
Composition

a. FOURIER THEOREM. The theorem that any
nonsinusoidal waveform can be represented
by a series of harmonically related sine waves
plus a d-c voltage first was developed by a
French physicist named Joseph Fourier. Con-
sequently, this theorem is called the Fourier
theorem and the series of sine waves which
comprise the nonsinusoidal waveform is called
the Fourier series of the waveform.

b. AMPLITUDE AND PHASE. The Fourier
series indicates not only the frequencies of the
harmonic components, but also the amplitude
and phase of each component. In the graphical
development of a sawtooth from a series of
sine waves (fig. 2), the amplitude of each har-
monic is selected carefully to obtain the desired
result. If different amplitudes are used, a dif-
ferent waveform results. Therefore, it is im-
portant to know not only the harmonic content
of the waveform, but also the amplitude of
each component. Similarly, the phase relations
between the various harmonic components must
be correct in order to reproduce the waveform.

¢. SINE-WAVE SYMBOLS. The meaning of the
mathematical term C sin (wt 4 6) is essential
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for the understanding of the Fourier series.
In this term, the symbols have the following
meaning: B S
(1) sim: The symbol 8in means that the
waveform varies sinusoidally and is
a function of the sine of an angle.
(2) w: The symbol w represents the angu-
lar velocity of the sine wave, and is
equal to 2-f. An angular velocity, w,
corresponds to the fundamental fre-
quency or f, 2 w corresponds to the
second harmonic, or 2f, and so on.
(3) C: The symbol C indicates the maxi-
mum amplitude of the sine wave, and
is a constant for each harmonic.
(4) 6: The symbol ¢ is the phase angle
of the sine wave at ¢ — 0. In figure
69, for example, one sine wave has
zero amplitude at ¢ = 0, and 6 is zero.
The other sine wave starts at its maxi-
mum negative value at £ = 0, and 6 is
—90°, or —r/2 radians. Note that the
phase angle can be expressed either in
degrees or in terms of radians, where
360° = 2r radians. In the Fourier
series, it is often convenient to express
g in terms of = radians. For example,
90° = /2, 180° = 7, and 360° = 2,
etc. The term radian usually is
omitted.
(6) The term 10 sin (200xt -+ =/2) repre-
sents a waveform which varies sinu-

soidally at a frequency of g(z),,& ,or100

cps. It has a maximum amplitude of
10 volts, and it starts at ¢ — 0 with a
phase angle of »/2, or 4-90°.

d. FOURIER SERIES. The Fourier series for
nonsinusoidal periodic waveforms states rela-
tions between the frequency, amplitude, and
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phase of the harmonic components. Mathemati-
cally, the Fourier series is written in the fol-
lowing manner:

St = Co-{—Clsin (Wt+01) + CzSin (2Wt

+ 02) + Ca sin (3 wt + 03) + &4 + Cn

sin (nwt 4 6,).
S is the amplitude of the nonsinusoidal wave
at any time ¢. C, is the d-c component of the
wave. C; is the maximum amplitude of the fun-
damental wave, or first harmonic. Sin wt is the
fundamental sine wave, and 6, is the phase of
the fundamental sine wave. C; is the maximum
amplitude of the second harmonic, sin 2 wt is
the second harmonic sine wave, and 6, is the
phase of the second harmonic. The number in
each term (1, 2, 8, . ..n) indicates the frequency
of the harmonic compared to the fundamental.
For example, sin (8 wt - 6;) is the third har-

monic, sin (nwt - 6,) is the nth harmonic sine
wave.

79. Symmetry of Waves

@. GENERAL. A number of methods are used
to determine the maximum amplitudes of the
harmonics (C,, C;, C,, and so on) in the Fourier
series of any particular waveform. A large
number of these coefficients can be determined
by inspection of the graph of the waveform.

b. ZERO-AXIS SYMMETRY. When a periodic
waveform has the same shape above and below
the zero-amplitude axis, the waveform is said
to have zero-axis symmetry. The waveform
shown in figure 70 is an example of zero-axis
symmetry. The amplitude is 42 at ¢ = 0, and
it declines to zero amplitude at ¢ = 2. The wave
passes through zero to —2 at ¢ = 4. The posi-
tive portion of this waveform is the same as
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Figure 70. Types of symmetry.

the negative portion. Consequently, it has zero-
axis symmetry.

¢. QUARTER-WAVE SYMMETRY. A waveform
has quarter-wave symmetry when the quarter-
waves in a half-cycle are symmetrical (B of
fig. 70). The half-cycle occurs from zero to
t = 4. If an axis is drawn down the center of
this half-cycle (dotted line in B), the two quar-
ter-waves are exactly alike. Similarly, when a
vertical axis is drawn at { — 6, the quarter-
wave from 4 to 6 is symmetrical to the quarter-
wave from 6 to 8. Consequently, this waveform
has quarter-wave symmetry.

d. MIRROR SYMMETRY. A waveform has half-
wave, or mirror, symmetry, as in C, when the
positive half-cycle is symmetrical to the negative
half-cycle around the zero-amplitude axis. The
positive half-cycle from zero to 4 is exactly the
same as the negative half-cycle from 4 to 8, ex-
cept for change in polarity. Note that the wave-
form in B, which has quarter-wave symmetry,
does not have half-wave symmetry because the
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positive half-cycle is not the same as the nega-
tive half-cycle.

80. Effects of Symmetry on Harmonic
Composition

Either the d-c component, or a large number
of harmonic-frequency components can be elimi-
nated from the waveform analysis if the wave-
form has a given symmetry.

a. ZERO-AXIS SYMMETRY EFFECT.

(1) The effect of zero-axis symmetry is
shown in figure 71. In this figure, two
sine waves of voltage are plotted. Sine
wave 1 is symmetrical about the zero
axis. Sine wave 2 has exactly the
same shape, but is displaced 10 volts
above sine wave 1. Sine wave 2 is
not symmetrical around the zero-volt-

age axis.

+

30+ SINE-WAVE 2

20+ SINE-WAVE 1
| e
n /
()
o \/
T 10t
flac

o-.

3-— TIME ™™ 669-71

Figure 71. Effect of d-c component.

(2) If a d-c voltage of 10 volts is added
to sine wave 1, the two sine waves
coincide. Hence, sine wave 2 equals
sine wave 1 plus 10 volts. The addi-
tion of a d-c voltage to a sine wave does
not distort its waveshape in any way.
The d-c voltage can only raise (when
positive) or lower (when negative)
the position of the curve with relation
to the zero-voltage axis.

(8) When a waveform is symmetrical
with relation to the zero-voltage axis,
the d-c voltage component is equal to
zero. Sine wave 2 is symmetrical about
the axis formed by the dotted line at
10 volts. A waveform that is sym-
metrical about a voltage axis other
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than zero has a d-c component equal to
the voltage at the axis of symmetry.

b. EFFECT OF EVEN HARMONICS ON WAVE-
FORM SYMMETRY. A and B of figure 72 shows
the resultant curves when a second harmonic
is added to the fundamental sine wave in dif-
ferent phase relationships. The resultant wave-
forms do not have half-wave symmetry. Wave-
forms lacking half-wave symmetry are also
obtained when the fourth, sixth, or any even-
order harmonic is added to the fundamental.
From this it can be deduced that an even-order
harmonic causes the resultant curve to lack
half-wave symmetry.
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Figure 72. Effect of even harmonics.

¢. EFFECT oF Opp HARMONICS ON WAVE-
FORM SYMMETRY. A and B of figure 73 shows
the resultant curves when a third harmonic is
added to the fundamental in different phase
relationships. Each curve has half-wave sym-
metry, but only the curve where the phase dif-
ference is zero (both waves starting with zero
amplitude at { — 0) has quarter-wave sym-
metry. Half-wave symmetry is obtained when
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the fifth, seventh, or any odd-order harmonic
is added to the fundamental. An addition of
odd harmonics always produces a half-wave
symmetrical waveform.
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Figure 73. Effect of third harmonic.

d. ANALYSIS FROM SYMMETRY.

(1) A waveform that has zero-axis sym-
metry does not have a d-c component.
If the waveform has symmetry about
another horizontal axis, the d-c com-
ponent is equal to the value at this
axis.

(2) A waveform that has half-wave sym-
metry has no d-c component and no
even-order harmonic component.

(3) A waveform that has both half- and
quarter-wave symmetry has no d-c
and no even-order harmonic com-
ponent, and all its odd-order har-
monics are in phase (start with zero
amplitude at ¢ = 0).

(4) A waveform displaying half-wave
symmetry about a horizontal axis
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other than zero has a d-c component
equal to the value at the axis of sym-
metry, but it does not have any even-
order harmonics.

81. Determination of Coefficients Not
Equal to Zero

a. GENERAL.

(1) From symmetry, it is possible to note

which of the Fourier series coefficients

- (C,, Cyq, .. .C,) are equal to zero. De-
termination of coefficient values that
are not equal to zero is more difficult.
The d-c component, C,, can be worked
out by examination of the waveform.
A number of methods, such as the
graphical, numerical, and envelope,
can be used to evaluate the harmonic
coefficients. However, all of these
methods involve long and cumber-
some mathematical procedures. Hence,
they are rarely used.

(2) In practice, these coefficients are ob-
tained by means of an electronic in-
strument or a Fourier series graph.
The instrument, known as a spectrum
or harmonic analyzer, is capable of
separating and displaying the ampli-
tude and phase of each harmonic con-
tained in a nonsinusoidal waveform.
When available, a Fourier series
graph is used which plots amplitude
versus number (1, 2, ..n) of har-
monic. Several of these graphs are
described below.

b. D-C COMPONENT.

(1) Definition of average value. The d-c
component of any periodic wave is
equal to the average amplitude of the
wave during 1 complete cycle. The
average amplitude is equal to the sum
of all values during 1 eycle divided by
the number of values taken. In a wave
displaying half-wave and zero-axis
symmetry, 1 half-cycle is equal and
opposite to the next half-cycle. The
sum of 1 cycle is, therefore, zero.

(2) Square wave. In the square wave of
voltage (A of fig. 74) the amplitude
of the pulse, A, remains constant dur-
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ing the pulse width, P, and is zero
during the remainder of the cycle. The
time in usec, or period for 1 complete
cycle is designated as 7' and, in the
square wave, 2P — T. The average
value of a square wave is the ampli-
tude times P/T, or E,, = AP/T. Since
P/T is equal to one-half and the ampli-
tude is 4, F,, is equal to A/2. The d-¢
component is, therefore, A/2.

:
bt ]
+
ey el R e I -—-
]
o
38,
0 TIME ——»
SQUARE WAVE A
10
& i
w 21 A
o
o
> ..
Qs T gt 8
TIME (USEC) ——»
RECTANGULAR WAVE B

TM 669-74

Figure 74. D-c components of square and rectangular

(3)

waves.

Rectangular wave. In a rectangular
wave, the average amplitude, F,,, is
also equal to AP/T. For example, the
rectangular wave in B of figure 74 has
a pulse width of 5 usec, a period of 8
usec, and a maximum amplitude of 8
volts. F,, is, therefore, 8 times 5/8, or
5 volts.

¢. FOURIER SERIES GRAPHS.

(1) Square wave.
(a¢) In the Fourier series graph for a

AGO 1445A

square wave of voltage (A of fig.
75), the square wave displays zero-
axis symmetry, and has no d-c¢ com-
ponent. Since it has quarter-wave
symmetry, all phase angles (6;, 0.
...0,) are zero. It also has half-wave
symmetry, and all the even-har-
monic components are zero.

(b) The first term in the Fourier series

(2)

(3)

(1)

is Cy sin wt. It is shown, in A, that
the magnitude of the first harmonic
is 4A/P. If the square wave occurs
at a frequency of 1,000 cps, the first
harmonic is then a 1,000-cycle sine
wave with an amplitude of 4A4/P
volts. The third harmonic, occurr-
ing at a frequency of 3,000 cps (n
— 3), has an amplitude of 4A4/3P
volts. Similarly, the fifth harmonic
has an amplitude of 44 /5P volts.
Sawtooth woltage. In the Fourier
series graph for a sawtooth voltage,
in B, this wave has zero-axis sym-
metry so that the d-c component is
equal to zero. It does not have half-
wave symmetry, and the Fourier
series contains both even and odd har-
monics. It is shown that the funda-
mental sine wave has an amplitude of
4A/P volts. The second-harmonic
amplitude is 24/P volts, the third
harmonic is 44 /3P, and so on.
Triangular wvoltage. In the Fourier
series graph for a triangular wave, in
C, amplitude of the fundamental is
8A/P? volts, the third, seventh, and
eleventh harmonics are negative, and
the others are positive. Furthermore,
it is apparent that the magnitudes of
the higher harmonics of this wave-
form decrease much more rapidly than
the square- or sawtooth-voltage har-
monic magnitudes. This is due to the
fact that the triangular pulse rises and
decays more gradually. When there
is a sharp change in voltage, the
higher-order harmonics have a much
greater effect.

82. Frequency Response of R-C and R-L

Circuits

. GENERAL.

When a nonsinusoidal wave is applied
to a circuit containing inductance and
/or capacitance, it is necessary to ex-
press the nonsinusoidal voltage in
terms of a Fourier series in order to
use conventional impedance concepts
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oo R

(2)

(frequency-response method). It is
known that inductive reactance is
equal to 2«fL. The factor, f, in this
relation is the frequency of the signal
in pure sine waves. If f represents a
waveform that is not purely sinu-
soidal, the impedance relationship
2xfL is not true. Similarly, the capa-

A . 1
citive reactance 1s—m—, and f the

frequency, can represent only pure
sinusoidal waves.

The Fourier series makes it possible
to use these conventional impedance
relationships when a nonsinusoidal
waveform is applied to the circuit. In
the Fourier series, each term repre-
sents a pure sine wave; therefore, the
impedance of the circuit to each term
ean be determined. Knowing the ef-
fect of a circuit upon these terms, the
over-all output waveform can be de-
termined.

b. Low-PAss R-C or R-L CIRCUIT.
(1) Consider the R-C and R-L circuits in

figure 76. Each of these circuits acts
as a voltage divider with part of the
input voltage existing across R, and
the other part across L or C. When R
is very much greater than 2«fL, or

1 : X
nfC’ most of the input voltage exists

across R.

R-C CIRCUIT

(2)
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R-L CIRCUIT
A B

TM 669-76

Figure 76. Low-pass filter.

In the R-C circuit, at low frequencies,
e, (A of fig. 76) is practically equal

(3)

(4)

(6)

(6)

to the input voltage when the capaci-
tive impedance is very large. In the
R-L circuit, at low frequencies, €pr
in B, is practically equal to the input
voltage when the inductive impedance
is very low. These circuits do not
attenuate the low frequencies appre-
ciably. Hence, they are called low-fre-
quency, or simply low-pass filters.

As the frequency increases in the R-C
circuit, more of the input appears
across R and less voltage appears
across the output. As the frequency
increases in the R-L circuit, more of
the input appears across L, and, also,
voltage appears across the output R.
High frequencies, therefore, are at-
tenuated, or reduced, by the low-pass
filter.

The low-pass filter passes low-fre-
quency harmonics, but greatly atten-
uates the high-frequency harmonies.
Poor high-frequency response affects
the waveform when the voltage
changes most rapidly. Therefore, the
low-pass filter will affect the practical
pulse more during the relatively short
rise and decay time than during the
duration time.

The bandwidth of this circuit usually
is defined as that frequency band for
which the attenuation is less than half.
However, bandwidth also can be de-
fined as that frequency band for which
the attenuation is less than 10 percent,
or some other factor. Note that the
attenuation is exactly half when the
input voltage is divided equally be-
tween R and C, or between E and L.
This occurs when R is equal to 2#fL, or
—1—. The bandwidth, therefore, is de-
2xfC

fined sometimes as that frequency at
which

fo = —s— (for B-L)
1
0 = "m (for R-C)

where f, is the bandwidth.

The bandwidth of the R-C circuit in-
creases as the time constant, R-C, is
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decreased. The greater the circuit
bandwidth, the better the high-fre-
quency response, the better the re-
production of pulse rise and decay
times. Note that these principles are
the same as those developed using the
transient-response methods in chap-
ter 6.
¢. HIGH-PASS R-C orR R-L Circulr (fig. 77).
(1) When the output voltage is taken
across R in the R-C circuit or L in
the R-L circuit, the circuit is known
as a high-pass filter. In A, high fre-
quencies are passed with little atten-
uation since the capacitive impedance
is small, and in B the inductive imped-
ance is large and the high frequencies
are passed with little attenuation.
These circuits highly attenuate low-
frequency harmonics when most of
the voltage exists across C in an R-C
circuit and across R in an R-L circuit.

R eRb
E
‘g_j
R-C CIRCUIT R-L CIRCUIT
A B
™ 669-77

Figure 77. High-pass filter.

(2) These circuits have little effect on
practical pulse rise and decay times
because of good high-frequency re-
sponse, but may cause a drop over the
duration time due to poor low-fre-
quency response. Again, these facts
agree with those previously obtained
by means of the transient-response
method (ch. 6).

83. Conclusion

This text covers two common methods of de-
termining the response of circuits to nonsinu-
soidal waveforms. The transient-response
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methed provides this response directly through
the use of fundamental relationships and equa-
tions. The frequency-response method involves
breaking down the nonsinusoidal wave into its
Fourier series and determining the effect of
each wave upon the circuit using standard im-
pedance relationships.

84. Summary

a. The representation of any nonsinusoidal
wave as a series of harmonically related sine
waves is known as a Fourier series.

b. A wave with zero-axis symmetry is one
which has the same waveform above and below
the zero-voltage axis.

, ¢. Quarter-wave symmetry exists if each
quarter-wave in a half-cycle is symmetrical.

. d.. Half-wave symmetry exists when the posi-
tive half-cycle is symmetrical to the negative
half-cycle.

e. When a waveform has zero-axis symme-
try, the d-c component is zero.

f. When a waveform is symmetrical around
a voltage axis other than zero, the waveform
has a d-¢ component equal to the voltage at this
axis.

9. A waveform that has half-wave symmetry
does not have any even-harmonic components.

h. All phase angles in a waveform that has
quarter-wave symmetry are equal to zero.

t. The d-c component of the Fourier series
is equal to the average voltage of the wave in
1 cycle.

4. The other terms in the Fourier series usu-
ally are determined by a harmonic analyzer or
a Fourier series graph.

k. An R-C circuit with output taken across
C, or an R-L circuit with output taken across
R, passes low-frequency harmonics but attenu-
ates high-frequency harmonics. These circuits
are known as low-pass filters.

. An R-C circuit with output taken across
R, or an R-L circuit with output taken across L,
passes high-frequency harmonics but attenu-
ates low-frequency harmonics. These circuits
are known as high-pass filters.
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85. Review Questions

a. What does the term 15 sin (100r +
) mean?
2

b. What is zero-axis symmetry ?

¢. How does half-wave symmetry affect the
composition of the wave?

d. How is the d-¢ term in the Fourier series
evaluated?

AGO 1445A

e. What two methods are used in practice to
determine the coefficients of the harmonic terms
of a nonsinusoidal waveform?

f. Why is an R-C circuit with output taken
across C known as a low-pass filter?

g. How does a high-pass filter affect a wave-
form?

h. What is the difference between the tran-
sient-response and frequency-response methods
of analyzing nonsinusoidal waveforms?
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