
us. Ordnance Office

- O. FORM 2028
$1 \rightarrow$

HANDBOOK OF

12--INCH HOWITZER RAILWAY MOUNT.

MODEL OF 1918.
(Thirty-Seven plates)

ED. JULY 3-19-100
h

This Manual is published for the information and guidance of the Army of the United States.

By Order of The Seoretary of War.

> C.C. Williams,
> Maj. GerieOrd. Dept., U.S.A. Chief of Ordnance.

FART I*

12" Howitzer Railway Mount, Model of 1918.
Page
Section A - General Description.
(a) Description.
(b) Operation

Section B - Recoil Mechanism.
Section C - Recuperator and Liquid Pump
Section D - Elevating Mechanism
Section E - Traversing Mechanism.
Section F - Anti-Friction Device.
Section G - Ammunition Crane.

Section. ${ }^{\text {[}}$ - Trucks.
Section J - Brakes.
Sedtion K - Draft Gear and French Coupler
(a) Draft gear.
(b) To couple the car
(c) To uncouple the car
(d) French coupler.

(1) To uncouple the car

Section L - Jacks.
(a) To raise car with screw jacks
(b) To lower car fith screw jacks .t.

(a) To place foundation for traveling
(b) To disassamble foundation and load for firing.

(a) To ptace end outrigger for firing.
(b) To pleze sjde outrigeer for firing.o.
(ci To adjust scaew or outriggeno
(a) In arjunt flogts
(e) To piaze Oidi outrigger strut for carrying

(3) Th plage ilcets and foot piates for carrying.
 Section P - Muzzie Supporin .
(a) Descintion • .
(b) To Piace Muzzile Support

Section Q - Chests
Section FL - Camouf lage
(a) Description
(b) Paints.
(c) To Apply the Paint.
(d) To Remove the Paint

PART II
Inspection and Maintenance of Mount
Section A - Care of recoil mochanism
(a) In General
(b) To Dismount recoil mechanism
(c) To assomble recoil mechanisim.
(d) To Fill Recoil mechanism
(e) To pack stuffing box.
(f) To clean recoil cylinder.

SECTION B - Oare of Recuperator....................
(a) In General
(b) To dismount recuperator
(c) To assemble recuperator
(d) To fill recuperator.
(e) To pack stuffing box
(f) To clean recuperator cylinder and plunger.

SECTION C - Care of elevating mechanism.
(a) To dismount elevating mechanjsa
(b) To assemble elevating mechanism

SECTION D - Care of traversing mechanism
(a) To disnount traversing mechanism.
(b) To assemble traversing mechanism.

Section E - Care of anti-friction Device.
(a) To dismount anti-f riction device
(b) To assemble anti-f riction device

Section F - Care of Anmunition Crane.
(a) To dismount ammunition crane
(b) To assemble arrounition crane

Section G - Care of trucks
(a) To remove trucks
(b) To disassemble and assemble trucks
(c) To pack joumal boxes
(d) To replace journal bearings.
(e) To place trucks under car

Section H - Care of̂ Brakes.
(a) To disassemble air brake.
(b) To disassemble and assemble handbrake
(c) To assemble air brake.
(d) To clean and oil brake cylinder
(θ) To clean and oil triple valve
(i) ro clean centrifugal dirt collector
(g) To take up shoe wear.
(h) To replace brake shoes.

Section I - Care of jacks.
(a) To disassemble screw jacks.
(b) To assemble screw jacke................
(c) Care and oiling oí screv jacks
(d) Care of auxiliary jacks.

PART III.
Section A - Precations to be observed before ifiring. Section B - Precautions to be observed before travelling Section C - List of grease cups and handy oilers.

PARTY IV. - List of Parts
PART V -- Table of Weights and Dirnensions.

PART VI - List of Total Equipraent

List of Plates

I. 12-inch Howitzer Railway Mount: Right Side Elevation.

Ti. 2-inch Hovitizer Raslvey Monat, Left Side Eievationo
III. 12-inch Howitzer Railway Mount, Longitudinal Section.
IV. 12-inch Howitzer Railway Mount. Plan View.
V. 12-jnch Howitzer Railway Mount, Flontit Vjew.
VI. 12-inch Howitzer Railway Mount, Rear View.
VII. Recoil Cyibicier fosembly.
VIII. Recuperator AssembI-y.
IX. Liquid Pump and Piping Arrangement.
X. Liquid Purp Assembiy.
XI. Elevating Assembity.
XII. Foot lever Assembly.
XIII. Trayersing Assemblyc
XIV. Anti-iriction Device Assembly.
XV. Loading Assembly.
XVI. Platform Asserably, Right Side.

KVII. Platform Assembly, Left Side.
XVIII. Frame Assembly.
XIX. Air Brake Assembly, Front.
XX. Air Brake Assembly: Rear.
XXI. Lever Assembly, Plan View.
XXII. . Lever Assembly, Side Viev.
XXIII. Outrigger Assembly*
XXIV. Foundation Assembly.
XXV. Jack Assembly.
XXVI. Equipment Assembly.

XiNI. Amanition Crane Assombly.
XXVIII, Weight distiribution diagram.
XXIX Air Brake CyIinder, Type D, 10XI2.
XXX. Ausiliery resenvoir, Type D.
XXXI. Centrifugal dirt collector.
XXXII. Truck Assembiy.
XXXIII. Tripie Vaive K-2

XXXIV。 Cancưpege.
$\mathrm{XXXV}_{\mathrm{c}}$ Cur fiame French cuupiers
XXXVIc Bưfer Asce:nbly.
XXXVII. Drait Gear Assembly.

$$
\text { Model of } 1918
$$

Section A. - General Description.
(a) Description.

Refor to plates I, II, III, IV, V and $V I$
for list of parts with their piece narks and the maierial of which they are made, see page \qquad -

The mount is designed to permit the Howitzer to be traversed through 360 degrees, elevated from minus 5 to plus 60 degrees and fired from 20 to 60 Degrees.

The principal parts of the mount are the base plate, which is a part of the car proper, racer, distance ring and traversing rollers, side frames, cradle, reccil system, recuperator system, traversing and elevating mechanisns, elevation quadrant, panoramic sight, loading tray, loading and working platforms, and car proper, inciuding body, trucks, brakes and couplers together with outriggers, floats, jacks and foundation details.

The base plate is a one piece casting used as the center soction of the car proper and bolted to the car frame on each end. The lower roller path is machined on the upper side and a pintle surface is machined on the outer side of the vertical annular flange, on the inner side of this flange the traversing rack is bolted.

The racer is cast in one piece and has its lower surface machined, forroing the upper roller path, corresponding to the lower roller path on the base plate. The inner vertical surface is machined to form the female part of the pintle. The outer vertical suriace is machined and graduations are ongraved forming an azimuth circle.

There are 640 divisions of 10 mils each, the 0 graduation being on the leit side of the racer 45 degrees left of pear. The aximuth pointer is of german silver graduatod from 0 to 10 mils and js fastened to a built up bracket bolted to the base plate. Five clips, ongaging the under side of the baso plate flange and bolted to the racer prevent any relative vertical movernent of the racer vith the base plate. Dust guards are bolted to the outer surface of the racer prem venting dust and dirt from entering the traversing roller system and pintle beariage

The travensing roller syster consists of forty conical rallers; held in a radial position by the distance ring and kept concentric with the pintie by flanges or the inner edges of the rollers in contact with the inner edge of the roller path on the base ring. Handy oilers are located on the outside tertical surface of the racer with oil tubes leading to continucus oil gutters cut in the distance ring, for the distribution of oil to the rollers.

The side frames are bolted to the upper surface of the racer and held together by the front and rear transom; this unit supports the tipping parts of the mount.

The cradle supported in the side frames by its trunions serves as a slide way for the howitzer when recoiling and carries the recoil and recuperator systems. The loading platform of structural steal extends to the rear of the mount and is held in place by supports fastened to the rear transom and side frames. The platform is constructm od with an opening in the center for the howitzer to recoil through This opening is covered by a folding platform in two sections connected
togetiner and to the Ioading platf orm by hinges. This platform is dom Wh acing and folded back when firing. On the right side of the mount i.s the elevating platform which is \mathfrak{f} olded in when traveling A loading tray built up of structural steel is boltod to the hoadirg platform, and is consiructed to carry three projectiles at a time. Cranes on the rear of the loading platf orm hoist the projectiles from the ammunition table on the car floor to the loading tray. A shell trough placed in the breech of the Howitzer and resting on the loading tray is used to slide the projectile and powder into the Howitzer. The car has a cast steel center which serves as a base plate and roller path for the traversine parts of the mount and structural steel ends all mounted on standard six wheel trucks. The car serves as a firing platform and transport vehicle; when in transport the entireweight rests upon the trucks in the ordinary way, but in firing the car is raised by jacks; beams and crossties then piaced underneath and the car lowered thereon, relieving the weight from the trucks. The outriggers are then set out against the wooden floats backed by the earth to resist the recoil when the howititer is fired.

An amrunition trough and table are located on the car floor and ammunition is brought from the armunition car to the trough and slid down to the table which holds seven projectiles.

The recoil mechanism, recuperator, olevating and traversing mechanism, anti-friction device, crane, jacks, outriggers, trucks, car proper, air brakes, draft gear and ammunition table will each be desm cribed in detail later.

(b) Operation.

The piece is laid in azimuth by the combined user of the panoramic sight or azimuth circle, and the traversing mechanism. Elevation is obtained by setting the quadrant at the elevation required and rotating the piece in elevation by the elevating mechanism.

Upon firing, the Howitzer recoils in the cradle a maximum distance of 37.5 inches, carrying with it the recoil band and piston, pull rods and plunger of the recuperator. The energy of rocoil of the howitzea is absorbed by the resistance winich the fluid in the hydraüa cylinders of iers in bejng forced through the onings past the pistons" A portion of the energy of recoil suficient to return the howitzer into battery is ansorbed by compressing the air in the rocuperator cyinder. The return of the piece into battery is eased by the action of the counter recoil buffers, which force the fluid from the cylinder heads through the small clearance past the cylinder head bushingin.

SECTION B - RECOIL ISECHANIM
Refer to Plate VII.
For list of parts with their piece marks and the material of which they are made, see page

The recoil system operates on theprincipal of the hydraulic brake and is designed to limit the distance and regulate the velocity with which the howitzer moves to the rear whea i ired.

A small portion of the recoil en 3 geg is taken up by compressing the air in the recuperator cylinder, but the gieatier portion is taken up by tho resistance the liquid in tine recoil cylinder of fers to being forced through the orifices formed b, the throttling grooves. The wicth
of these groovos is unif orm; but the depth is proportioned so that the areas of the orifices, varying with the position of the pistun during recoil, will be such as to give, with the air in the recuperator, a dmstant resistance throughout the length of recoil.

In front of the piston, the piston rod is extended to form a buffer. This buffer is flatted so that the escape of liquid; during countermecoil, through the varying clearances wetween this and the recoil cylinder head bushing, will offer such resistance as will control the motion of the howitzer during its return to battery , When the reccil piston is in normal recoil position the end of the buffer is back in the cylinder a distance about 17.375 inches from the cyinder head bushing. As the recoil piston travels towards the cylinder head during counter recoil, it pushes some of the liquid ahead of it into the cy? inder head; and when the buffer reaches and begins to enter the cylincier head bushing, the cylinder head is filled with the liquid.

The recoil mechanism consists of two cylinders fitted in and locked to cylindrical bosses on the under side of cradle by special nuts.Each is closed at the front end by a cylinder head and at the rear end by a stuffing box. The throttling grooves, above referred to, are three in number, symmetrically located with respect to the longitudinal axis of the cylinder. The piston rod projects through the rear of the cylinder and is held in the recoil band by two ruts. The rear nut should be screved up lightly to allow the piston rod to adjust itself in the recoil band. When the piece is fired, the piston and piston rod move to the rear with the recoill band which is attached to the howitzer while the cylinders remain stationary in the cradle. A stut $\mathrm{f}_{2} \mathrm{i}$ g box with packing and follover is used to make a tight joint between the fiston rod and rear end of cylner

In front of the stuffing pox there is a leather washer which prevents the liquid in the cylinder from leaking through the threads of the stuffing box and also during recoil keeps the pressure of the liquid from acting directly on the packing in the stuffing box. The cylinder head is screwed into the front end of the reccil cylinder: A bushing is screwed into the opening of the head to insure proper clearance for the buffer. A tongue and groove with a leather washer makes a tight joint between the eylinder and head.

SECTION C - RECUPERATOR
Refer to Plates VIII, IX and X .
For list of parts with their piece marks and the material of winich they are mader see page.

The recuperator consists of an air chamber, a fiston and its packings; a plunger and its yoke and pull rods. The piston and plunger slide in the cylindrical part of the air chamer. The pis;on rod has a bearing in the front end of the plunger. At this end of tho plunger a yoke connects it with the pull rods, which in turn are frastened in the front by a bracket and in the rear direct to the recoil band.

The air chamber consists of a hollow cylindrical forging open in the front ane closed in the rear. The cylindrical part in front, in which the piston and plunger moves, is fitted with a lining of special watertight bronze. The plunger is of the same material as the liner and is machined to take the piston rod, liquid, and stuffing box. The plungor, sorewed to the yoke and secured by set scrows, is driven at recoil by the two pull rods, which are fastened to the recoil band and travel with it. The pull rods have bearings in bushings fjxed in lugs on the cradle. rihs

$$
25: 7
$$

joint betwoen the plunger and the liner is made tight by a loather packing held in place by a stuffing box. Flax packing hold in the sturf. ing box by a. gland makes the joint between the plunger and the stuffing box tight. A felt washer held by a steel ring and screwed; to the gland, prevents sand or grit fromentering the plunger packings.

The air chamber, or recuperator cylinder, is locked in a cyw lindrical boss on the top part of the cradie by a cylinder clamp lock. Plat'sened places on the pull rod bushings matching up with similar ones on the shoulder prevent the recuperator cylinder from rotating.

The piston consists of a head of special watertight bronze screwed on a steel rod. The front part of the rod is fitted with a bronze oasing and slides in a bearing in the plunge.:. Its threaded end beyond the casing is fitted with a nut and washer limiting in the rear, the displacement of the piston with respect to the plunger. Tallowed flar packing held by a bronze ring, and piston washer held against this ring by a follower make a tight joint between the piston and cylinder liner. A spring held in place by a nut, pinned to the rod, presses the follower to the rear against the piston washer.

The joint between the piston rod and plunger is similar to that between the plunger and the cylinder liner.

The space in front of the piston and in the plunger is filled with a solution of glycerine and water, the same as in the recoil cylinders. This liquid acts as a seal for the joint between the piston and the liner, and a stop between piston and plunger at counter-recoil.

An air valve body, fitted with two reedle valves, one f or filling and one for emptying, is screwed in the rea: ead of the recuperator cytinder and connected by tubing to the air pipe conevition on tine wadle. Anciser
tube runs from this to the pressure gauge. An opening in the pipe connection is used to attach the coiled tube when charging the cylinder with air. The opening is closed with a plug when not in use.

At the front end of the recuperator cylinder a liquid valve is bolted and connected by copper tubing to the tiquid pipe connection on the cradle. Another tube runs from this to the pressure gauge and a third to the liquid pump. Liquid is poured into the pump through the opening in the top and pumped through the tubing into the plunger.

The hiquid pump is fastened to a steel plate support, to which is also fastened the two pressure gauges. This support is bolted to the upper part of the cradle on the left side.

The pump consists of a pump case, or reservoir, for the solution of glycerine and water, in the bottom of which is f ixed the body of the pump. This contains the inlet valve, the outlet valve, and the relief valve; and the pump body nut. A plunger operated by a lever, crank, and link, with bearings in the cover and body nut, operate in the pump body. (see Plate X).

The relief valve screwed in the top of the pump body has a valve stém, relief spring, and cap, The relief spring is designed to allow the liquid to blow of f at from 2200 to 2500 lbs eand insures no damage to the pump from excess back pressures. This spring should never be tampered with idit is adjusted by the manufacturer and tested to function at the proper, pressure. If the liquid purp fails to f unction and there is practically no resistance offered when the puinp lever is operated, it shows that there is a back pressure of air in the mechanism. To overccme this disconnect the liquid pipe where it joins the three way cmnsction or the
sido of the cradle, and operate the lever for a few strokes until liquid 'egins to flow. Reconnect the liquid pipe to the three way connection and purmp liquid into the recuperator plunger until the piston rod washer just clears the rear gland.

SECTION D - ELEVATING MECHANISM
Refer to Plate XI and XII.
For list of parts with their piece marks and the material of which they are made, see page.

The elevating mechanism consists of an elevating rack, attached to right side of the cradle, meshing with a pinion, which is operated by a handwheel through spur gears. The spur gearing is supported by the gear plate and side frame provided with bronze bushings. A band brake with f oot control is provided to prevent any movement of the tipping parts when the gun is fired. One turn of the handwheel clockwise elevates the gun 1.92 degrees.

SECTION E - TRAVERSING MECHANISNI

Refer to Plate XIII

For list of parts with their piece marks and the material of which they are made, see page

The traversing mechanism consists of a circular rack fastened to the base ring and meshing with a pinion, which s s operated by a handwheel through a worm and worm wheel. The pinion; meshing with the rack, is keyed to the lower end of the vertical traversing shait. Tnis shafct has its lomer bearing in the traversing shaft bracket; 'hich is bolted to the racer, and its upper bearing in the torvexsty gear case, which is boatio to the left side frame. The worm whes, keyer ic the upper end ci the sit:
is in mesh with the worm which is keyed to the worm shaft. The worm shaft has both of its bearings in the gear case and a handwheel on one end. 'The worm wheel, worm, and worm shaft are inclosed in the gear case. The gear case cover has a lug to take the leveling screvf bearing pin of the sight.

SECTION F - ANTI-GRICTION DEVICE.
Refer to Plate XIV.
For list of parts with their piece marks and the material of which they are made, see page

The anti-friction device is designed to relieve the load of the tipping parts from the main trunnion and ease the elevating and depres'sing of the gum. It donsists of two small trunions, bearing supports, adjusting screvs, and Belleville springs.

The weight of the tipping parts is supporied on the small trunnions and transmitted to the Belleville springs by the bearing supports and seats. The adjusting screws are tightened up until the credie trunnions have a clearance in the sife if rame bearings at all points. This makes the entire elevating load come on the small trunions and reduces the handwheel load. When the Howitzer is fired the Belleville springs are compressed and the f iring load comes on the side frame bearings.

SECTION G - AMMNITION CRANE.
Refer to Plate XXVII.
For list of parts with their piece marks and the material of which they are made see page

Two ammition cranes are bolted to the rear corners of the loading platform for use in hoisting armunition from the ground or arm munition table, to the lowing tray.

For hpisting the 700-pound projoctile, the shot tongs should be pianed directly'to the open socket at the end of the wire: rope. For use with a heavier projectile an extra sheave block with a crame hook attached, is provided. The wire rope with the open socket attached; may be passed through the block, by removing one of the plates, and pinning to the mast. The shot tongs should then be placed on the crane hook. These two arrangements are shown on plate XXVII.

A section through the drum, gearing and friction saf etywdevice, is shown on plate XXVII. The cranks may be released with the load in any position; and by virtue of the 1 riotion safety device, the mechenism will not overhaul. The pawl should at all times be left in mesh with the raichet. To insure proper functioning, this mechanism, should be kept well lubricated. The cranks and the mechanism housed in the drum bracket should, under no circumstences, be dismantled in the field.

SECTION H. - CAR PROPER.

Ref er to Plate XVIII.
For list of parts with their piece marks and the material of which they are made, see page

The car proper serves as a transport f or the traversing parts of the mount, outrigger f lioats, f oot plates and f or the crossties and built up H-beams of the foundation platform. When lowered on the foundation piatform, it serves as an emplacement.

The car proper consists of a drop f rame type of body; with ends built up of structural steel plates and shapes with, a cast steel center, mounted on two six-wheel railway trucks. It is equipped with f our screw jacks, which are used first to raise the cer sufficiently to allow the ground platf orm to be placed in position under it, and then to lower ihe
car until its weight rests on the crossties and through them to the built up H-beams which are spiked to the rail ties. There are also wight Dutriggers which are set out against wooden floats sunk' in pits and back-' ed by earth. The autriggers serve to keep the mount stationary during firing.

The over-all dimensions of the oar body ends, which as stated above, are built up of structufal steel shapes and plates, are, length 12 feet 7.5 inches, width 8 feet, 5.5 incines. The underf rame is composed of two oenter sills, four intermediate sills, and four side sills connected to a base plate in the center of the car, which forms the lower level of the car body. These sills are tied together at each end by channel and sills, and cross braced by a body bolster 5 feet. 9.5 inches from each end. The floor plate covering the sills consists of four steel plates. A step and a hand hold or grab iron is provided at each corner.

SECTION I - Trucks.

Refer to Plate XXXII.
For list of parts with their piece marks and the material of which they are made, see page

The trucks, of which there are two, are of built up type, the frame being made up of plates and steel castings. The conter portion of the frame is a steel casting forming a bolster and is riveted to the side pieces. Separate M.C.B. center plates are riveted to the top of the bolsters. Side bearinga, consisting of eteel plates held in position by cast recesses, are placed on 45 inch centers. The vertical distance from the sfde bearing surface to the center plate $i \varepsilon 2.75$ inches. steel cactings are riveted to the side.plates which form the pedestais.

The journals are standard M.C.B., $5 \frac{7}{2} \times 10^{\prime \prime}$, and 28 -inch wheels of rolled steel are pressed on the axles.

The loading on tine trucks is transmitted to the joumals by semi-elliptic springs and equalizers. The equalizers bear on the journal boxes and their outer ends are supported by coil speings held in place by the pedestal castings.

Inside hung brakes are applied on four wheels of 'each truck. The brake bsems ase Mocob. No. 4, trussed type with shoes keyed to heads. The beams are hung from brackets cast on the truck rames. Separate cast steel lugs are rivcted on both sides of the bolster for connecting the dead lever guidus on one side and the live lever guioes on the other.

SECTION J - BRAKES.
Refer to Plates XIX, XX, XXI, XXII, XXIX, XXX, XXXI, XXXIII. For List of parts with their piece marks and the material: of which they are made, see page

The car is equipped with both hand and airbrakes operated by, the same system of levers and so arranged that either can be applied independently. It is necessary to apply the handbrakes at each end separately. The airbrakes are connected by the train line pipe and operated simultaneously. Detached brake cylinders and reservoirs, Westinghouse type D, $10 \times 12^{\prime \prime}$, (See plates XXIX and XXX) are provided with $\mathrm{K}-2$ triple valves (See plate XXXIII). There is also a centrif ugal dirt collector (See plate XXXI) and the necessary pipes, valves and connections for freight car equipment.

Plates XIX and XX show the arrangement of brake parts at either end of the mount. From these plates it will be seen that the hancibrakes
can be applied without disturbing the piston in the brake-cylinderthe piston rod being made up of tubing in which the cylinder pusin rod slides. It will be further noted that the handbrake staff is connected to a horizontal lever by means of a pull rod and chair. The horizontal lever is connocted to the brake cylinder on one end and to the truck live lever on the other end by means of rods and levers.

The reservoirs are equipped with a valve operated by a rod which can be pulled to release the air brakes quickly when desired. The triple vaive governs the flow of air, allowing air to pass from the trath line into the reservoir and from the reservoir to the cylinders. When pressure in the train line is reduced, the triple valve admits air from the reservoir into the cylinder, and when pressure in: the Urain line is again raised, the tripie valve closes the passage of air from the reservoir to the cylinder, and at the same time allows the air in the cylinder to escape into the atmosphere. This automatically releases the brakes. The reservoir is again recharged from the train line to the required pressure. These operations are offected by opening or closing of ports in the triple valve by variations in the air pressure.

A dirt collector, located between the triple valve and the train line collects dirt from the air before it passes into the triple valve. The dirt thus collected may be blown out of the dirt collector by opening a valve at its bottom.

SECTION K - DRAFT GEAR AND FRRNCH GOUPLERS.
(a) Draft Gear. Refer to plate XXXVII.

For list of parts with their piece marks and the material of which they are made, see page \qquad *

The draft gear is kown as the Westinghouse Friction Type. rine westinghouse friction parts are enclosed in a drum which is so applied betweon cast steel draft lugs to receive the buffing and pulling shocks.

The coupler is Gould Coupler Company's pattern z-201.
(b) To couple the dar.

One man required.
Trols needed, none.
Car pusher can be used if locomotive is not avaifable.
(1) Set tine inandbrakes on car enough to keep it from moving easily when bumped.
(2) Oper the kuckle on car by lifting the handle of the uncoupling lever. This movement will first unlock the knuckle so it can be pulled open, but continuing the movement of uncoupling lever will throw the knuckle open without the necessity of going in front of or between the cars. When the knuckle of either car is open, it is only necessary to bring the cars together matil the open muckle closes, and it will lock autoratically.
(c) To uncouple car.
(1) Raise the uncourling lever on one car enough to release the knuckle and the cars may be pulled apart.
(d) French Coupler. - Refer to Plates XXXV and XXXVI.

For list of parts with their piece marks and the material of which they are made see page \qquad *

The bumper blocks are of white oak, each secured to the end sill channels by six l-inch diameter and two 1.5-inch diameter bolts. To these blocks, the buffers, safety ohains and parts of the draft hooks are
fastened as show on Plate XXXV.
The screw couplers, safety chains and buffers conform to the standard now adopted for U.S. Government freight cars in France. With this arrangenent and when the car is connected to the ammunition car or some other car, the couplers draw ther together, producing cormpession in the buffer springs.

At each ond of the car there are two different types of buffers, one with a fiat buifing suriace and the other with a curved surface. Similar buffers are located diagonally opposite on tine car in order that when the cars are coupled togother, the flat buffer of one car will butt against the curved butifer of the next car. This is done to prevent damage to buffers when train is rounding a curve.

The buffer housing, which contains the compression spring and ncts as a guide for the buffer, is bolted to the bumper block by fouf bolts:. A buffer plate however, is placod between the buffer housing and the bumper block to give a better bearing surface. The large end of the spring referred to above rests against a circular plate and the small end against the buffer. In order to prevent the spring from pushing these two apart, a 1.875-inch diameter pin is provided which has a head at one end amat the other end a key projecting through the pin and a collar. The above mentioned circular plate sets up into the buffer housing far en ough to allow clearance between the bumper block and the buffer plate for the collar and key, but it is prevented from being pushed back by a cast steel ring bolted to the buffer plate.

The draft hook projects through the bumper blook, end sills and cast steel draft spring stop, to a cast steel block which is held to it by a nut and split pin. This latter block is guided by lugs on the center
sill and takes the thrust: of the compression spring which is seated at its large end on tho drait spring stop riveted, to the center sill Jf car. The draft hook is aiso guided by ancther cast steel block resting against the draft hook plate and bolted to a bumper block. The shoulders of the draft hook butt uy against this blook when released, thus stoping its inward motion.

Tho scres coupling is fastened by a pin, with cotter, to a hole in the draw hook. It consists of the yoke attached to the draw hook, a clevis for hooking to the nexi car, and a right and left hand screw to draw the yokes and clevis together. Attoched to the midde of the screw is an arn with a ball at the erd which is usod as a hande to operate the screw. The right hand threads on one side of this handle screws through a pin holding the yokes together. The left hand threads on the other side of the handle screw through a similar pin connected to the clevis. These pins are held in place by cotter pins. A screw coupling is provided at each end of the car, but when the train is made x, only one coupling is used at each connection. When not in use, the loose end of the coupling is swing on a hook attached to the draft hook plate under the bumper blocks.

Safety chains, one on either side of the draft hook, serve as a coupling in case the screw coupling or draw hooks are out of order. These consist each of a chain and hook fastened to car by an eye bolt. The eye bolt passes through the bumper block and end sill, and are held in place by nuts with a split pin. To allow a little give to the chain, four spring washers are inserted between the end siIl channol and the nut. A cast steel guide bolted to the buraper block acts as a stop and guide for the
eye bolts and chain.
(e) To Couple Cais. Ref er to Flate XXXVI.

One man required.
Tools neocied, none.
Car pushor can be used if loconotire is not available.
(1) Set hanci brako on stationary car (inot complotely, but enough so that car will move only slightly if bumped, and bring the cars as close bogether as buffers will allow.
(2) Stakinig beforeen cars, inside of bufiers, lift one of the screv couplings from the hook wner bumper block and hook staple on draft hook of other car. (If the staple does not weach the hook, the coupling will have to be lenjthened by tuming the scravy with hand'oo)
(3) Tichten screv until there is just enough coupression in the draft hook and buffer springs to make cars ride easily. The screw can be tumed easily by raising the ball attached to end of hande in the proper direction until it will fall by its own weight, thus completing one tum. By repeating above operations, the required amount of turns can be made.
(4) Hook the safety chains of one car to the chains of the other car.
(5) Connect air hose and open angle cock.
(6) Release handbrake.
(f) To Uncouple Cars.

Reverse the process of coupling described above, taking care that the screw coupling is screwed all the way out bef ore the staple is hung on the hook.

SECTION I. - JACKS
Refer to Plato XXV.
(a) For list oi parts with thoir piece marks and tine naterial of which they are made, see page

Four built in jack screws are located in the comers of the base plate, directly above the rails of a standard gauge track.

Each jack consistis of a ram, screw, nut, screw gear, pinion, pinion stud, ratcinet pawl, ratchet housing and lever.

The ram carrios a nut into which the screw works. On the upper end of the screw is a screw gear meshing with a pinion on the pinion stud. A ratchet meshing with the pinion is turned by a ratchet pawl attached to the ratchet housiag, which in tum is operated by a long hand lever.

There are two jack blocks, 9 inches wide, 8 inches high and 5 faet 6 inches long, provided with each car. These blocks placed across the rails act as bearings for the jacks. In order to raise the car, the jack blocks are placed across the rails so that the two jackscrews at each end will rest upon them.

Four 20-inch, 25-ton auxiliary jacks having a total rise of 9 inches, are carried on each railway car and weigh approximately 95 pounds each. They can be used for emergency purposes or in case the rogular jacks are out of order.
(b) To raise rount with screw jacks, refer to plate $X X V$. Two men requised on each set of jacks (four if both onds of car are to be raised) Tools needed.

4 Jack levers.
(1) Place jack blocks across rails under jacks, The faces of the block with the bearing surfaces should be next to tine rail and jack screws.
(2) Tum jack lever until ends of jack screw bear on the jack blocking. Be sure the jack blocking is correctly placed so as to give good bearing. oil rails and continue turning levers until car is high enough to permit tine is oudation stringer to be placed under the base plate, then put in the foundation cross bears.
(c) To Lower Car. Refer to plate XXV. Revease procedure as outlined in (b) above.
(d) To Raise mount with auxiliary jacks. Reîer to plate XXV.

I'wo men required.

 Tools needed:4 Auxiliary Jacks.
4 Wood blocks about $4 \times 4 \times 4$.
(1) Arrange blocking directly under seats of tie rod bracket castings. The top of this blocking should be about 9 inches below the top of the rail in order to get the jacks under the mount.
(2) Place auxiliary jacks on these blocks; arrange pawl so that jack will raise when handle is iowered; insert handle in socket and raise by pumping witil jack engages with lower surface of base plate. Operate jacks until mount is raised sufficient to place foundation.
(3) Rerave jacks aiter foundation is placed.

SECTION $M-$ FOUNDATION
(a) Description. Refer to Plate XXIV.

The foundation is intended to take the load of it the car
trucks and transfer it directly to the ground through rail ties.

It is made up of iour cross beams which support the side, intermediate and center sills of the car, and which in tum transmit the to tro ininos of H-beans placed parallel to and outside of the rails on each side of the trach. Each line of beams is composed of two separate ohannel irons bolted to each other and spiked with screw spikes to the rail ties in order to prevent movement.

The material for the foundation platform is stored on car in front of ammuition tray. On the car the H-beams are placed at right angles to the track. In back of the beams, the crossties are placed. These bears and crossties are blocked in front by the outrigger brackets, in back by the loading trays and on the sides by the outriggers. On top of the crossties the jack blocks are placed. These are held in place by fastening the rope attached to them, to the loading tray legs.
(b) To place for firing. - Refer to Plate XXIV. men needed.

Tools required:
3-2 x $4^{\prime \prime}$ timbers about 3^{\prime} long, for darrying Hbeams.

1. Wrench, double, 0.625 and 0.75, U43F.

The track at the location where the gun is to be placed should be previously prepared. The rails should be leveled up and the ballast tamped well under the ties.
(1) Remove foundation jack block from car platform and place across the rails with center lines directly under the screw jacks.
(2) Raise the car by means of the screw jacks. (See sect. L Division b.
(3) Remove foudaition stringers from car platf orm two to be placed on either side of the track.
(4) Place the stringers under the flange of the base plate as near the rail as possible and parailel to the track with the ends of the stringers on either side of the track approxinately opposite each other.
(5) Connect the stringers at the center by four . 75×1.375 bolts.
(6) Remove the cross beams from the car platform.
(7) Flace the cross beams under the side sills of the car, resting on the foundation stringer.
(8) Lower the car by means of the screw jacks until the center portion of the base plate rests on the foundation stringers and the ends of the side, intermediate and center sills rest on the cross beams.
(9) Screw up jacks until they clear blocking by at least one half inch bef ore firing.
(c) To Disessemble foundation and load for carrying.

8 me: required. Tools needed:

1 wiench, double . 625 and 75 , U43F
2 Track wrenches, 4712C
I Crowbar, 1243A.

To disassemble, reverse procedure outlined in (b) above.
To load the material on car platforms for carrying, proceed as follows:
(I) Place crossties on car platforra against ammaition table. The ends of the crossties should be perpendicular to the tracks.
(2) Place Hmbeams with webs vertical next to crossties.
(3) Place jack blocks on crossties and lash to legs of ammation table.

SECTION N. - OUTRIGGERS.
(a) Description Refer to Plate XXIII.

For list of parts with their piece marks and the matarial of which they are made see page \qquad
There are eight outriggers furnished with each mount with form braces to prevent the mount from tipping over or from sliding on the foundaion plationm when the gun fistbeing fired.

The iour end outriggers, which are fastened, both when and when not in use, to a socket on the side of the car, should be used when the gum is fired within the sector, 45 degrees to the right or to the left of the longitudinal center line of the car. They are each made up of 6-inch hot draw. Shelby steel tubing with an adjusting sciew on one end and an eye and pin on the other. The adjusting screw has a ball on the end and can be screwed in or out of the nut strut end with a steel rod, which fits into holes providod, next to the ball. The fixed end of the outrigger rests in a.socket casting on the car side and the ball of the adjusting screws:rests in the foot plate used to distribute the load over the wooden float. From the nut strut end to a bracket on the car, directly below the outrigger bracket, is a tie rod. As the center line of the outrigger strut does not pass through the trumions of the gun, there is an overtuming tendercy when the gun is fired normal to track. The purpose of the tie rod is to counteract this tendency.

The four side outriggers, which are also fastened to a socket on the side of the car, should be used when the gun is fired within the sector 45 degrees to the right or left of a cross center line of the car.

They are the same in every respect as the end outriggers.
The footplates are of cast steel and are used to transmit the tirrust from the struts to the floats. Their lower surfaces are smooth and the upper parts have sockets to receive the kall ends of the struts.

Each float is built up of two layers of blocking so as to dism tribute the load irom the strut over 20 square feet of ground surface. The lower layer is composed of f ine white oak blocks and the upper layer of three blocks: $2 . l l$ bolted togethes. There are two angle guides bolted to the upper surface of the floats for guiding the foot plates.

When not in use, the floats and footplates are placed on the car platform. The floats are piled in an inclined position against the ammunition trough in the rear of the car. The footplates are piled on the front platform of the car and lean against the ammunition table.

The float lashing, for holding the floats in position (See Plate XXVI) winile in transit, is composed of five wire ropes fastened together by steel rings and turnbuckles. When the floats are loaded in traveling position, two of the wire ropes, held together by a turnbuckle, are passed around the lower part of the floats and secured to the amm munition table by steel rings. At the upper part of the float two more wire ropes are passed around, also held together by turnbuckles, and secured to the armunition table by steel rings. The upper lashing is held in place by the angles on the sides and by another wire rope in the rear fastened to the platform. Tuming the tumbuckles tightens the ropes and holds the floats in place.

The footplate lashing for holding the foot plates in position while in transit is composed of one wire rope with a hook on one end and
a turnbuckle on the other. When the plates are loaded in traveling position, the rope is fastened to the lower angle of the ampunition table and rum diagonally along the foot platos, from the bottom rear to the top front. They are prevented from sliding forward by an angle at the front. Tuming the turnbuckle tightens the rope and holds the plates in place.

The struts and end tie rods are ixed permanentiy to the sockets on the mount and when not in use are swong around and hung on the side of the mount. The center tie rods are taken off and placed on top of the loading platform in back of the front ammition table.
(b) To Place an End Outrigger for Firing.

> Six men required.

Tools needed:
2-2, x 6. inch boards, 8 ft. long.
l-sling of rope about 30 ft . long.
2-Shovels, 8819A
2 - Picks U5IA
1- Long handed shovel
1 - Axe, U51D
1.- 0.875 diameter $\times 24^{\prime \prime}$ rod to turn strut adjusting screm.

1 - Crowbar, 1243A
1 - Hammer, U48F
1-2 $\times 4$ timber, about 5^{\prime} long, for ritamping earth
1-Rule
1,- Tape measure
4 - Stakes
1-1 x 2. board, exactly 90 inches long.
(1) Move tie if necessary and lay of f oblong on ground 60" $\times 35^{\prime \prime}$. so that one comer of the long side is $56^{\prime \prime}$ from center of mount, and $28^{\prime \prime}$ from center line of trucks and the other comer will be l08" from center line of mount and 68" from center line of trucks.
(2) Dig a V shaped pit until sides meet at a depth of 90 from top of car platform.
(3) Loosen up turnbuckie of footplate lashing, and remove all foot plates from platform and place them on ground in a convenient place.
\therefore Unhoot flout lashing and throw to one side avay from zloats. Fasten sling around upper float. Slide it down skids to ground and place it in pit with its under surface resting on rear or sloping part of pit, and with engles stisl horizontal.
(5) Place a foot plate with its under surface bearing in the center and betwem angles on the fioat.
(6) Lifit outrigger strut out of carrying bracket and swing it around on the socket casting and turn adjusting scrow up in the strut so as to make it as shortias possible. If it is difficult to turn the adjusting screv, the 875 inch dianeter rod should be used which f its in the holes next to the ball-end. Swing end of outrigger around until the ball is right over socket of f oot plate and turn adjusting screw out until the ball bears against socket and causes compression in the strut.
(7) Remove tie rodif rom car and fasten to strut. Turn the turnbuckle until rod is tight.
(8) Pile earth against the part of under surface of float which projects above the ground ievel, tamping well to give a good bearing for the whole under surface of 1 loat.
(c) To Place a Side Outrigger for Firing. Refer to Plate XXIII. Six men required.

Tools needed:
Same as for (b) above.
(I) Lay of f oblong on ground $60^{81} \times 55 \mathrm{Q}$ so that one comer of the long side is 100% from center line of mount and $128^{\prime \prime}$ back from center line
of trucks, and the other end is 155" from center line of mount and $128^{\prime \prime}$ back from center line of truoks.
(2) Dig a V shapod pit until sides meet in the center of the pit at a distance of $90^{\prime \prime}$ from the top of car platform.
(3) Place floats and foot plates in the same manner as for end outriggers.
(4) Swing outrigger from mount, and tum adjusting screw out until the ball end bears against socket and causes compression in the strut.
(5) Remove center tie rods from car platform and connect to tie rod studs, allowing rod to drop down to lugs on lower part of outrigger beam and adjust turnouckle until pin can be inserted in the holes in lugs.
(6) Pile earth against part of under surface of flôat which projects above the ground level, tamping well to give a good bearing for the whole surface of 1 loat.
(7) Remove remaining floats, if there are any, from end car platform and place them in a convenient place out of the way.
(d) TonAdjust Screw on Outriggers. Refer to Plate XXIII. Qne man required.

Tools needed:
.875 diameter by 24-inch rods, 106B
After the gun has been fired it may be found that the outriggers have packed the earth under the float and that the struts do not bear firmly against the foot plates. After every firing, the adjusting screws should be turned out if necessary, in order to make firm bearing. As stated above, the adjusting screw should be turned out by means of the -875-inch rods which f it in holes next to the ball end of the strut.
(e) To Adjust Floats. Refer to Plate XXIII. Four men required. Tools reeded: .875 diameter by 24 inch rod, 106B 1 Crowbar, I243A

If the movement of earth mader the floats continues, as the firing goes on until the adjusting screws have reached their outvard limit, earth or blocking will have to be placed under the float to give a new, bearing surface. To do tilis, proceed as follows:
(1) Turn adjusting screvf up in the struts as frar as it will go.
(2) With crovkars, move the foot plates and floats up tovard the car keeping their inclination the same as before.
(3) Hold the floats in this position by means of wedges and fill in the back of floats with earth or blocks until the whole under surface of the floats have a firm bearing.
(4) Turn adjusting screw out again to give compression in the strut., It may be necessary also to adjust the length of tie rod on side outriggers Which can be done by turning turnbuckle.
(f) To Place Fnd Outigger strut for Carryinge Refer to Plate XXIII Four men required.

Tools needed:
0.875 diameter by 24-inch rods 106B Hammer, U48F.
(1) Remove pin with split pin holding end tie rod to outrigger strut, swing tie rod around and hang it on bracket on side of the mount.
(2) Turn adjusting screw up on the strut as far as it will go. Swing free end of strut around and hancs it on bracket on side of mount.
(g) To Place Side Outrigger for Carrying - Refer to Plate XXIII. Four men required.

Tools needed:
1 Hanmer, U48F . 875 -inch by 24 -inch rod, 106B
(1) Remove pin connecting side tie rod to outrigger strut; remove tie rod from bracket and place on car platform. (see plate XXIII).
(2) Turn adjusting screw of strut up as far as it will go, thus allowing strut to swing free of foot plate.
(3) Liftiree end of strut and swing around on to top of base plate inside of outrigger support.
(h) To Place Floats and Foot plates for carrying. - Refer to Plate XXVI.

Six men required.
Tools needed:
1 sling of l-inch rope about 30 ft . long
1 wrench, double, 0.625 and 0.75 , U43F
1 pinch bar
1 crowbar, 1243A
(1) Lay foot plates to one side, raise first float with crowar and then slide float up skids on to rear platform of car. Place float with long side against ammaition trough, and angle side out, angles being vertical. (See Plate XXVI)
(2) Place second illoat as above'with the under surface of same resting against the angles of the first float.
(3) Continue loading floats as in (2) until the last one has been placed on the mount.
(4) Last floats together as described in (a).
(5) Place foot plate on left front of car in inclined position resting against amunition table.
(6) Continue loading remaining foot plates a a in (5) until the last one has been placed on the mount.
(7) Lash foot plates together as described in (a).

SECTION 0. - AMONITION HANDLING
Refer to Plates XV and XXVII
A triplex block lowers the ammunition from the ammunition car, in the rear of the roont, to the amunition trough bolted to the platform of the Howitzer car. The upper surface of the tray is built on an incline so that the ammunition can be slid on to a table. This table will hold seven projectiles. The crane (see sect. G) hoists the ammunition from the table to the loading tray on the traversing part of the mount. An incline trough extends from chis tray to the breech of the Howitzer. Two mon then push the projectile down the inclined surface into the breech of the howitzer.

SECTITON P. - MUZZLE SUPPORT
(a) Description. Reîer to Plates I and II. For list of parts with their piece marks, and the material of which they are made, see page

The gun when traveling, is held firmiy to the mount by a muzzle support and band. The muzale of the gun rests on the muzzle support which in tum is supported by the ammunition trough. A wire rope is passed over the muzzle and to the ammanition trough by a band latch and hinge. On one end of the wire rope a stivd is fastened in an open socket. This stud fits in a hole in the band latch and has a nut on it. By tightening this
nut the rope holds the muzzle of the gon on the muzzle block.
(b) To Place inuzzle support.

One man required.
Tools needed:
1-7-inch pliers
1 - wrench, double, 0.375 and l., U43G
(I) Depress gim to 0 degrees elevation and traverse to 0 degrees azimuth, having muzzle support block in place.
(2) Placa gua jand over muzzle of gun and fasten to kand hinge on one side and band latich stud on other side.
(3) Screw up nut on band latch stud until band is tight on muzzle of gun.

SEOTION Q - - CHESTS
One tool chest and two armament chests are carried with oach mount. They are made of 062 -inch steel, reinforced by angles on the outside. The plates are flamged a.t the comers to connect to adjacent plates. Two flat straps riveted to the bottom by countersunk rivets serve to protect the bottom of the chest.

The covers are hinged to the back of the chests and have catches on either side to hold them open. The cosers are locked by a lock bolt at each side and by Yale lock in the middle. The chests are equipped with handles on each end.

The tool chest is 40 -inches long, 20 -inches wide and 24 -inches high. It is equipped witil one tray winich rests on shelf angies. This chest is carried on the right end platform of the mount alongside of the loading trough when traveling. Lug angles bolted to the floor plates prevent it from shifting.

The armanemt chests are 46 -inchos iong, 20 -inches wide and 12inches high. They are equipped with two trays placed on top of each \therefore ard shpuricu on the cinest bottom.

When the mount is traveling, these chests are placed on the front of the car platiorm just in bask of the ammition table. They are held in this position with angies winch are bolted to the fioor plates.

The chests should be removed from mount when in firing position, and placed in some conrenient place.

SETINT $R=$ CAMOUFI AGS.
(a) Descriftion, Refer to Plate XXXIV.

The mount may be canouf laged, using the five color system following the foliage design, with color key in black and white shown on Plate XXXIV.

The object of this method of painting is to break up the la rge surfaces into a number of small sections so as to produce the appearance of a clustor of shrubbery with patches of light and shadow.

To completely camofflage the mount, it should be covered vith a semi-transparent canour lage canopy of tent form similar to that used for the 12-inch Gun Railway Carriage shown on dravings Class 86, Division 22, Drawings 1,2, and 3 .
(b) Paints.

The paints to be used are the U.S.Government Camouf lage Paints prepared for the five color system and in the proportion as follows: applied over a coat of Ordnance Grey and never on bare metal.

1	Brown	No. 4041	-10
2	Yeliow	4042	3
3	Cream	4043	5
4	Green	4044	10
5	$" 1$		
5	Mauve	4046	2
6	Black	4045	1

The paint numbers referred to above are the U.S. Government Faint numbers. The parts referred to indicate the relative amounts of paints of the different colors which will be required to camouflage one 12-inch Howitzer Railway Mount.

Each color, for convenience, should be furnished for use in one gailon "friction top" cans with handle. Paints should be fumished in the cans, mixed ready for use. When paint becomes too thick and it is necessary to thin, use linseed oil and turpentine for that purpose, being caref ul not to use too much turpentine.
(c) To Apply the Paint.

To apply the paint the surface shovid be free of all sand, cinders, dirt and oil. Paint formerly applied and adhering firmly to the surface need not be removed. The section to which the different colors are to be applied are then laid off in accordance with the design shown on Plate.

After the mount has been properly marked of \hat{f} into the different sections, the colors should be carefully applied, care being taken to insure an even smooth coat, After the different colors have been applied the lines where the colors meet should be covered with a black band about one and one quarter inches wide. Rrecautions should be taken to see that the paint is dry and hard before permitting anything to come in contact with the painted surface.
(d) To Remove Paint.

The paint may be removed by turpentine or by the uce of a pajnt torch if care is taken in the use of the flame.

PART II - INSEECTION AND MATNTENANCE OF THE MOUNT
EESTION A -'Care of Recoil Mechanism.
(a) The recoil cylinder should be emptied and refilled once every three monthis and thoroughly cleaned once every six months or ofterier if conditions require it.

The liquid intithe recoil cylinder is a solution of equal parts glycerine and water. The density of the liquid should be 1.15 and should have a neutral or alkaline reaction, caused by adding caustic soda or caustio potash, chemically pure. A hydrometer, which is kept in the arm mament chest when not in use, 'is furnished to test the solution for density. This liquid should be filtered through a clean piece of muslin or linen before using. The glycerine should be kept in closed cans, provided for the purpose, and be carefully protected from dirt, sand and grit. Liquid drawn from cylinders and containing sedimen't must not be used again until it has been allowed to settle for not less than 24 hours.
(b) To dismount recoil mechanism. Refer to Plate VII.

The dismomting of the recoil mechanism should never be undertaken in the field.

Four men required, one cylinder at a time.
Tools needed:
Wrench, double 0.625 and 0.75 , U43F
Buckets
Can
Screw driver, U45W
Wrench, single. 4.25 nuts, U596D
Spanner wrench, recoil cylinder follower, U596A Wrench, stuffing box and cylinder head, U596C Wrench, recoil cylinders, U596B
(1) Slevate the Howitzer 5 degrees, remove drain plug and drain liquich from cylinder into buckets, 16.25 gallons in both cylindero.
(2) Remove locking screws from piston rod nuts and take of piston rod nuts, rear.
(3) Renove air from recuperator by wiscrewing emptying valve on rear end of recuperator cylinder.
(4) Slide Howitzer back until the lug on the reacil band clears the end of piston rod by about 6 inches and take of f piston rod nut, front.
(5) Unscrew stuffing box; draw it off piston rod; remove follower, gland, and packing, and screw Iollower and stuffing box back into the cylinder.
(6) Remove cylinder head, weight $17 \pm$ pounds.
(7) Draw piston rod with pistong out through cylinder head end of cylinder. The weight of piston rod with piston is approximately 392 pounds; care should theref ore be used in handling it.
(8) Unscrew recoil cylinder and slide cylinder out. The cylinder weighs 628 pounds.
(9) Stuifing box, follower and leather washer may be removed. Locking screw need not be removed.
(c) To Assemble Recoil Mechanism. Reíer to Plate VII.

The assembling of the recoil mechanism should nover be under taken in the fisld.

Four men required.
Tools needed:
Wrench, recoil cylinders, U596B
Screw driver, U45S
Wrench, recoil criinders: U596B Wrench, stuffing box, and cylinder head. U596C

```
Wrench, single, 4.25 nuts, U596D
Screw driver, U45W
Wrench; double, 0.625 and 0.75. U4.3F
Hand mallet. U47 AN
Brass rod 0.312 (5/16) diameter by 12 inches.
Glycerine and water solution (either new or used)
Hydrometer (if solution is new)
Filling funnel.
Can
6 rings of 0.375 inch Garlock packing.
```

(1) Insert recoil cylinder in cradle and push it through until threads on cylinder come in contact with thereas on crade. Turn cylinder. with wrench on flats at stuffing box end until cylinder flange bears firrm ly on cradle and notch in flange at stuffing box end ljnes up with hole in oylinder for locking screw.
(2) Screw Iocking screw in cradie.
(3) Insert piston rod in cylinder and place leatiner washer; stuffing boxi washer; stuffing box, with gland and follower in place, and piston rod nut (front) on rod when it is pushed through stufitig box end of cylinder. Screw stufîing box in place and ppish piston rod to rear through recoil band, advancing piston rod nut, until the distance from the end of the threaded end of rod to the rear end of cylinder equals $24.375+0.01$ inches.
(4) Look the front and rear piston rod nuts.
(5) Pack the stuffing box as per instructions grection A_{p} division e.
(6) Vith leather washer and recoil cylinderinead bushing in place, screw on cylinder head.
(7) Fill cylinder with the glycerine and water sqlution, using fill. ing funel prescribed as per instructions section A_{s} division d.
(d) To Fill recoil cylinders. Refer to Plate VII.

```
Ivo men required.
Tools needed:
    Wrench, douible 0.625 and 0.75 U43F
    Fijling Funnel.
    Glycerime and water solution (either nev or used)
    Hydrometer (ii solution is new)
```

(1) Set Howitzer at 0 degaee with recoil band against stops on cradle and remove filling plugs.
(2) Insert filling funel and fill to overflowing with solution of glycerine and water. Allow escape of air, reíili, remove fumel, and screw iilling plugs iight.
(e) To Pack stuffing Box. Refer to Plate VII.

One man required.
Tools needed:
Spanner wrench, stuffing box follower. U596A
Hand mallet, U47AN
60 rings of 0.375 wirch Garlock packing.
Screw driver, U45W
Wrench, sirgle, 4.25 nuts, U59D
Wrench, box. U423D
Brass rod, 0.312 (5/16) diamete: by 12 inches.
Can
Wrench, double 0.625 and 0.75 U43F
(1) Elevate Howitzer 5 dogrees, remove drain plugs, and drain Iiquid from cylinders to buckets, 16.25 gallons in both oylinders. Elevate Howitzer to 0 degree elevation.
(2) Allow air to escape from recuperator syinder by unserewing exhaust stem in valve rear end of cylinder.
(3) Remove locking screvs from piston rod nuts and take of piston rod nuts, rear.
(4) Slide Howitzer back until the lug on the recoil band cleers the end of the piston rod by about 6 inches and take of f niston rod nude: front.
(5) Unscrew stufing box; dnaw it of f piston rod; remove follower: giand, and packing; screw stuffing box back into cyinder and discard any of the packing that is unfit for use. If any is ased to repack, it should be put in after new.
(6) To repeck, put on the piston rod, one ring of the packing and force it well to the bottom of the gtuffing box by brass rod and mellet, Treat each ring of packing in the same manner, being, careful to break joints, until three rings of new packing or an equal anount of new and old packing heve been inserted. Enter the gland and follower in the box and sorew up tight.
(7) Sorew piston rod nuts (front) on rods, slide Howitzer forward, put piston rod nuts (rear) on, and add looking screws.
(8) Fill recoil oylinder as prescribed in section A. division (d)
(9) Fill recuperator cylinder with air as prescribed in section $B_{\text {, }}$ division (d).

The addition of the leatiner washer around the piston rod in front of the stuffing box allows less force to tighten the follower than if it were the plain packing.

The follower should be tightened up from time to time. If it is screwed into the stuffing box too tightly, an unecessary anount of frion tion will be produced on the rod. When the follower is screwed until the flange strikes the box, it should be repacked.
(f) To Clean Recoil Cyiinders.

This operation should not undertaken in the field.
Three men reguired. Tools needed:

```
Wrench. double, 0.625 and 0.75 . U43F
Buckets.
Can
Spanner wrench, recoil cylinder foilower. U596A
Screw driver, U45W
Wrench, single, 4.25 nuts, U596D
Wrenoh, stuffing box and cylinder head. U596C
Plumbers hand force pump with hose.
```

(1) Elevate Howitzer 5 degrees, rèmove drain plugs, drain liquid into buckets, and elevate Howitzer to 0 degree.
(2) Remove locking screws frrom piston rod nuts and take off piston rod nuts, rear.
(3) Release followers a fev turns, remove cylinder heads, weight 174 pounds each, amd draw out piston rods as prescribed in section A_{1} division (b)
(4) Thoroughly clean cylinders with Kerosene oil forced into both ends with pump and wipe the interiors dry with clean wasto. Olean the piston rod and cylinder heads.
(5) Replace piston rod cylinder heads and tighten followrer. Screw nuts in place on piston rod and lock. SECTION B - Care of Recuperator.
(a) In general. Refer to plate VIII.

The recuperator cylinder and plunger should be emptied and refilled once every three months and thoroughly cleaned once every six months, or of tenor if conditions require it.

The liquid in the plunger is the same as that in the recoil cylinder. (See section A, division (a), second paragraph)

The initial pressure of the air, with howitzer in battery, showld bo 1550 pounds per square inch and of the liauid $\mathbf{i} 700$ poinds per equare inch. The pressures are indicated by the pressure gauges, on the suppos:

With the pumpe If the pressure of the air is not sufficient to retuin the howitzer to battary at maxinum elevation 60 degrees and if the plunger is n ot $f u l l$ of liquid, purp glycerine solution into plunger until either normail pressure or a full plunger is obtained, provided that the variation from 1550 pounds per square inch is small.

If this variation is large, connect the compressed air tank and raise the pressure in the air chamber. The arnount of space between the rear face of tige washer, on the front end of the piston rod and the front face of the stuffing box gland, indicates the amotint the pistonjhas moved toward the plunger, caused by leakage of the liquid. When this distance equals approximately 5.875 inches, the piston is resting against the plunger, the plunger must be refilled with liquid before this condition exists or serious dardige will be done. There should always be a space between the rear face of the washer and the iront face of the gland, even when plunger is full of liquid. Because if the washer is against the gland, there is nothing to indicate that the liquid pressure is balanced by the air pressure and any excess liquid pressure may damage the piston rod.

The pull rod bearings in cradle should always be well lubticated.
(b) To Dismount Recuperator. Refor to Plate VIII.

This operation should never be done in the field unless it becomes absolutely necessary. The Howitzer must not be elevated while the rem cuperator is dismounted.

Five men required.
Tools needed:
Wrench, box U423D
Spanner wrench. U423E
Wrench, double, 1.25 and 1.5 . J? $\because 3 J . A$
screw driver, UU45AN

Socket wrench, U422G
Handle. U422H
Socket wrench, U422D
Wrench, double 0.875 and 1 . U4.3G
Wrench, U\&23A
Monkey wrench, 6-inch* U45DA
Screv driver, U45AE
Socket wrench, U422C
(1) With the Howitzer at 0 degrees, open upper stem on liquid valve until liquid begins to escape, then close.
(2) Depress the Howitzer to -5 degrees and secure by means of the muzzle support.
(3) Empty air from recuperator cylinder by unscreving both stems in air valve at rear end of cylinder. It is very important that:all the air be allowed to escape before removing any parts.
(4) Slack off the front nuts on the large stuffing box at front end re recuperator cylinder in order to take the pressure of f of the plunger, caused by the packing.
(5) Push plunger and piston to the rear with its yoke until pull rod bushings are uncovered, holding pull rods in their original position.
(6) Block up under plunger at a point just behind the yoke to support plunger.
(7) Remove lock screw in each yoke bushing.
(8) Unscrew yoke bushings.
(9) Remove pull-rod bracket.
(10) Push pull rods to rear.
(11) Remove yoke bushings.
(12) Pull out the plunger, piston rod, and yoke, which weigh about 500 pounds, care being taken to have these parts centered at all times arc: to protect the outer surface of plunger.
(13) Remove piston-rod nut, washer, gland, and stuffing box, awall, with packing and piunger leather.
(14) Drew out piston.
(15) Disconnect air and liquid piping and remove liquid valve.
(16) Remove plunger protection ring, felt washer, gland, stuffing box, large, with packing and plunger leather packing.
(17) Remove set screw in cylinder clamp lock, unscrew oylinder
clamp lock and slide cylinder out to rear, weight about 895 pounds.
(c) To Assemble Recuperator Refer to Plate VIII.

This operation should never be undertaken in the field unless it becomes absolutely necessary.

Five men required.
Tools needed:
3 rings flax packing, $30 D$
Piston washer, leather. 30B
Spanner wrench: U423G
Socket wrench, U422C
Socket wrench, U422D
serew driver: U45AN
Monkey wrench. 6-inch, U45DA
Wrencho U423A
Wrench: double, 0.875 and 1. U43G
Socket wrench. U422G
Handle, U422H
Screw driver, U45AE
Wrench, double, 1.25 and 1.5. U43BA
Wrench. U423D
10. ring flax packing. 27 N and 28M

2 leather packing: 27H and 28K
Brass rod, $0.437(7 / 16)$ diameter by 12 inches.
Filling funnol
Can
2 tanks of compressed air.
(1). Slide cyiinder into housing in cradle, screv cylinder clamp lack on front end of cylinder and lock with set screw. Cylinder weighes 1040 pounds.
(e) Place stuffing box, gland, leather packing, and felt washer on plunger and slide to front.
(3) Assemble packing, gland, and washer to piston and place piston rod in place in plunger.
(4) Push piston and plunger into cylinder.
(5) Pack stuffing box, large, and put nuts on studs, care being taken to tighten up nuts alternately so packing bears properly. (See division (e).)
(6) Push plunger to the rear, screw yoke bushings on pull tods, and slide pull rods in place.
(7) Put. leather packing and stuffing box, small, in plunger and put nuts on studs.
(8) Pack stuffing box, small, place gland in piace and screw nuts on studs, care being taken to tighten up nuts.alternately so packing bears unif crmly. (see division (e).)
(9). Place washer on end of pistong rod and screw nut against shoulder.
(10) Bolt liquid valve to cylinder and connect up air and liquid piping
(11) Fill the plunger with liquid, connect up the air tank, and fill the cylinder with air.
(d) To fill recuperator cylinder. Refer to Plate VIII.'

Five men required.
Tools needed:

Box wrench, U423A.
Wrench. U423D.
Can
Glycerine and water solution
Two tanks of compressed air.
(1) Fill plunger with glycerine and water soiution, by means oi the pump, and at the same time letting compressed air into the air chamber, being careful to keep the liquid and air pressures balanced as indicated by projection of piston rod forward from stuffing box.

When plunger is $f u l l$, there should be only a small space between front face of stuffing box gland and rear face of washer at front end of piston rod. Never allow these two to come together.
(2) To fill the air chamber, the following has to be done: Connect up the air tank with the air pipe connection by the copper tubing, open the valve on the tank, then open the valve on the air cylinder. Two tanks are usually sufficient to run the air pressure in recuperator cylinder up to 1700 pounds per square inch; others or parts of others may be used, if necessary.
(e) To pack stuffing boxes. Refer to plate VIII.

One ring of packing is placed in stufing box and forced well to bottom with brass rod and mallet. Treat each ring of packing in the same manner, being careful to break joints yntil the five rings have been inserted. Nuts on studs should be screved tight against glands.

When repacking these stuffing boxes, recuperators mist be dise mounted (see section B, division (b))'sufficiently to get tine packing out. Any of the old packing that is unfit for use shosid we discarded. If any of the old is used to repack, it should be put in after the nev.

The addition of the leather washers around the piston rad fai plunger in the rear of the stuffing boxes allows less icrec to tightee
the glands than if it were the plain packing.
The nuts around the glands should be tightened from time to time. If the glands are pressed too tightly into the stuffing boxes, an unnecessary amount of friction will be produced on the plunger and rod. When the glands are pushed in until they strike the stuffing boxes, they should be repacked.
(f) To clean recuperator cylinder and plunger: Refer to Plate See Section B, division (b)

This should never be undertaken in the field except in case of abwolute.necessity.

Dismount the recuperator, thoroughly clean the cylinder and plunger with kerosene oil forced into them with plunger's force pump. Wipe the interiors dry with clean cotton waste. Clean the piston and piston rod.

> SECTION C - CARE OF ELEVATTNG MECHANIMM.
(a) To Dismogmt the elevating'mechanism. Refer to plates XI and
XII.

Three men required.
Tools needed:
Wrench, double, 0.875 and 1 U U4.3G
Wrench, double, 1.25 and 1.5 U13BA
Wrench, double, 2. and $2.25 \mathrm{U} \leqslant 3 \mathrm{AWI}$
Wrench, pinion shaft and nut 3.5 U83H
torew driver, U45AN
Screw driver, U45AE
Machinist's hammer, U48F
Pin punch, J47AF Blocks of wood.
(1) Take hand wheel off and remove brake bande
(2) Romove pinion shaft gear from elevating pinion shaftr ani
renove sievating pinion shaft.
(3). Take of intermediate pinion shaft nut and wesher, and remove -
intermediate pinion shaft, care being taken to see that intermediate gear is blocked up.
(4) Remove elevating gear plate with bearings fastened to it.
(5) Remove intermediate gear.
(6) Take off handwheel shaft.
(7) Renove rack.
(b) To assemble elevating mechanism.

Reverge the operations, as outlined in above, for dismounting. , SECTION D - CARE OF TRAVERSING MECHANISM
(a) To dismount traversing meohanism. Refer to Plate XIII. Three men required. Tools needed:

Wrench, double, 0.625 and 0.75 U 43 F
Wrenchs double, 1.25 and 1.5, U43BA
Wrench, double, 0.375 and 0.5 , U43C
Hammer, machinists. U48F.
Punch, Fin, U47AF
Wrenchr, double, 2. and 2.25, U43AW,
(I) Screw out side leveling screv, remove sight with sight bracket ${ }^{\text {(}}$ from cradle trunnions.
(2) Take off gear case cover.
(3) Remove pin and collar irom ond of worm shaft and draw it out.
(4) Knock out pins in lower part of vertical trapersing shaft and take of f traversing pinion.
(5) Draw shaft with worm wheel up through case; push worm to side of case when starting
（6）．Worm may then be removed from case，and case taken of side of frame；worm wheel may also be driven of f shaft．
（b）To Assemble traversing mechanism．Refel to plate XIII
Three men required．
Tools needed：
Wrench，double， 0.375 and 0.5 ，U43：？
Wrench，doubleg 0.625 and 0.55, U4EF
Wrench，double， 1.25 and 1.5 ，J43BA
Wrench，double，2．and 2．25，U43AW．
Hammer，machinists．U48F
Punch，pin，U47AF
（1）Bolt gear case to side frame and place wrri in pocket in case．
（2）Drive worm wheel on shaft and place shaft in position． Worm must be held against wall of case wen assembling：wheel and shaft，
（3）Drive pinion on shaft and pin in place．
（4）Slide worm shaft in place and lock it with $\mathrm{p}: \mathrm{n}$ and collar．
（5）Bolt cover on case，and bolt sight assembled，or sight bracket to trunnions．
（6）Connect up level种g screw．
SECTION F－CARE OF AMMCNIT CON CRANE
（a）To dismount ammuntion crane．Refer to Plate XXVII
Men required．
Tools needed：
1 Hammer，U48F
1 pin punch
1 screv driver，U45AN
1 Wrench，double， 0.375 anc 0.5 ，U．33C

1 Wrench，double， 0.875 and \because EASC
（1）Romove bolt fastening hoisting rope to eri of crane mast，and place bolt back in socket on rope．This renoves sheire block piare，
sǐeave and crane hook.
(2) Remove intermediate rope guard and sheave from crane mast.
(3) Remove lower sheave bracket from crane mast and leave sheave and rope guard attached to sheave bracket.
(4) Unpin crank shaft collar andr unscrew crank shaft nuts.
(5) Remove left crank and left crank bushing. The crank shaft may now be withdrawn to the left and the pinion, ratchet and friction box, and friction dirct be lifted out. The right crank may also be withdrawn.
(6) Remove split pinsj drive out drum shaft and lift out drum and gear.
(7) Remove drum bracket from crane mast:
(8) Remove crane mast from crane mast pedestal and unbolt pedestal from platform.
(b) To Assemble Ammunition Crane.

Men Required.
Tools needed:
1 Hammer, U48F
1 Pin punch
. 1 Screv driver, U45AN
1 Wrench, double, 0.375 and 0.5 , TJ430
1 Wrench, double, 0.625 and 0.75 , U43F
1 Wrench, double, 0.875 and 10, U43G
Reverse procedure as outlined above for dismounting in (a). Note:- Care should be taken to see that the bronze and steel friction discs are assembled in their proper order.

SECTION E ANTI-FRICMIN DFNTGE.

(a) To Dismount anti-friction device Refer to Plate XTV.

Four men required.
Tools needed:
Wrench, single, 1.750 U43V
Wrench, spanner, U596E
Screw driver, U45AE
(1) Unscrew locknut on adjusting screw.
(2) Remove split pin and nut from bearing support.
(3) Unscrew adjusting screw until bearing; support is clear of bearing seat.
(4) Remove roller and bearing seat.
(5) Remove upper trunnion pin bearing an:l key \cdot
(6) If tipping parts are out of side fram bearing, the bearing support can be drawn up through the hole in sids frame.
(7) Belleville springs and washers can nof: be removed.
(8) Unscrew adjusting screw nut with lockvisher attached to ito
(b) To assemble anti-friction device.

Reverse the operation as outlined in akove, for dismounting. SECTION A - CARE OF TRUCK 3.
(a) To remove trucks from Mount, refer to Plate XXXII.
-8 Men required.
Tools needed:
4 Auxiliary jacks.
1 Crowbar, l243A
1 Pinch bar
1-7.inch pliers, U47AQ
(1) Remove split pin from live lever pin auc rexrse live lever vin from rear truck lever connection. Plece ling lever fin in hote in live lever and insert split pin.
(2) Lift center pin from center plase hole, using phor bar tu sion
seme, if necessary.
(3) Raise mount with jacks as described in Part $I_{\text {, }}$ Section (L), Division (d) until mount is clear of trucks.
(4) Shove trucks along until they are clear of mount.
(b) To Disassemble and Assemble Truckse Refer to Plate XXXII. Three men required. Tools needed:

I Wrench, double, 1.25 and 1.5 nuts, U43BA
1 Wrench double, 875 and i-inch, U43G
1-7minch Pliers, U47AQ
2 Crowbars, 1243A
Blocking
1-16-inch Monkey vrench, U45LA
1 Câr Box Jacking screw, with levers, 1022C
4 Jacks, 25-ton
1 Combination Hook and Packing tool

- 1 Hammer, U48F

1 Pinch bar.
(1) Remove pedestal tie from both sides of truck replacing bolts. in ties with nut locks and nuts.
(2) Remove cotters from equalizer pins (put cotters in a convenient place so they can be replaced in pin when same are later removed).
(3) Place jack screw on secure, blocking under inside pedestal castings of outer wheels and raise truck frame until springs and equalizers are rem leased sufficiently for removing.
(4) Remove semi-elliptic spring keys which will allow spring to be remoged.
(5) Remove pins from equalizers and replace pins in same, also replace cotters. (Refer to Art. 2).
(6) Remove cotters and nuts from Helical syring bolts, then remove bolts and replace nuts and cotters. Also remove springs and spring seats.
(7) Place car jack on secure blocking under semi-elliptic spring shit and raise truck frame sufficient to remove wheels and journal boxes. (Small jack screws and blocking can now be rernovad).
(8) Push end wheels with joumal boxes away from truck frame.
(9) Disconnect bottom connection rod from both front and rear truck levers and replace comection pins in their respective places in rods.
(19) Remove rear truck lever from brake beam and replace connection pin in hole from which it was taken in brake beam.
(11) Disconnect front truck lever from dead lever bracket and replace connection pinnin dead lever bracket.
(12) Disconnect dead lever bracket irom dead lever fulcrum bracket and replace donnection pin in dead lever bracket.
(13) Remove front truck lever from brake beam and replace connection pin in hole in brake bearn.
(I4) Pull out brake shoe keys and remove brake beams and brake shoes.
(15) Remove brake shoe hangers from side frames and replace hanger bolts with keys in hangers.
(16) Place blocking under pedestal casting of end wheels at either end of truck most convenient and remove the car jacks near the end so blocked by unscrewing jacks so as to allow frame to rest on blocking. This will. permit moving center wheel with boxes, intorposition f ormerly occupied by end wheels.
(17) Replace cat jacks under semi-elliptic spring seats as bef ore and raise this end so as to release load of frame from blocking at end.
(18) Remove end•blocking and push wheels away from frame.
(19) Open journal box doors and remove journal box packing with hook and packing tool.
(20) Tili the outer ends of the boxes up until bearing wedge and bear"ings can be removed; remove wedges and take bearings out. Then remove boxes.
(21) To Assemble Trucks. Reverse the process just described.
(c) To Pack Journal Boxes. One man required.

Tools needed:
1 Hook amd Packing TOOI.
Bucket or Tin can of 3 to 5 gallons capacity Galena Oil
Wool or Cotton Waste
(1) With hook and packing tool remove waste, also all particles of sand and grit from journal boxes.
(2) In the bucket or tin can place enough waste to pack the number of journal boxes to be packed; wrool vaste is preferable, but cotton waste will do and saturate with Galena Oil.
(3) With hook and packing tool pack the oil saturated waste firmly into the lover section of the Journal Boxes, Note: - The life of the journal bearings will be considerably lengthened and the trouble arising from burned out bearings will be reduced to a minimum if regular inspections be made of the joumal box packing. If the car is to be moved a considerable distance, especially after having stood in one place for any length of time, it is well to see that all boxes are well packed with oil saturated wasted. Care should be taken to see that the covers are kept closed and promptly replaced where broken or lost in order to keep out, as much as possible, all sand and grit.
(d) To Replace Journal Bearings.

Two men required.

Tools neecied：
1 Pinch Bar
1 Car Box Jacking Screw
1 Hook and Packing Tool
（1）With car body jacks raise car body about two inches．
（2）With car box jacking screw raise the journal box from which the bearing is to be removed，about two inches．
（3）Raise joumal box cover and remove bearing wedge with hook，with－ draw bearing．
（4）Put new bearing in position and replace bearing wedge；pack journal box packing firmly around lower half of journal and be certain that journal bearing and wedge are properly seated．
（e）To Place Trucks tinder car．

Reverse procedure outlined in Part II，Section G，Division（a）．

SECTION H－CARE OF TRUCKS
（al）To Disassemble Air Brake，Refer to plates XIX and XX．
Two men required．
Tools needed：
1 Hammer，U48F
1 －7－inch Piiers，U4．7 AQ
1 Pinch Bar
1 Wrench，double， 75 and l－inch nuts，Ul52G
1 Wrench，monkey， 6 －inch，TJ45DA
1 stills on Pipe wrench； 25 and 2.5 winches， $65 \% \mathrm{D}$
1 Wrench，ridouble， 0.875 and luinch nutisg J 43 F
1 Wrench，double， 0.625 and 0.75 ．inch nuts，$T 43 F$
1 Wrench，double， 0.375 and 0.5 mincin nuts， 443^{-50}
（1）Disconnect hand brake pullrod and brake cylinder lever connection from brake cylinder lever and replace connection pin in end of pullrod．
（2）Disconnect floating lever comnection fromfloating lever and re－ place connection pin in floating lever connection．
(3) Disconnect live lever from floating lever and replace pin in live lever.
(4) Unbolt and remove cylinder lever fulcrum from center sill and rem place bolts in their respective holes in center sill and remove cylinder lever from cylinder lever fulcrum.
(5) Disconnect brake cylinder pushrod from cylinder lever and replace connection pin in end of pushrod, disconnect floating lever fiom floating lever fulcoum and replace pin in floating lever.
(6) Unbolt and remove floating lever fulcrum from under sicie of floor plate and replace bolts in fulcrum.
(7) Disconnect union on cross pipe between cylinder and reservoir and remove pipe.
(8) Unbolt and remove brake cylinder from support and replace bolts in support.
(9) Disconnect pipes and ells from reservoir that connect with cross pipe to cylinder.
(10) Unbolt triple valve from reservoir.
(11) Unbolt and remove reservoir from support, roplacing bolts.
(12) Remove triple valve.
(13) Unscrew pipgl:BA:
(14) Remove centrif agal dirt oolisetorn
(15) Remove elbow and pipe "GA"
(16) Unscrew pipe "AA" from cut out cock and remove self-locking cutout cock No. 2135 with upper pipe "AA" from $1: 25$ toe.
(17) Remove upper pipe "AA" from cut out cock.
(18) Remove V bolt in end sill and unscrew selí-locking ningle cook No. 22413.
(19) Unscrew pipe "R" from coupling leaving coupling cn pipe "s".
(20) Remove pipe hanger and unscrew pipe "S" from 1.25 e 11 and loave ell on pipe "T".
(21) Remove pipe "T" from 1.25 tee and leave tee on pipe "u゙".
(22) Unscrew pipe "U" from ell and Ieave ell on pipe"m's
(23) Remove pipe hanger and unscrew pipe "th" from elbov and leave elbow on pipe "X".
(24) Unscrew pipe "X" with drain cock from pipe "z" Note:- If it is desired to disassemble the complete air brake equipment on mount, repeat the above operation for disassembling the mechaniegm under the other end of the mount.
(b) To Dsisiassembleiand Assemble Handbrakes. Refer to Plate XIX and XXo

Two men required.
Tools needed:

1 Hammer, U48F
1-7-inch pliers, U47AQ
1 Wrench, double, 0.375 and 0.5 -inch nuts, U43G
1 Wrench, double, 0.625 and 0.75 inch nuts, U43F
(I) Disconnect handbrake pull rod from cylinder lever and replace connection pin in end of rod.
(2) Remove handbrake sheave from handbrake pull row, take chain from around sheave and fasten sheave back in rod jaws with pin.
(3) Unbolt and remove pull rod hanger and replace bolts in hanger.
(4) Remove pull rod.
(5). Disconnect handbrake chain from brake mast step and brake mast.
(6) Unbolt and remove brake mast step and replace bolts on mast step.
(7) Remove brake mast with handwheel and ratchet attached.
\because To Assemble Air Brake Refer to Plates XIX and XX.
Three men required.
Tools needed:
1 Hammer: U48F
1 7-inch pliers, U47 AQ
1 Pinch bar.
1 Wrench, double, 75 and l-inch, U153G
1 Wrench, monkey, 6-inch, U47DA.
1 Stillson Pipe Wrench, .25 to 2.5 inches, 637D
1 Wrench, double, 0.625 and 0.75-inch nuts, U43F
1 Wrench, double, 0.375 and 0.5 -inch nuts, U43C
1 Wrench, double, 0.875 and l-inch nuts, U43G
Reverse procedure as outlined in Section H, division (a).
(d) To clean and Oil Brake Cylinder, Refer to plate XXIX

Two men required.
Tools needed:
1-7-inch pliers, J47AQ
1 Hammer, U48F
1 Pinch bar
1 Wrench, double, 625 and 0.875-inch nuts, U153E
1 Wrench, monkey, 6-inch, U47DA
(1) Disconnect pushrod from cylinder lever.
(2) Remove bolts connecting cylinder to brake cylinder brake and remove pipes connecting cylinder to reservoir.
(3) Remove piston head.
(4) With kerosene oil, thoroughly clean and remove all particles of sand and grit from piston, piston ring and inside of cylinder.
(5) Oil piston leather in piston with heavy oil or light grease.
(6) Put piston back in cylinder and replace whole on car.
(a) To clean and oil triple valvo K-2. Refer to Plate XXXIII.

Two men required

I Stillson Pipe Wrench, *25 to. 2.5-inches, 637D
4 Hammer, U48F
1-7-inch pliers, U47AQ
1 Wrench, double, 75 and l-inch nuts, U153G
1 Wrench, monkey; 6-inch.' U47DA
1 Wrench, double, $\cdot 375$ and .5-inch nuts, U153B
(1) Discomect branch pipe union and remove branch pipe from triple valve.
(2) Diggopneat triplo ralvo from;quxiliary valva.
(3) Unscrev union nut 17 and remove strainer 16.
(4) Unscrew graduating stem nut 20 and remove graduating spring 22.
(5) Remove nut from bolts 24 and take off cylunder cap 19 and cylinder cap gasket 23.
(6) Withdraw piston and slide valve from casing.
(7) Remove cap screws 25 and take off check valve case 13 and emergency valve 9.
(8) Remove piston 8.
(9) Remove emergency valve 10 and check valve 15.
(10) Unscrew retarding device 29 and remove retarding spring 33 and stem 31.
(11) Clean all parts thoroughly with kerosene oil. Using oil sparingly, oil triple piston and surface between slide valve and slide valve seat. Also surface between graduating valve and slide valve.
(12) Assemble by reversing procedure as outlined above, and replace triple valve in position.
(f) To Clean Centrifugal Dirt Collector Refer to Plate XXXI

One man required.
Tools needed: None
(1) Open cock at bottom of collector until all particles of sand, dirt and water are blown out.
(g) To Take Up Shoo Wear.

One man required.
Tools needed:
1 Pliers, U47AQ
1 Hammer, U48F
1 Pinch bar.
(1) Release brakes, both hand and air.
(2) Discomect front truck lever from dead lever bracket, move front truck lever out until the rear truck lever will not go back to less than 1.5-inchea from the truck bolster and remaise connection in proper holo in dead lever bracket.
(3) If necessary the shoes can be set up tighter by moving the front truak lever to the end holes of the bottom connection rod.
(m) To Replace Brake Shoes. Refer to Plate XXXII.

One man required.
Tools needed:
1 Hammer, U47AM
1 Pinch Bar.
(1) Release brakes, both hand and air.
(2) Withdraw brake shoe keys, take out worn shoes and replace with new ones.

SECTION I. - CARE OF JACKS
(a) To Disassemble screw jacks. Ref er to Plate XXV

Two men required.
Tools needed:
1 Hamer, U48F
1 Pin punch
1 Wrench, double, 1.25 and 1.5, U43G
1 Wrench, double, 0.625 and 0.75 , U43F
(1) Unscrew lower jack pinion stud nut and remove ratchet and pawl with housing.
(2) Remove upper jack pinion stud nut and take out jack pinion stud with jack pinion attached.
(3) Remove jack screv nut and let jack and ram rest against guide.
(4) Take washers and screw gear of f of sorew.
(5) Remove stop from ram and guide from base plate.
(6) Remove screw and rame

Note:- In order to remove sorew and ram it is necessary to run the mount over a pit or dig a hole in the ground.
(b) To Assemble screw jacks reverse the operations outlined above for disassembling
(c) Care and Oiling of Jacks.

The jacks should be lubricated frequently. To do this a steel compression grease cup is screwed into the stop on the ram. This cup should never be without grease in it. The jack levers should be removed and placed in some convenient place on the platform.
(d) Care of Auxiliary Jacks.

When not in use the auxiliary jacks should be placed under the ammunition table. The bearings of the jack should be kopt well oiled and the main lifting screw and the teeth of the gears should be lubrioated with heavy grease when necessary to make jacks work easily.

PART III.
SECTION A_{0} PRECAUTIONS TO BE OBSERVED BEFORE FIRING.
(a) This carriage is designed to be fired from 20 to 60 degrees elevation; do not fire it below 20 degrees.
(b) Fold up platform at breech of Howitzer.
(c) Take reading at liquid pressure gauge; this reading should be 1700 pounds per squre inch, a small amount of liquid will leak out each round and is replaced by means of the pump.
(d) Take reading: at air pressure gauge; this reading should be 1550 pounds per square inch.
(e) The distance the recuperator piston rod moves indicates liquid leaking at the packing and the rod should never be allowed to stand out past the gland more than 5.875 inches.
(f) Traverse gun through entire allowed movement to make sure that all parts work freely.
(g) Elevate Howitzer through entire range of elevation to see that all parts work freely.
(h) Make sure that all nuts, tap bolts, and screvs on elevating mechanism, traversing mechanism panoramic sight, and elevation quadrant are set up properly.
(i) Make an inspection of recoil and counter recoil systems to see that they are properly assembled, especially after the Howitzer has been dismounted from the orade.
(k) See that the outriggers are set securely.
(1) See that the underf raming of the mount has a unif orm bearing on the ground platf orm.
(m) Make sure that the recoil cylinder is properly filled.
(n) All brakes should be released.

SECTION B - PRECAUTIONS TO BE OBBERVED BEFORE TRAVELLING.
(a) See that all equipment to bo carried on the mount is properly secured and that none of it projects out past the clearance line.
(b) Depress gion to 0 degree elevation and traverse it to 0 degrees azimuth and fasten gun with travelling lock.
(c) Remove panoramic telescope, place it in carrying case and store in secure place.
(d) An inspection should be made of journal boxes to see that they are properly packed and that the bearings have not worn dow too much.
(e) An inspection should be made also of the brake shoes and mechanism. If there is too much play between the brake shoes and wheels, the wear should be taken up in the brake mechanism or the brake shoes replaced with new ones.
(f) Be sure that the complete set of tools are on hand.
(g) See that buffers and courings are in proper working condition o

PART V.

TABLE OF WEIGHTS AND DIMENSIONS OF 12-TNCH
HOWITZER RAILWAY MOUNT, MODEL OF 1918.
Length of recoil normal $36^{\prime \prime}$ max. 37.5
Angle of Elevation (firing $\$ 20$ to $\$ 60$
" " Depression - 5° loading
" " Traverse 360°
Weight of recoiling parts (empty) - 49, 188
" " tipping " " 64,533 (Loaded 65,333)
Weight of Car including base plate 102,880.
Length over draft Gear - 42 ft .2 in. approx.
Total weight of trucks (two) $30,000 \mathrm{lbs}$.

Type of trucks 6-wheel - 5.5×10 journals.
Diameter of wheels 28 in.
Weight of traversing parts with gum (Empty) 92,353
Total weight on track - 195, 243 .
Weight of gun including recoil band \& breech mech. 47, 239
Muzzle Velocity 1950 fes.
Range 21,600 yds (Approx*)
Wt. Projectile 700 lbs .
Wt. Powder 95 ,"
Chamber pressure 37,000 1bs.
Muzzle energy $18,47.4 \mathrm{ft}$. tons
Total rod pull at $60^{\circ}-348,766$ lbs.
Weight per qule at track (front) 35,931 Ibs.
" " " " " (rear) 29,150 "
PART IV, - LIST OF PARTS
12-INGH HOWITZER GARRIAGE, MODEL OF 1918 GRADLE \& DUST GUARI -

BASE PLATE，RAGER，DISTANCE RING，TRAVERSING ROLLERS AND DUST GUARDS
Cast Steel \＃2．
Vulcanized Fibre
 Brass 0．375（0．Dr，A＊W．G．No． 15，375 long 0.375 （O．D．，A．W．G．No． 14 ，
 0.375 （O．D．，AGW．G．NO． 14 ， 0.064 thick）$\times 3.5$ long 0.5 No． 4 Plain Gom－ pression with leather packing，Bowen Mfg．Co． or equal． Wrought Iron 0.5×1.0. DF $\times 3$ ．lang

2611 Gouplings Base Plate Drain Plugs Gaskets
PLATE，
芸

ㅇoriog	O	－	$\stackrel{-1}{-}$	$\xrightarrow{\circ}$
国思密要思	$\begin{aligned} & 6 \\ & -1 \end{aligned}$	$\underset{\sim}{\theta}$	国	$\stackrel{\text { 峝 }}{ }$
いのNHが	＋	＋	＋	＋

$11 F$

No. for one carriage	Piece Mark	Lra Class	Div.	No.	Name of Piece	Material Remarks	
2	216:	10	26	21	Piston Rod Nut (Rear)	Forged Steel	Remarks
2	21D	10	26	21	Piston Rod Nut (Front)	Ditto	
2	21E	10	25	21	Nut Locking Screw	Steel	
2	21G	10	26	21	Nut Locking Bolt	"	
2 ?	22A.	10	26	22,	Gland	Bronze No 3	
1	22B	10	26	22	packing	Bronze MO	6-Ring Garlock's Hydraulic
2	220.	10	26	22	Cylinder Head Bushings	Bronze \#2	Waterproos 0n. 375 square
2	22D	10	26	22	Screws	Steel	0.375×0.625 headless Force, finish, flush,prick punch ends.
2	22E	10	26	22	Recoil cylinder head	Forged Steel No. 2	
2	22L	10	26	22	Pipe Plugs		0.375
2	22F	10	26	22	Follower	Bronze \#3	
2	22G	10	26	22	Stuffing Box	" \quad "	
2	22H-	10	26	22	Stuffing Box Washer	" "	
2	22K	10	26	22	packing	Leather	

No. for Piece Drawing							
1	A3900	15	OK	390	Nut	Steel	$\begin{aligned} & \text { mith } 203(13664) \times 2.25 \\ & \text { split pin } \end{aligned}$
1	A391A	15	OK	391	Hand mheel Shaft	Forged Steel	i4 Teech, 3 per in. (1.0472p) 4.666 P.D. 20° involute Nuttall Stub Too:h
1	A3918	15	OK	391	Pinion Shaft Gear	Cast Steel \#3	52 Teeth: 2 per in.(1.5708p.) 26 P. D. 200 involute Fuctall Stub Tooth
1	A3916	15	OR	391	Tashar	Steel	
1	A391D	15	OK	391	Nuit	Forged Steel	mith 1 - 2.5×3.5 split pin
1	A392A	15	OK	392	Depressing Direction Plate	Bronze	
4	A3928	35	OR	392	Countersunk Head Screws	Frass	$.25 \times .625$
1	A3920	15	0\%	392	Flevating Direction Plate	Bionze	
1	A30?5:	15	OK	392	Flevating Hand Wheel	Cust Steel	
1	A392F	15	OK	392	Brake Rand Bracket	Cust Steel	
4	A392G	15	OK	392	Bolts ${ }^{1}$. 625×2.75, Fitted
1	A39? K	15	OR	392	Handle Stem	Forged Steel \#	
1.	A392\%	15	OK	392	Handie Tube	Seamiess Prass Tube	$\begin{gathered} 1.375 \times 6.25 \times .187(3 / 16) \\ \text { thick } \end{gathered}$
1	A392M	15	OK	392	Hand le Bushing	Steel	
1	A302P	15	OK	392	Nui		$\begin{aligned} & .75 \times .5 \text { iniz. } \\ & \text { Drinl for } 156(32) \times 1.5 \\ & \text { split fin. } \end{aligned}$
1	A392R	15	OK	392	Brake Spring	Spring Steel	
1	A393A	15	OK	393	Brake Rod	Forged Steel	
1	A393B	15	OK	393	Adjusting Mut	Forged Steel	WITh 1-. 203 ($13 / 64$) by 2.25 split pin.
1	A3930	15	OK	393	Brake Rod Nut	Forged Steel	```Nith l-. 203 (13/64) x 2. split pin```
1	A393D	15	OK	393	Washer	Forged Steel	
1	A3935.	15	OK	393	Brake Band	Stieel	.187(3/16) thick x 51.45 10 m
1	A393G	15	OK	393	Rake Band Lining	Raybestos or e	qual . 25 thick $\times 41.52$ long
1	A39,	15	UK	393	Brake Band Fnd Fin Washer	Steel	2. 625 crom
1	A.93K	15	OK	393	Brake Band Find Pin	Friged Steel	With 2-.625 Crown Nuts
1	1393\%	25	OF'	393	Brake Band Frr (Sower) Buake Dand Frod (Uper)	Forged steol	
1	49.0 M	15	OK	393	Brake sand tur (upper)		

6 RFCUPTRATOR AND ITQUTD PLMP 9.							
No. for							
riage	Mark	Cl	Div.	.No.	Nme of Piece	Material	Remarks
1	26A	10	26	26	Recuperator Cylinder	Forged Steel \#2	
1	268	10	26	26 R	Recuperator Cylinder Tiner	Fhosphor Bronze	Matertight Mochanical
1	27A	10	26	27 R	Recuperator Plunger	Phosphor Bronze	" 1
2	27B	10	26	27 I	Locking Screw	Steel	
1	270	10	26	27 S	Stuffing Box (Small)	Phosphor Bronze	" "
1		10	26	27 P	Packing 5 Rings Garlocks Silver Brend	Flax Coil	. 375 Square. Style \#32 very soft
4	270	10	26	27 S	Stud 3	Forged Steel 非3	. 562 (9/16)
1	27F	10	26	27	Gleand	Phosthor Bronze	Watertight Mechenical
1	27 H	10	26	27 F	Flange Packing	Leather	
1	27K	10	26	27	Gasket	Leather	
1	27L	10	26	27 B	Reducing Ring	Phosphor Bronze	"'atertight Mechanical
1	27 M	10	26	27	Packing Ring	" 1	
1	28A	10	26	28	Cylinder Retaining Ring	Forged Steel $\# 2$	
1	28B	10	26	28 F	Ring Locking Screw	Steel	
1	28 C	10	26	28	Stuffing Box, large	Phosphor Bronze	Watertight Mechanical
1	280	10	26	28	Gland (Large)	" "	"
1		10	26	c8	Packing 5 rings Garlock Silver Brand	Flax Coil	. 375 Square.Style \#32, very soft
1	28 F	10	26	28 "	Masher	Felt	
8	286	10	26	28	Stud	Forged Steel \#3	With 8-.625 Nut s
8	28H	10	26	28	Nuts		. $875 \times .5$ thick
1	28K	10	26	28	Packing	Leather	
1	281	10	26	28 R	Ring	Steel	
8	28M	10	26	28	Screws	Steel	.25x. 875 Countersunk head
1	29A	10	26	29	Recuperator Piston Rod	Forged Steel \#2	
1	298	10	26	29	Piston Liner	Phoschor Bronze	Watertight Mechanical
1	296	10	26	29	Piston Rod "asher	Steel	
1	29D	10	26	29	Piston Rod Nut		
$\cdots 1$	29F	10	26	29 Y	Yoke	Forged Steel \#3	
2	29F	10	26		Yoke Bushing	$\begin{array}{lll} 11 & 11 & \# 2 \\ 11 & 11 & \# 2 \end{array}$	
2	29G	10	26		Bushing Retainer	" " \#2	
1	30A	10	26	30	Piston	Phosphor Bronze	Watertight Mechanical
1	30 B	10	26	30 P	Piston Masher	Leather	
1	300	10	26	30	Piston Ring	Phosphor Bronze	Matertight Mechanical
1	301	10	26	30 P	Packing 3 Rings, Garlocks Silver Brend	Flax Coil	- 5 square, style \#3c, very soft
1	30 F	10	26		Piston Sprang	Spring steel	
1	305	10	26		Piston Red Nut 3 With n-2ts	Forged Steel \#2	With 1-.312(5.20) 3.5 split. 23176

10.

$\overline{\mathrm{No} \cdot \mathrm{for}}$ one carriage	Piece Mark	${ }_{\text {Class }}$	$\begin{aligned} & \text { awing } \\ & \text { Div, No. } \end{aligned}$	Name of Piece	Material	Remarks
1	304	10	2630	Piston Screir	Steel	
1	30 H	10	2630	Packing Retainer	Phosthor Bronze	Watertight Mechanical
2	31A	10	2631	Pull mod.	Forged Steel ${ }^{\text {\% }}$	
4	31 B	10	2631	Pull Rod Bushings	Bronze No. 3	
16	319	10	2631	Tap Bolts ${ }^{2}$. 5×1.375, thread .75 long
2	3.1	10	2631	Pull Rod Nut	Forged Steel \#3	mith 2-.375 3 . 75 split pin
2	317	10	2631	Pull Rod Cuard	Steel	
2	31 F	10	2631	Pull Rod Bushing (Rear)	Bronze	
1	A236A	15	OK 236	Pump Case		
2	${ }_{\text {a }}$	15	Ок 236	Bults ${ }^{1}$		0.625×1.75
	A236P	15	0k 236	Bolts		0.625×2.
1	A236B	15	OK 236	Glard	Bronze	
2	A236\%	15	OK 236	Tap Bolts		0.5×1.5
1	A2360	15	OK 236	Filling Cap	Bronze	
1	A236D	15	OY 236	Pump Case Cover	"	
1	${ }^{\text {A }} 336 \mathrm{H}$	15	ок 236	Pump Case Side Pl ate	"	
6	A236R	15	OK 236	Pap Bolts 2		$0.312(5 / 16) \times 0.75$
4	A 236 F	15	OK 236	Pump Case Cover Stud -	Forged Steel	
1	A236G	15	OK 236	Filling Cap Toop	Bronze wire	No. 12 Brown \& Sharre gage
1	А236т:	15	OK 236	Drain Plug	Bronze	
	A237.A	15	or. 237	Pamp body	Phosfhor Pronze	watertight Mechanical
4	A237B	15	OK 237	Pipe Plug	Bronze	
1	A 2370	15	กк 237	Body Nut	Do	
1	A 383 A	15	OF. 238	Side Plate Gasket	Paper	
2	A2. 383	15	OK 238	Case, Stuffing Box Packing	Henp	
2	A2.38C	15	OK 238	Body washer	Leather	
1	A2385	15	Or 238	Rody Gasket	Paper	
1	A2382	15	OK 238	Plunger	Bronze	
1	A238F	15	OK 238	Link		
1	A238G	15	OK 238	Pin	Forged Steel	
1	${ }^{\text {A2, }}$ 288	15	OK 238			
1	A 2399 A		$\begin{array}{ll} \text { OK } 239 \\ \text { OK } 239 \end{array}$	Body Cland Body mat	${ }^{\prime \prime}$	
1		15	OK 239	Plunger Leather	Leather	
1	2 mo lock we . is 1 mith nuts au. wokwahers				Pronze	
-						23176

 $\frac{\text { Div. No. }}{\text { On }} \frac{239 \mathrm{n}}{\text { - }}$

Remarks

$w / 2-.125 \times 1.125$ Stael Pins
$w / 8-.093(3 / 32 \times .5$ Silit Fins
Approx.
Approx. ${ }^{-1}$ \qquad ANMUNITION TABLE

No.for one carriage	Piege Mark	Draging.			
2	52 T	10	26	52	Latch
2	52 U	10	26	52	Latch
4	$52 W$	10	26	52	Hinge

squu 4? TM (

Pumping Platform
Tap Bults (2)
Pipe Hoop
Bolt(1)
Steel
Pumping Platform Steel 25 thick
Sheet Steel length $38.75 \mathrm{App} .25 x .875$ tiread
.75 long

 $\cdots \stackrel{0}{\sim} \stackrel{0}{\sim}$

耳 M O
品 0
on in10
10
10
10 Sheet Steel $10 \quad 26 \quad 65$ "
 \odot 0

 ○

Merl	cias		No.	Name of Picee	Materjal		Rema ${ }^{3}:$
	PLATFORMS, continuod				-		
$66 \mathrm{X}^{\prime}$	10	26	-66	Platform Support (Outer) Plate S	Structural	Steel	. $25 \times$ 15, x 56, 6?
66 Z	10	26	6G	Angles .	*	"	2.x2, \times, 25×4.25 Long
66AA:	10	26	66	" (Right)	"	"	2. x_{2}. $\mathrm{x}_{\text {c }} 25 \mathrm{x}$ (49,5 Lorig
66 BA :	10	26	66	" (Left)	"	"	
66 E	10	26	66	* (Pight)	11	1	
66F	10	26	66	" (Left)	"	11	$2 . x 2=x .25 \times 5.5$ Long
66EA	10	26	66	Bolts (1)			. 625×2.625
$66 \mathrm{FA}{ }^{\text {- }}$	10	26	66	Boits (1)			$.625 \times 2.375$
66GA:	10	26	66	Side Platform Support (Right)Plate	e 1	"	. $25 \times 28 . \times 29$,
$66 \mathrm{HA}{ }^{\text {a }}$	10	26	66	Angle	"	"	2.x3, $\mathrm{x}_{2} 25 \times 25.5 \mathrm{Long}$
66 KAA	10	26	60	1	"	11	$2 \mathrm{x} 2 . \times 25 \times 28$.
66LA	10	26	66	"	"	"	2, x2, 2.25×29.2 Long
66MA:	10	26	66	"	11	"	2.x2, x. $5.5 \times 15.25 \mathrm{Long}$
66NA!	10	26	66	Bolts (1)	"		. 625×2.625
67 Al	10	26	67	Side Platform (Left) Plate	\cdots	"	. $25 \times 27.875 \times 36.125$
$67 \mathrm{~B}_{2}$	10	26	67	Bolts Ctsk head (1) .			. 625×2.625
6容C	10	26	67	Side Platiorm Support(Left)Plate	11	11	$.25 \times 27.1028$.
6701	10	26	67	Angie	1	11	2.x2.x.25 x 24. Long
67 E	10	26	67	"	0	11	2.x2.x.25 x 22, 375 Long
675	10	26	67	"	11	"	2.x2.x.25 x 8. Long
67 G	10	26	67	11			2.x2.x.25 x 7. Long
67 H	10	26	67	Bolts (1)	1	If	$.625 \times 2.625$
67 K	10	26	67	Fiatform Angle (Left)	"	11	2. $5 \times 2 . \times .25 \times 89.625$ Lorg
67.	10	26	67	Flatiorm Side (Left) Plate	11	11	. $25 \times$ 8. $\times 89.625$
$6{ }^{\circ} \mathrm{M}$	10	26	67	Angle	1	"	24ix2.x.25 x 89.375 Long
67 N	10	26	67	1	1	1	2.x2.x.25 x 85.125 Long
67 P	10	26	67	1	- 1	"	2.x2.x,25 x 6. Long
67 Q	10	26	67	Platiorm Transom Plate	1	"	. $25 \times 7.875 \times 29.75$
678	10	26	67	Angles	"	"	2. $5 \times 2 . \times 25 \times 24.25$ Long
675	10	26	67	" (Right)	"	'	2. $5 \times 2.5 \times .25 \times 7.375$ Long
679	10	26	67		11 11		$2.5 x 2.5 x+25 \times 3,375$ Long
67 U	10	26	67 67	" (Right)	11	$\begin{array}{ll} 42 \\ " 2 \\ 2 \end{array}$	
67 X	10	26	67	Transom Filler Plate (Outer)	11.	11	.25 x 2, x 2, 25.
6:'	10	26	67	" " " (\#nner)	"	11	. $25 \times 2.25 \times 5.75$
369.	10	26	68	Platiorm Angle (Right)	11	"	2.5 x 2.x. $25 \times$ 98. Long
689	20	26	68	Plataorm Side (Right)	"1	"	. $25 \times \mathrm{8}$. \times 98.
605	10	20	68	Angle	I'		2.x2.x.25 x 95. 75 Long
05	7 C	26	60	" (1)With muts and lock washers			

[^0]
PTATEORJ/S (Gortinued)

No. for one ca	Piece Mark	$\begin{array}{r} \text { Dra } \\ \text { Ciass } \end{array}$	ing	No.	Name	of Piece	Material	
11	70F	10	26	70				
1	70G	10	26	70		astening	Cast Steel	Witboui Rivet hole
6	702	10	26	70	Hooks		Steel	Rivet
6	70M	10	26	70	Links		"	
1	70 N	10	26	70	Twisted	Link Machine	Chain	
1	70 P	10	26	70	"	"	-	No, $5-0, A=76,26, F t .4$, In. "1
1	700	10	26	70	"	" "	"	

 "澺

$$
\begin{aligned}
& 5 . \times 3.5 x, 75 \times 85 . \text { Liong } \\
& 5 \times 3.5 x-75 \times 85
\end{aligned}
$$

$$
\begin{aligned}
& 5 \times 38, \times 152 \\
& 5 \times 13 \times \times 34
\end{aligned}
$$

CAR DFTAJ a cointinued)

$\begin{gathered} \text { No. ios } \\ \text { One } \\ \text { Carriage } \\ \hline \end{gathered}$	Piece Mank	$\begin{array}{r} \text { Dra } \\ \text { Class } \end{array}$	Ving	No.	Nane of Pioce	Meterial	Remarks
2		10	26	60	Center - Sil? \& Erd Sill		
					Aijgies Right		$6 . \pm 6.505 \times 16$. Long
2		20	26	83	Argles Left.		
4		10	26	88	Fiates	Steel	. $75 \times 5.875 \times 7$.
2		10	26	88	Side \& End Sill Clip		
					Arigies Right		$60.60 x_{n} 5 \times 14$. Long
2		10	26	88	Angles Lefi		$6 . \times 5 . \times .5 \times 14$. Long
4		10	26	88	Plates	Steel	$.75 \mathbf{x}^{4} . \times 5.875$
2	89A	10	26	89	Uricompling Rod	"	
4	893	10	25	89	" Clevis	Malleable Iron	
2	89 C	10	26	89	Clsvis Ifink	-	
4	89 D	10	26	89	Whouping Pin	Steel	With 40.25xl. Split Pins
2	84E	10	26	89	- "Rod Bracket	Cast Steel,	With 40.25x. Split Pins
8	89 F	10	26	89	Hendhold	Forged Steel	
4	89G	10	26	33	Step	" "	

5

Oitriggers.

[^0]:

