This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

$N 1.35: 11 \cdot 1048$

$$
\begin{aligned}
& \text { Classiflan } \\
& \mathrm{Cit}_{\mathrm{i} .} \mathrm{Soj}
\end{aligned}
$$

TM 11-1048

WAR DEPARTMENT

TECHNICAL MANUAL

CALIBRATOR BC-725-A

NÓVEMBER 14, 1942

Google
,

Damatu. Google

SAFETY NOTICE

PARTS OF THIS EQUIPMENT, WITHIN THE COVER, OPERATE AT DANGEROUS VOLTAGES. PROTECTION TO THE OPERATOR IS AFFORDED BY AN INTERLOCK SWITCH, ARRANGED TO OPEN THE POWER SUPPLY UPON REMOVAL OF THE COVER. BEFORE REMOVING THE COVER FOR TUBE REPLACEMENTS, ADJUSTMENT, ETC., DISCONNECT THE POWER SUPPLY; DO NOT DEPEND ON THE INTERLOCK SWITCH. SHOULD IT BE NECESSARY TO APPLY POWER WHILE THE COVER IS REMOVED, EXERCISE ALL PRECAUTIONS AGAINST CONTACT WITH LIVE PARTS.

Digitized by GOOg e

TECHNICAL MANUAL
 FOR
 CALIBRATOR BC-725-A

Prepared under the direction of the Chief Signal Officer

NOTICE:-This document contains information affecting the national defense of the United States within the meaning of the Espionage Act (U. S. C. 50: 31, 32), as amended. The transmission of this document or the revelation of its contents in any manner to any unauthorized person is prohibited.

The information contained in documents marked CONFIDENTIAL will neither be discussed with nor disclosed to unauthorized persons. The contents or whereabouts of confidential documents will be disclosed only to those persons in the Government service whose duties require that they have such knowledge and to such other persons of especial trust who must be informed. Those to whom confidential information is entrusted or disclosed are responsible for its safe custody and security. (AR 380-5).

WAR DEPARTMENT

Washington, November 14, 1942
TM 11-1048, Technical Manual for Calibrator BC-725-A, published by Western Electric Company, Inc., on Order No. 2603-PHILA-42, is furnished for the information and guidance of all concerned.
(AG 062.11, 11-14-42)
By order of the Secretary of War:
G. C. MARSHALL, Chief of Staff.

OFFICIAL:

J. A. ULIO

Major General, The Adjutant General.

DISTRIBUTION
Armies (5) ; Corps (5) ; SvC (5) ; Depts (5) ; Def C (2) ; T of Opn (5) ; Base C (5) ; ASF Dep (Sig Sec) (2) ; O/S Sig Deeps (10) ; Gen O/S SOS Deps (Sig Sec) (10) ; Sig C Rep Shes (2) ; Sig C Inspect Z (2) ; Sig C Proc Dist (2) ; PE (2) ; Arm \& Suv Boards (2).
*IC 4 (10) (3) ; IC 11 (10);
IC 4 (10): T / O \& E 4-260-1.
IC 4 (3) : T/O \& E 4-232; 4-240-1S.
IC 11: T/O 11-107; 11-237; 11-500, Sig AW Orgn, (CC) Storage and Issue Sec, (EC) Radar Inst and Mains Team (EG) Radar Rep Sec, (GQ) Wire Rep Sec; 11-587; 11-592; 11-597; 11-617.
For explanation of symbols, see FM 21-6.

$$
1
$$

TABLEOF CONTENTS

Par. No. Page
SECTION I. GENERAL DESCRIPTION

1. General 1
2. Oscillator and Frequency Multipliers 1
3. Power Supply Unit 3
4. Vacuum Tubes 3
SECTION II. EMPLOYMENT
5. Installation 6
6. Preparation for Use 6
7. Operation 6
a. Calibration Check 6
b. Tracking Check 8
8. Connections for Use of Calibrator as Frequency Source 9
SECTION III. FUNCTIONING OF PARTS
9. Circuits of the Calibrator 10
a. General 10
b. Oscillator Circuit 10
c. Multiplier Circuits 11
d. Power Supply Unit 17
10. Range Unit BC-723-A 17
11. Calibration Test 23
a. Method 23
b. Calibration Accuracy 25
12. Tracking Test 28
13. Vacuum-Tube Characteristics 28
SECTION IV. MAINTENANCE
14. General 30
15. Oscillator Frequency Check 30
16. Calibration Test Check 30
17. Tracking Test Check 31
APPENDIX
Ordering Information 32
Table I. Calibration Procedure 33
Table II. Typical D-C Voltages 34
Table III. Typical A-C Voltages 35
Table IV. Typical Signal Voltages, RMS 36
Table V. Continuity Measurements 37
Table VI. List of Replaceable Parts 38
Table VII. List of Manufacturers 48
Table VIII. Equipment Spare Parts List 49
Table IX. Vacuum Tube Spares List 54

Digitized by GOOg e

LIST OF ILLUSTRATIONS

Fig. Page

1. Calibrator BC-725-A, Front View viii
2. Calibrator BC-725-A, Rear View viii
3. Calibrator BC-725-A, Rear View, Cover Removed. 2
4. Calibrator BC-725-A, Rear View, Cover Removed, Hinged Chassis Raised 4
5. Calibrator BC-725-A, Partial Disassembly 5
6. Calibrator BC-725-A, Cord Connections 7
7. Oscilloscope Patterns 8
8. Plot of Typical Calibration Deviations 11
9. Oscillator-Multiplier Unit, Hinged Chassis Raised 12
10. Oscillator-Multiplier Unit, Showing Bottom of Oscillator Circuit 13
11. Oscillator-Multiplier Unit, Showing Bortom of Hinged Chassis 14
12. Calibrator BC-725-A, Schematic 15
13. Power Supply Unit 18
14. Power Supply Unit, Top View 19
15. Power Supply Unit, Hinged Chassis Raised 20
16. Power Supply Unit, Bortom View 21
17. Range Unit BC-723-A, Gear Ratios, Diagram 22
18. Calibrator BC-725-A, Block Schematic 23
19. Calibrator BC-725-A, Functional Diagram 24
20. Calibration Procedure 26
21. 6SK7 Vacuum Tube, Bottom View 28
22. Calibrator BC-725-A, Wiring Diagram 55

Fig. 1. Calibrator BC-725-A, Front View

Fig. 2. Calibrator bC.i25-A, Rear View
[viii]
Digitized by
Cioogie

SECTION I. GENERAL DESCRIPTION

1. GENERAL (Figs. 1, 2, 3, 4, 5)

a. Range Unit BC-723-A of Radio Set SCR-296-A is essentially a 360 -degree phase shifter indicating its angular position in yards range. Calibrator BC-725-A provides a means for checking and calibrating the range unit, i.e., determining the amount by which the actual range (as fixed by the actual phase shift) may deviate from the indicated range. A cathode-ray oscilloscope (RCA 155B or an equivalent providing direct access to the deflection plates) is required for use with the calibrator. Otherwise the latter is complete and self-contained. It operates from a 115 volt, 60 -cycle, a-c power supply, and, including the range unit under test, requires about 190 watts. The calibrator measures $183 / 4$ inches wide, 17 inches high, and 23 inches deep, and weighs 175 pounds.
b. In the range unit, 360 -degree phase shift at a frequency of 1.64 kilocycles per second is accomplished by two phase shifters geared together in a $1: 18$ ratio and operating in separate circuits of 1.64 kc and 29.5 kc respectively. The calibrator provides:
(1) means for setting the $29.5-\mathrm{kc}$ shifter to twenty positions, eighteen electrical degrees apart,-the range unit calibration error for each position being the difference between the actual range unit dial reading and the nominal dial reading for that phase condition;
(2) means for checking the accuracy of the $1: 18$ phase shift relationship, or the tracking, between the two phase shifters of the range unit;
(3) a source of voltage at frequencies of $1.64,29.5$, and 295 kc for other test purposes.
c. The calibrator is in four circuit sections: an oscillator circuit, two harmonic producer or multiplier circuits, and a power-supply circuit. The assembly consists of a base on which are mounted two subassemblies each having a front panel and a double shelf chassis, the upper shelf of which is hinged for accessibility.
d. A removable cover protects all apparatus. This cover contains a compartment (Fig. 2) accessible through a hinged lid for storing the fol-
lowing component interconnecting cords and plugs (Fig. 4):

NOTE: Designation markings appearing on the apparatus are written herein in capital letters.
(1) The power cord, for connecting the POWER receptacle in the calibrator base to the 115 -volt, 60 -cycle, a-c power source.
(2) The test cord, which is a multiconductor cable used to connect the range unit power and range unit test jacks in the base to the range unit under test.
(3) The oscilloscope cord, for connecting the osCILlosCOPE jacks on the front panel of the calibrator to the oscilloscope.
(4) Two test plugs, to replace the test cord for certain uses of the calibrator without a range unit.

2. OSCILLATOR AND FREQUENCY MULTIPLIERS (Figs. 3, 4, 5)

a. Facing the front of the calibrator the left panel and its attached two-shelf chassis house the oscillator circuit on the lower shelf and the two multiplier circuits on the hinged upper shelf. Both shelves are shock-mounted. The circuits are brought out to a terminal strip at the rear of the chassis, from which they extend to the range UNIT TEST jack on the base, and to the power supply circuit, by a local cable.
b. In the oscillator circuit, none of the circuit components are adjustable. The initial frequency of 1639.3 ± 0.3 cycles is established by the Crystal Unit D-161647. There are two outputs at 1.64 kc and 29.5 kc respectively, both of which are connected to the RANGE UNIT TEST jack. The $1.64-\mathrm{kc}$ output is also available at the oSC OUTPUT jack on the front panel.
c. The two frequency multiplier circuits are identical, each serving to multiply an input frequency of 29.5 kc to an output frequency of 295 kc. Each multiplier has four tuned circuits (within cylindrical shields on top of shelf), three of which are adjustable by inserting a screwdriver

Fig. 3. Calibrator BC-725-A, Rear View, Cover Removed
through the holes in the tops of the shields. The 295 -kc output of each multiplier is connected to the oscilloscope calibrate jack on the panel.

3. POWER SUPPLY UNIT (Figs. 3, 4, 5)

This unit is a full-wave regulated voltage rectifier and forms the right half of the calibrator assembly including the front panel and associated chassis. The vacuum tubes, resistors, and small capacitors are mounted on the shockmounted hinged shelf and the coils and larger capacitors on the lower shelf. A safety switch which disconnects the power supply when the calibrator cover is removed, is also mounted on this chassis. The front panel mounts a power switch and associated indicating lamp, a TEST METER with associated switch, a screwdriver adjustment for setting the d-c output voltage, and two fuses. The circuits are brought out to a terminal strip at the rear of the chassis, from which they extend to the POWER and RANGE UNIT POWER jacks, and to the oscillator-multiplier terminal strip, by a local cable.

4. VACUUM TUBES

a. The following tubes are used in the Calibrator BC-725-A:

No. Type | Signal Corps |
| :---: |
| No. Function |

Oscillator:

1	6KGG-GT	VT-152	Amplifier
1	6SJ7	VT-116	Oscillator
1	6SJ7	VT-116	Amplifier
1	6SJ7	VT-116	Output Amplifier

No. Type | Signal Corps |
| :---: |
| No. |\quad Function

Multiplier \boldsymbol{A} :

1	6AC7	VT-112	Amplifier
1	6AC7	VT-112	Harmonic Producer
1	6SF5	-	Harmonic Producer
1	6SK7	VT-117	Amplifier

Multiplier B:

1	6AC7	VT-112	Amplifier
1	6AC7	VT-112	Harmonic Producer
1	6SF5	-	Harmonic Producer
1	6SK7	VT-117	Amplifier

Power Supply Unit:

2	$274 B$	-	Rectifiers
3	$2 A 3$	VT-95	Regulators
1	6SJ7	VT-116	Regulator Control
1	VR105-30	VT-200	Voltage Regulator
1	VR150-30	VT-139	Voltage Regulator

b. A total of twenty tubes are used, the quantity of each type being as follows:

\quad Type	Signal Corps No.
2-274B	-
3-2A3	VT-95
4-6AC7	VT-112
1-6K6-GT	VT-152
2-6SF5	-
4-6SJ7	VT-116
2-6SK7	VT-117
1-VR105-30	VT-200
1-VR150-30	VT-139

Fig. 4. Calibrator BC-725-A. Rear View. Cover Removed. Hinged Chassis Raised

Fig. 5. Calibrator BC-725-A, Partial Disassembly
-

SECTION II. EMPLOYMENT

5. INSTALLATION

a. As shipped, the calibrator is ready for operation with vacuum tubes in place and circuits tuned and adjusted.
b. Set the calibrator on a bench convenient to a 115 -volt, 60 -cycle, a-c supply, with space immediately to the left for the range unit to be tested and for the rest oscilloscope. Remove the power, test, and oscilloscope cords from their storage compartment, and connect them as indicated on Fig. 6. Do not install the two test plugs.

6. PREPARATION FOR USE

a. All of the information in this instruction book should be carefully read and understood before proceeding with the actual use of the calibrator.
b. While no initial adjustments of the calibrator circuit are ordinarily necessary, the checks described in Section IV, particularly the tuning and output voltage checks covered in paragraph 16, may be made if circumstances warrant.
c. Copies of a form, similar to Table I, should be available for noting down the data as taken.

7. OPERATION

a. Calibration Check

(1) Close the power supply switch, lighting the associated indicating lamp, and energizing all calibrator and range unit circuits. After about three minutes, turn the TEST METER switch to the V1, V2, and V3 positions successively and observe the meter readings, which should be between 30 and 45 milliamperes. If not, replace the corresponding reg tube 83-1, 83-2, or 83-3. Then turn the switch to volis, and set the voltage ADJ control for 250 volts on the test meter. Wait for about fifteen minutes to permit the circuit elements to approach stable operating temperature. The oscilloscope cord should be in the oscilloscope calibrate jack.
(2) On the oscilloscope, turn the amplifier switches OFF and the power switch ON. 1
figure similar to one of those in Fig. 7A should appear. Adjust the focus and intensity as required.
(3) Turn the range unit crank and observe that the figure progresses from a straight slanting line on one side, to an approximate circle in the middle and then to a straight line on the other side. The straight line or "collapsed circle" condition sloping up to the right (at left end of Fig. 7A) is the reference condition; with the pattern in this position, set the range unit by releasing the range unit clutch, turning the crank until the dials read 0000 yards, while holding the pattern to the reference position by means of the knurled zero ADJ collar. Then reset the clutch.
(4) Turn the range unit crank clockwise to make the pattern go through nine "collapses" alternating left and right, and ending with a line sloping up to the left. Read the indicated range to the nearest 5 yards, noting it on the form referred to in paragraph 6 opposite Test Point 1 under "Dial Scale-Yards" in the "Indicated" column. It should be approximately 2,500 yards.
(5) Operate the range unit through nine more "collapses," ending with a line sloping up to the right. Note the reading opposite Test Point 2. Proceed in this manner through successive Test Points to Test Point 20, corresponding with a nominal dial reading of $\mathbf{5 0 , 0 0 0}$ yards.

NOTES:

(a) To reduce "backlash" error, approach the reference "collapsed circle" position by turning the crank clockwise each time.
(b) The range unit $29.5-\mathrm{kc}$ phase shifter positions are respectively the same from 50,000 to 100,000 yards, as from 0000 to 50,000 yards, and further observations to 100,000 yards would merely repeat those already made. Accordingly, the test may be considered complete at $\mathbf{5 0 , 0 0 0}$ yards unless a check on the readings is desired.
(6) - On the form (Table I) obtain the deviation for each Test Point by subtracting the

Fig. 6. Calibrator BC-725-A, Cord Connections

Fig. 7. Oscilloscope Patterns
figure in the "Nominal" column from the figure in the "Indicated" column. Note it in the "Deviation" column, as plus if the indicated reading exceeds the nominal value, and minus if the indicated reading is less than the nominal value.
(7) The data may be plotted, if desired, as shown on Fig. 8. It will be noted that the data is plotted thereon not in the order of the "Test Point Number," but in the sequence of angular positions occupied by the 29.5 -kc range unit phase shifting capacitor at the Test Points. This will be clear when it is remembered that the capacitor goes through nine revolutions for a dial change of 50,000 yards, and the significance of any deviation for a particular capacitor position is best shown in relation to deviations for adjacent positions, thus giving a continuous deviation picture for a complete revolution. This is explained further in Section III.
(8) If the arithmetic sum of the maximum minus deviation and the maximum plus deviation is less than 100 yards, the range unit calibration may be considered satisfactory.

Note: In using the calibration test data it must be remembered that the indicated errors are associated with the respective positions of the
29.5-kc phase shifting capacitor only. Any position of the capacitor may be set as $\mathbf{0 0 0 0}$ yards on the dials by the range unit zero adj clutch. For that reason the deviations are significant only in their relation to each other, and not in their relation to either the dial reading or the zero axis as shown in Fig. 8.

b. Tracking Cbeck

(1) Transfer the oscilloscope cord to the oscilloscope track jack, turn to on, and adjust the oscilloscope amplifiers for maximum amplitude. A pattern similar to Fig. 7B should appear, consisting of eighteen cycles, nine in the "front" trace and nine in the "back" trace. Adjust the oscilloscope amplifier controls as required.
(2) As the range unit crank is turned, note that the two traces move somewhat with respect to each other. Turn the crank through a dial change of 100,000 yards, noting on the oscilloscope scale the farthest left (or right) position occupied by a particular point in the pattern, preferably on the horizontal center line of the screen. Then turn the crank back to that position.

Note: If the oscilloscope has no ruled screen, one may be made from cross-section
paper, fastened in position by an adhesive.
(3) Now set the phase control on the calibrator to make the "front" and "back" traces coincide, and note the dial reading for reference purposes. Also carefully note the number of oscilloscope scale divisions covered by one cycle, adjusting the horizontal amplifier of the oscilloscope to an exact number of divisions, say 5 .
(4) Again turn the range unit crank through the full range of 100,000 yards, until the "front" and "back" traces depart from coincidence by a maximum amount and note the departure in terms of scale divisions. Each division represents 2 degrees (at 1.64 kc) of relative phase shift (based on one cycle [at 29.5 kc] covering S divisions).

NOTE: The 29.5 -kc voltage is on the vertical deflecting plates, and one cycle of spacing on the screen at this frequency represents 180-degree phase shift rather than 360 degrees, because of the fact that both "front" and "back" traces move equally in opposite directions, when the relative phase changes. This is equivalent to $\frac{180}{18}$ degrees or 10 degrees at 1.64 kc . The tracking error may be written as

$$
E=\frac{10 A}{B}
$$

where
$E=$ tracking error (or relative phase shift) in degrees at 1.64 kc .
$A=$ departure from coincidence, in scale divisions, of front and back traces, when range unit is operated.
$B=$ width of 1 cycle at 29.5 kc in scale divisions.
(5) Record the tracking error on the form, Table I. If the tracking error is less than 5 degrees, the range unit tracking is satisfactory.

8. CONNECTIONS FOR USE OF CALIBRATOR AS FREQUENCY SOURCE

The calibrator may be used as a source of accurate frequencies of $1.6393 \mathrm{kc}, 29.5 \mathrm{kc}$, or 295 kc for other test purposes, without the range unit and range unit test cord, as follows:
a. 1.6393 kc .-Insert the large test plug in the range unit power jack, and connect the power cord to 115 -volt, a-c supply. The 1.6393 -kc voltage (about 50 volts on open circuit) is available at the osc outpur jack. If the other test plug is plugged into the range unit test jack and the oscilloscope cord plugged into the OSCILLOSCOPE TRACK jack, the 1.6393 -kc voltage is also available, at reduced amplitude, between the H and G terminals of the oscilloscope cord shown in Fig. 6.
b. 29.5 kc . - With both test plugs in circuit, the 29.5 -kc frequency is available between terminals v and G of the oscilloscope cord when plugged into the oscilloscope track jack, at about 1 volt.
c. 295 kc . - With both test plugs in circuit and with the oscilloscope cord plugged into the oscilloscope calibrate jack 62-2, the $295-\mathrm{kc}$ outputs of multipliers A and B are available between the H and G , and V and G , terminals, respectively, of the oscilloscope cord, at about 45 volts, with AMP A and AMP B controls $75-1$ and 75-2 at maximum.

SECTION III. FUNCTIONING OF PARTS

9. CIRCUITS OF THE CALIBRATOR

a. General

(1) The calibration test procedure is to apply a 29.5 -kc voltage to the 29.5 -kc phase shifter of the range unit, operate the latter to shift the phase of the voltage by a known amount, and then compare the change in dial reading with the theoretical change corresponding with the known shift. Observations at fairly close intervals on the phase shifter capacitor (say 18 degrees) are wanted, and this amount of shift is not conveniently measured on an oscilloscope directly. However, by applying the respective range unit input and output voltages to multiplier circuits and observing the tenth harmonics (295 kc) instead of the $29.5-\mathrm{kc}$ voltages, the 18-degree intervals at the phase shifter become readily and accurately observable at 180 -degree intervals on the oscilloscope.
(2) The tracking test procedure is to apply to the respective range unit phase shifters $1.64-\mathrm{kc}$ and $29.5-\mathrm{kc}$ voltages of fixed frequency ratio, and with the range unit output voltages connected to the plates of an oscilloscope, observe and measure on the screen the amount by which the relative phase of the voltages changes, as the range unit crank is turned.
(3) The oscillator circuit provides directly the above-mentioned $1.64-\mathrm{kc}$ and $29.5-\mathrm{kc}$ voltages, the latter being also the input source for the two multiplier circuits which provide the two 295-kc voltages.
b. Oscillator Circuit (Figs. 9, 10, 11, 12)
(1) The oscillator circuit consists of four sections: a crystal controlled oscillator, a tuned amplifier, a power amplifier and eighteenth harmonic generator circuit, and a fundamental frequency output amplifier circuit.
(2) The crystal-controlled oscillator circuit includes the oscillator tube 80-1 (6SJ7), the output of which is connected to resistors 12,13 , and 14 in series. A voltage from the junction of resistors 13 and 14 is fed back to the input through quartz crystal 5 . The varistor 18 , shunted
across the plate circuit in series with capacitor $67-1$, tends to limit this voltage to about 0.6 -volt root mean square. The crystal 5 establishes the frequency of oscillation at 1639.3 ± 0.3 cycle per second. The oscillator frequency is not adjustable.
(3) The amplifier tube 80-2 (6SJ7) is energized from the oscillator output. The plate circuit of this stage is tuned to 1.64 kc by nonadjustable tuned circuit 8-1. Resistor 43-1 provides cathode bias and a small amount of feedback.
(4) The output of the tuned amplifier stage is applied to the grid circuit of vacuum tube 76 (6K6-GT) where it exceeds the biasing voltage and overloads the tube in order to obtain stability of output with variation of applied grid voltage. The plate circuit includes a step-down transformer 9, tuned on the low side to 1.64 kc by capacitor 72 , which supplies current to a harmonic producer circuit and across which is a voltage dividing network composed of resistors 36-4 and 44 from which is derived the input to vacuum tube 80-3 (6SJ7). The current passes through a series-resonant circuit consisting of capacitor 73, retard coil 15 , and retard coil 16 (paralleling the output circuit), which offers a low impedance to the fundamental frequency and greater impedance to harmonics. Retard coil 16 is a nonlinear coil which has a high inductance and high impedance for values of current in the fundamental frequency cycle near zero amplitude, and a low inductance and low impedance for the remainder of the cycle.
(5) Nonlinear coil 16 functions to produce sharp positive and negative pulses across capacitor 67-3, varying at the fundamental frequency. The bridge type rectifier 19 rectifies this pulse outpur, effectively producing a wave rich in even harmonics of the fundamental frequency of 1.64 kc . Repeating coil $17-1$ separates the balanced filter circuit from rectifier 19 and provides a low resistance termination for the bridge. Bandpass filter 6 selects the eighteenth harmonic of 1.64 kc or a frequency of 29.5 kc and discriminates against lower and higher harmonics. The

Fig. 8. Plot of Typical Calibration Deviations
output from the filter is connected to pins E and F on range unit test jack 61. Capacitors 68 and 67-3-form a capacitive voltage divider to provide the desired output of the eighteenth harmonic.
(6) As noted above, tube $80-3$ obtains grid voltage from a voltage divider circuit at the low side of the output transformer 9. The plate circuit is the same as that of tube $80-2$ and serves to suppress harmonics of the fundamental frequency, in order that the 1.64 kc available at OSC output jack 23 and at pins H and I of range UNIT TEST jack 61 will be sinusoidal.
(7) Accordingly, the oscillator circuit supplies a $1.64-\mathrm{kc}$ sinusoidal voltage across pins H and I of jack 61 and a 29.5 -kc voltage across pins E and F in parallel with terminals 3 and 4 of multiplier A. As explained further on in this section, these two voltages, after passing through the range unit, return to terminals 15 and 10 of TS2 of the calibrator. From terminal 15, the $1.64-\mathrm{kc}$ voltage is connected to pin A of oscillosCOPE TRACK jack 62-1, after passing through a phase shifter circuit consisting of terminating resistor 40, capacitor 69-2, and PHASE control rheo-
stat 57. From terminal 10 of 1 s 2 , the $29.5-\mathrm{kc}$ voltage connects to pin C of jack 62-1.

c. Multiplier Circuits (Figs. 9, 10, 12)

(1) Two identical multiplier or tenth harmonic producer circuits, A and B, are provided, for which the input frequency is 29.5 kc and the output frequency is 295 kc .
(2) The input of circuit Λ is bridged across the 29.5 -kc output of the oscillator. The 29.5 -kc voltage is applied to the grid of vacuum tube 79-1 (6AC7), is amplified, and the harmonics are suppressed in the fixed plate circuit impedance, $2-1$ and $20-1$, tuned to 29.5 kc . The voltage is then applied to the grid of tube 79-2 (6AC7), where a "square" wave is generated.
(3) The "square" wave is applied to the grid circuit of vacuum tube 78-1 (6SF5), which is adjustably tuned to 147.5 kc or the fifth harmonic of 29.5 kc . Resistor $38-1$ isolates the tuned circuit across which the fifth harmonic voltage is developed from the square wave voltage in the preceding plate circuit. Tube 78-1, whose grid is biased to cut-off by resistor 47-1, acts as a half-

Fig. 9. Oscillator-Multiplifr Unit, Hinged Chassis Raised

Fig. 10. Oscillator-Multiplier Unit, Showing Bottom of Oscillator Circuit

Fig. 11. Oscillator-Multiplier Unit, Showing Bottom of Hinged Chassis

onam, Google
wave rectifier whose output contains a large amount of energy at 295 kc , the second harmonic of the input. The output circuit is adjustably tuned to this 295 -kc frequency, which is, of course, the tenth harmonic of 29.5 kc . The 295 -kc frequency is then amplified by tube 77-1 (6SK7) whose plate circuit impedance is also adjustably tuned to 295 kc , including the external impedance of output leads which connect to OsCILloscope calibrate jack 62-2, pins a and b. The amplitude of the $295-\mathrm{kc}$ output voltage may be adjusted by porentiometer 75-1.
(4) Circuit B is the same as circuit A, except that the input is terminated in resistor 32 (200 ohms), and is available at RANGE UNIT test jack 61, pins b and c. The output appears at the oscillosCope calibrate jack 62-2, pins C and B .
(5) Accordingly, multipliers A and B provide at their outputs separate $295-\mathrm{kc}$ sinusoidal voltages, the input to multiplier a being directly energized by the 29.5 -kc output of the oscillator circuit, while the input to multiplier B is energized from the same source, but through the range unit.

> d. Power Supply Unit
> (Figs. 12, 13, 14, 15, 16)
(1) The 115 -volt, 60 -cycle supply extends from POwER jack 63 through toggle switch 30, fuses 58 (on panel), cover-operated safety switch 60, and pins e-c on the range unit power jack, which normally connect to the range unit safety switch, to the primaries of power transformers 7 and 10 . Transformer 7 supplies the heaters of all cubes in the oscillator and multiplier circuits, and also in the range unit under

- test. Transformer 10 is the power-supply transformer for the full-wave regulated rectifier circuits. The d-c output voltage of the rectifier is adjustable from about 220 to 275 volts, being set at 250 volts for normal operation. The output current is normally about 125 milliamperes.
(2) Referring to Fig. 12, a full-wave rectifier composed of transformer 10, 274B tubes $84-1$ and $84-2$, and a filter section composed of choke coil 1-1, capacitors 27-2 and 27-1, choke coil 1-2, and capacitor 26 , supplies a high d-c
potential to a voltage regulator section. Regulation is obtained by varying the plate impedance of the three paralleled 2A3 vacuum tubes 83-1, 83-2, and 83-3, under control of the output voltage, which is made to change their grid-biasing potential. The plate-to-cathode circuits of the three 2A3 tubes are in series with the rectifier output.
(3) The regulator control tube 80-4 (6SJ7) receives its plate supply from the 250 -volt filtered supply, through resistor 35. The cathode voltage to ground is fixed at approximately +105 volts by the voltage regulator tube 82 (VR10530). Voltage regulator tube 81 (VR150-30) is in series with resistors 56 and 46 across the 250volt supply and accordingly a small change in this supply voltage causes practically the same change in the voltage across resistor 46, due to the regulator action of the tube. Potentiometer 65 and resistors $36-1$ and 46 in series, are connected across the 250 -volt supply, the arm of potentiometer 65 being connected to the control grid of tube 80-4, giving it a negative bias. This negative bias is so varied by the voltage drop across resistor 46 referred to above, as to cause the plate current through resistor 35 to increase when the 250 -volt supply voltage increases, thereby increasing the bias on the regulator tubes and tending to keep the supply voltage constant. The setting of voltage ADJ potentiometer 65 (screwdriver control on front of cabinet) determines the supply voltage value at which this regulation takes place.
(4) By means of the test meter switch 59 , meter 74 may be connected to indicate the output voltage of the rectifier, or the current through each of the regulator tubes 83-1, 83-2, and 83-3.

10. RANGE UNIT BC-723-A (Figs. 17 and 18)

a. Range Unit BC-723-A is described in the Instruction Book on Radio Set SCR-296-A. It consists essentially of two gear-coupled independent phase shifters, one for a frequency of 1.64 kc and the other for the eighteenth harmonic of that frequency, or 29.5 kc . The gear ratio between the phase-shifting capacitors is such that the 29.5 -kc shifter is moved through an angle

Fig. 13. Power Supply Linit

Fig. 14. Power Supply Unit, Top View

Fig. 15. Powfr Supply Unit, Hinged Chassis Raised

Fig. 16. Power Supply Unit, Bottom View

Fig. 17. Range Unit BC-723-A, Gear Ratios, Diagram
eighteen times the angle of movement of the $1.64-\mathrm{kc}$ shifter, so that $29.5-\mathrm{kc}$ and $1.64-\mathrm{kc}$ waves entering their respective shifters are subject to no relative phase shift by the action of the range unit. Otherwise stated, if these two voltages at the input were added and the combined wave observed and then the two output voltages similarly added and observed, the two observations would show identical wave forms.
b. Directly coupled to the $1.64-\mathrm{kc}$ unit is a dial divided over 360 degrees into ten equal steps of 10,000 yards each and coupled to it by a one-to-ten gear ratio is a second dial covering 10,000 yards in 100 -yard steps. A vernier dial reading in 20 -yard steps is provided on the side of the unit. The dials can be set to read as desired, without changing the phase-shifter positions, by means of a mechanical clutch arrangement. The

Fig. 18. Calibrator BC-725-A, Block Schematic
system of shifters and dials is driven from a crank which rotates fifty times for one rotation of the 1.64 -kc shifter, or one crank shaft rotation is equivalent to changing the dials by 2,000 yards. Fig. 17 illustrates these gear ratios. All of the gearing is of an antibacklash type with the exception of that between the two dials. The parts are continuously rotatory.
c. The variable capacitors employed in the two-phase shifters are identical mechanically and are so built that the electrical degrees shift obtained is held within ± 1.5 degrees of the mechanical angular position. The calibration check procedure is to determine the actual relationship between the electrical position of the $29.5-\mathrm{kc}$ shifter and its mechanical position in terms of
yards on the dials; and the tracking check is made to determine the relationship between the $29.5-\mathrm{kc}$ shifter and the $1.64-\mathrm{kc}$ shifter.

11. CALIBRATION TEST (Figs. 18, 19, and 20)

a. Method

(1) For the calibration test the oscilloscope cord is plugged into the oscilloscope calibrate jack. Connections are made to the Range Unit by means of a spade-terminal-ended test cable, through which is also supplied heater and plate power for the amplifiers in the range unit circuit (Fig. 18). Covers on the calibrator and range unit must be in place to close the safety switches in the 115 -volt, 60 -cycle, a-c supply.

Fig. 19. Calibrator BC-725-A, Functional Diagram
[24]
(2) The $29.5-\mathrm{kc}$ output from the oscillator circuit is connected to the input of the range unit and bridged across this connection is the input to multiplier A. The output of the range unit is connected to and is properly terminated by the input to multiplier \mathbf{B}. The outputs of multipliers A and b connect through the OSCILlOSCOPE calibrate jack directly to the horizontal and vertical plates, respectively, of the oscilloscope by turning the oscilloscope amplifier switches to the OFF position. The relative phase relation of the 295 -kc at the output of multiplier B with respect to that at the output of multiplier A is determined by the position of the $29.5-\mathrm{kc}$ phase shifter of the range unit.
(3) Since both outputs are of the same frequency, the pattern on the oscilloscope screen can vary from a straight line sloping up to the left or to the right, to a circle or ellipse, as shown on Fig. 7A, as the phase relation between them is changed. A shift of 180 degrees from a line sloping up to the right causes the pattern to assume the form of an ellipse, a circle (if both voltages have the same amplitude), an ellipse, and then a line sloping up to the left.
(4) The period for one cycle of 29.5 kc is the same as that for ten cycles of the tenth harmonic or 295 kc which forms the pattern. For example, an angular shift of 36 degrees at 29.5 $\mathbf{k c}$ is the same as 360 -degrees shift at 295 kc , or a shift of 18 degrees is the same as a shift of 180 degrees at the tenth harmonic. Summarizing, if the $29.5-\mathrm{kc}$ phase shifter is moved so that the pattern changes from a line sloping up to the right to a line sloping up to the left, the phase of the 295 kc has shifted 180 degrees, or the phase shifter has shifted the 29.5 -kc voltage 18 electrical degrees. By this relationship, the 360 degrees of electrical shift producible by the phase shifter can be divided into twenty equal parts of 18 degrees each.
(5) The dial system of the range unit, as described above, is such that eighteen rotations of the 29.5 -kc phase shifter represents 100,000 yards, or one rotation 5555.55 yards, and 18 degrees represents 277.77 yards. Accordingly, a dial change of 2,500 yards corresponds to 162 -degrees
rotation of the phase shifter, or 18 degrees less than 180 degrees. It is desirable to read the dials at scale graduations, so that a system of calibration at 18-degree intervals is used, employing 2,500-yard dial steps, or 162 degrees phase shift steps. 162 degrees is nine steps of 18 degrees or, in terms of the oscilloscope pattern, is nine 180degree changes of pattern. The "collapsed circle" or straight-line pattern is used as a reference, so that if a start were made with a line sloping up to the right and the range unit dials were set to zero by means of the mechanical clutch provided, nine "collapses" from that pattern would result in a straight line sloping up to the left with the dial reading 2,500 plus or minus an error. The next ninth "collapsed circle" would slope up to the right, as at the start, and would correspond to a shift of 324 degrees and the dial would read 5,000 plus or minus an error from the starting point and so on. At the 50,000 -yard point, the phase-shifter capacitor would have returned to its starting position, after having occupied twenty positions at 18 -degree intervals, not consecutively.
(6) Covering the dial range from $50,-$ 000 to 100,000 yards would recheck the points determined in the calibration from 0 to 50,000 yards.
(7) The above procedure is diagrammed in Fig. 20 and listed in Table I, where the "Test Point" number refers to the order of successive ninth "collapses"; the "Dial Scale" column indicates the nominal and indicated readings, and the deviations, for the test points; the "Total Angular Movement of Phase Shifter" is the angular travel required to reach the test point; the "Relative Angular Position" is the position occupied with respect to the starting position, being the "Total Angular Movement" less the whole rotations in multiples of 360 degrees; and the "Order of Angular Progression" indicates the sequence of test points if data for consecutive angular positions is to be inspected or plotted. Fig. 8 illustrates the plotting of calibration data.

b. Calibration Accuracy

(1) It has been determined experimentally that with a clean-cut oscilloscope trace

OUTER FIGURES ARE DIAL SETTINGS CORRESPONDING TO INDICATED ANGULAR positions of phase shifter

- Figures in circles indicate order OF MOVEMENTS AND RELATIVE POSITIONS OF 29.5-KC PHASE SHIFTER

Fig. 20. Calibration Procrdure
with a line width of less than $\frac{1}{32}$ of an inch, the straight-line patterns or "collapsed circles" can be set to about 1 degree at 295 kc and often better on repetition of a calibration. This represents 0.1 degree or less at 29.5 kc or a setting to plus or minus $11 / 2$ yard. On the oscilloscope screen 1 degree of phase difference for a 2 -inch diameter circle separates the lines of the "collapsed
circle" by about 0.025 -inch and this departure from coincidence is observable.
(2) The straight-line patterns, which have been assumed to occur at intervals of 180 electrical degrees, can depart from that ideal. Coupling from one set of deflecting plates to the other (including all circuits involved) will cause,
on each pair of plates, a certain amount of "crosstalk" voltage from the other pair and this disturbing voltage will not, in general, have a phase relation of either 0 degrees or 180 degrees with either of the original voltages. Each observed voltage will then be the resultant of its original combined with "crosstalk" from the other, rather than the original and the two observed voltages will be set to the straight-line reference pattern. Then, a consideration of the vector relationships will show that when one of the resultant voltages is shifted to the opposite straight-line pattern, the shift will not be exactly 180 degrees unless the original voltages are equal, making the "crosstalk" voltages symmetrical both in amplitude and phase.

Therefore, in order for "crosstalk" to have no effect the two multiplier output voltages should be made equal before they are both connected to the oscilloscope. The method for doing this is described in paragraph 16.
(3) The accuracy of electrical position determination is dependent also upon the relative phase stabilities of the various parts of the calibrator system. Possible variations due to change of plate voltage are eliminated by use of the regulated plate power supply circuit. Circuit changes caused by vacuum tube variations have been reduced by operating the heaters at 6.7 volts, at which voltage the variations cause less change in cathode emission than at the usual heater voltage of 6.3 volts. The most susceptible portions of the system to heater voltage change are the two multiplier circuits and here the tubes in the square-wave generators are the controlling factors. A change in voltage from 6.7 to 6.0 (-10 per cent) causes the greatest shift, which may be about 5 yards, or roughly $1 / 3$ degree at 29.5 kc , while a change from 6.7 to 7.4 volts (+10 per cent) may result in a shift of possibly 1 yard or about $\frac{1}{1 \pi}$ degree at 29.5 kc . It is possible to "match" tubes such that the whole shift, which is indicated above to be about 6 yards for $a \pm 10$ per cent voltage change, can be reduced to possibly 2 or 3 yards.
(4) Transmission through the range unit is not necessarily constant for various positions of the phase shifter but may vary up to
possibly 1 db . This change in transmission means that the voltage applied to the input of multiplier B will vary. A $0.3-\mathrm{db}$ input change may cause about 3 yards resultant error, a drop in voltage causing a decrease in range reading. The reason for this is that the phase shift through the multiplier is affected by input voltage change.
(5) Unbalances and unwanted coupling in the calibrator circuits which connect to the input and output of the range unit under test may introduce errors of as much as 4 yards for some positions of the range unit. The average of two deviation measurements, made (a) under normal circuit conditions, and (b) with the input leads to the range unit reverse, may be used where an especially exact approach to the "true deviation" of the range unit is required.
(6) Neglecting errors caused by instability in the circuits, a calibration should indicate deviations to within about 7 yards of the actual deviation summarized as follows:
(a) Error caused by phase shift in multiplier в because the output voltage of the range unit is not constant with phase shifter position $\pm 11 / 2$ yards.
(b) Error in setting the tracing to a line $\pm 11 / 2$ yards.
(c) Error caused by unbalances ± 4 yards.

Not all points in a calibration would be subject to the same error. Error (a) is relative, as is the whole calibration, and depends upon the relation between the voltage variation and the phase shifter position. Error (b) is more or less random, depending somewhat on the operator. Error (c) varies with the position of the phase shifter, usually being zero for two points; this error can be reduced, as indicated above, by using the average of measurements with the normal and reversed connections.
In addition to the above sources of error, unless the phase shifter is made to approach a setting always from one direction, a backlash error may be introduced. This may amount to as much as 4 yards for some dial positions.

A complete calibration can probably be completed in from twenty to thirty minutes, and after an initial warm-up time of fifteen minutes
or more, the above indications of accuracy should apply. The range unit 1000 -yard dial scale divisions are spaced at 20 -yard intervals and the dial may be read to within about 5 yards.

12. TRACKING TEST

a. The purpose of the tracking check is to determine the departure of relative phase shifts of the $1.64-\mathrm{kc}$ and $29.5-\mathrm{kc}$ sections of the range unit from the required $1: 18$ relationship.
b. Referring again to Figs. 18 and 19 the calibrator circuit is set up for a tracking check by plugging the oscilloscope cord into the oscilloSCOPE TRACK jack. 1.64 kc from the oscillator circuit is fed to the low-frequency phase shifter section of the range unit under test, whose output connects through the knob-controlled phase shifter to the horizontal deflection plate circuit of the oscilloscope. 29.5 kc from the oscillator circuit is supplied to the high-frequency section of the range unit (the same connection employed during calibration) whose output connects to the vertical deflection plate circuit. The horizontal and vertical oscilloscope amplifiers are used in the tracking test.
c. The pattern is represented in Fig. 7B and consists of eighteen waves spread horizontally, nine being in the "front" trace and nine in the "back" trace. The phase shifter permits rotating the pattern through a small angle, about 15 degrees at 1.64 kc , so that a reference condition can be readily obtained. The horizontal amplifier of the oscilloscope can be used to spread the pattern as desired, within its range.
d. A phase-shift change of either range unit section which departs from the $1: 18$ relationship causes a partial rotational movement of the pattern, or the "front" trace moves in one direction, while the "back" trace moves in the opposite direction. A movement from a position where both traces are superimposed through intermediate positions to the next superimposition represents a relative phase shift of 180 degrees at the higher frequency, or a shift of 10 degrees at the lower. The apparent shift is, of course, 360 degrees (one cycle) at the 29.5 -kc frequency but this is because both traces are moving. The actual movement from one superim-
position to the next is one-half cycle.
e. To make a tracking check, the two-phase shifters in the range unit are rotated until an extreme of movement of the trace is obtained. At this point, the phase shifter in the calibrator is so set as to make the front and back traces coincide and the dial reading is noted for reference purposes. The horizontal amplifier is adjusted to make one cycle cover in distance a desired number of oscilloscope screen scale divisions, say 5. Then the crank is turned and the greatest departure from coincidence is noted, in terms of the screen scale divisions. If five divisions represent 10 degrees at the 1.64 -kc frequency, for the reason noted above, each division of separation represents 2 degrees of relative phase shift. About 10 degrees of shift will not materially affect the accuracy of the SCR-296-A system operation, but the phase-shifter capacitor construction as noted before should not contribute more than 3 degrees. The range unit may be considered as satisfactory if the relative phase shift, as tested above, is less than 5 degrees at 1.64 kc .
f. A simpler tracking check, not giving as close an error determination as that described above, may be made by setting the phasts shifter so that the "front" and "back" traces on the oscilloscope intersect on the horizontal center line, regardless of the position of the range unit. Then, as the range unit is operated, the traces should never move to coincidence.

13. VACUUM-TUBE CHARACTERISTICS

Fig. 21. 6SK7 Vacuum Tube, Bottom View
a. All vacuum tubes used in Calibrator BC-725-A, except type 6SK7, are described and diagrammed in the Instruction Book covering Radio Set SCR-296-A. Accordingly, only the 6SK7 tube is described here.

b. 6SK7 Vacuum Tube

This is a triple-grid super-control amplifier metal vacuum tube with a coated unipotential cathode. Manufacturer's ratings are:

Heater Voltage	6.3 volts
Heater Current	0.3 ampere
Plate Voltage	300 volts max.
Screen Voltage	125 volts min.
Grid Voltage	0 volts min.

Typical Operation and Characteristics, Supressor Connected to Cathode:

Plate Voltage	250 volts
Screen Voltage	100 volts
Grid Voltage	-3 volts
Transconductance	2,000 micromhos
Plate current	9.2 milliamperes
Screen current	2.6 milliamperes

250 volts
100 volts
-3 volts 9.2 milliamperes
2.6 milliamperes

SECTION IV. MAINTENANCE

14. GENERAL

a. Most operating troubles in equipment of this type arise from the use of old or defective tubes and may be avoided by individual tube tests at regular intervals.
b. An occasional inspection should be made for loose connections, loose screws and so forth. Most circuit troubles experienced should be located and corrected without great difficulty, with the aid of the information herein, provided the operator has studied and understood the principles involved.
c. Power voltages at all tube socket terminals may be checked from Tables II and III, which indicate expected voltages under operating conditions. Typical signal voltages are listed in Table IV and a circuit continuity test in Table V. With a line voltage of 115 volts and the power supply unit adjusted for a d-c output voltage of 250 volts, the line current for the calibrator, less the range unit and oscilloscope, is about 1.8 amperes and the power input 175 watts. When the range unit is connected, the line current is about 1.9 amperes and the power input 190 watts.

15. OSCILLATOR FREQUENCY CHECK

a. The 1639.3 -cycle oscillator frequency (OSC outPUT) jack is controlled by the crystal unit S which is manufactured to ± 0.3-cycle tolerance at a room temperature of 70 degrees F. Circuit variations and temperature and tube changes will affect the frequency slightly. The frequency may be checked directly against a standard oscillator whose frequency is $1,694 \pm 3$ cycles, using an oscilloscope. Any difference between them will be indicated by motion or beats in the figure. However, the direction of the difference would not be indicated. It can also be checked by first setting a test oscillator to 1.64 kc by using a 100 -cycle standard frequency. This may be done by connecting the 100 -cycle frequency to the horizontal oscilloscope plates and the test oscillator output to the vertical plates (through oscilloscope amplifiers, if necessary) and adjusting the test oscillator frequency for a
five-line stationary pattern (ten lines if "back" trace is visible; refer to the instruction book on the oscilloscope for additional information). Then replace the 100 -cycle connection to the oscilloscope by the output of the OSC OUTPUT jack. A single-line, single-loop figure should be obtained, as in Fig. 7A, moving at the rate of the frequency difference between the test and calibrator oscillators. Determine the difference by timing the beats, i.e., " x " beats in " y " seconds would be $\frac{x}{y}$ cycles difference. The direction of the difference can be observed by changing the test oscillator frequency slightly; if increasing the test oscillator frequency increases the frequency of the beats, then the calibrator frequency is lower than 1,640 cycles by the amount of the difference. No adjustment of the oscillator frequency is provided in the calibrator and replacement of the crystal unit is the only remedy if after careful check the frequency is found to be at fault.
b. The open-circuit voltage at the osc outPUT jack should be 35 to 65 volts root mean square, measured without any plug in the RANGE UNIT TEST jack. The presence of either the cord plug or the test plug in the RANGE UNIT TEST jack will reduce this voltage somewhat.

16. CALIBRATION TEST CHECK

a. With the range unit or the test plugs connected in circuit, plug the oscilloscope cord into the oscilloscope calibrate jack. Turn off the amplifier switches on the oscilloscope.
b. Check the tuning of multiplier a separately by connecting its output on the oscilloscope cord (H and G) to the corresponding oscilloscope terminals leaving the multiplier в output unconnected. Then progressively tune the capacitors 29-1, 29-2, and 29-3 of multiplier a for maximum screen deflection. Using screwdriver control 75-1 (AMP A) set the output voltage for a horizontal deflection of 2 inches.
c. Similarly, check the tuning of multiplier B with the output of multiplier A unconnected, adjusting 29-4, 29-5, and 29-6 for maximum de-
flection, and setting 75-2 (AMP в) control for a vertical deflection of 2.4 inches. The sensitivity of deflection on the horizontal and vertical plates of the Oscilloscope 155B is in the ratio of 2:2.4 so that the respective voltages should now be equal. This may be checked by a vacuum tube voltmeter, if available.
d. Following is a check on the effect of possible line voltage change. With both multiplier outputs connected to their respective oscilloscope terminals, detune either output stage until the oscilloscope figure is a line. Then vary the 115 -volt, a-c supply by external means, noting that the line spreads into a flat ellipse. This spread should not, in general, exceed about $1 / 12$ inch for a 2 -inch diameter circle (which is equivalent to about 6 -yards change, in terms of the calibration procedure), for a line voltage change of ± 10 per cent. If the spread is excessive it may be reduced by installing better matched HARM PROD 2 tubes 78-1 and 78-2. Output stage tuning should be restored after this test.
e. Table IV shows typical signal voltages through the circuit.

17. TRACKING TEST CHECK

With a range unit connected in the circuit, plug the oscilloscope cord into the oscilloscope TRACK iack and turn the amplifier switches on the oscilloscope to on. Adjust the gain of the amplifiers to obtain a figure in which the 29.5 -kc waves are visible horizontally across the screen. With the PhASE shifter turned counterclockwise, the $1.64-\mathrm{kc}$ voltage at the horizontal deflection terminals of the oscilloscope should be berween 0.4 and 0.5 volt root mean square and the 29.5kc voltage at the vertical deflection terminals should be between 1.0 and 1.25. The pattern on the screen should appear as sketched on Fig. 7B, though compressed horizontally. As the phase control is moved clockwise, the "front" and "back" traces will move with respect to one another, and the relative movement should be equivalent to bringing peaks from coincidence through the intermediate positions to a second coincidence and then a little beyond. In other words, the range of phase control should be about 15 degrees at 1.64 kc .

SECTION V. APPENDIX

ORDERING INFORMATION: Apparatus lists included in this section should be used in ordering replacement parts. Ordering information should include the apparatus circuit designation (such as 70-1), state that the parts are intended for use in Calibrator BC-725-A, and give the serial number. The values of resistance and capacitance and other information in these lists are
intended as aids in servicing the equipment. In some cases, procurement difficulties have necessitated the substitution of equivalent, but not identical, parts for those listed. In making field replacements either the parts listed or duplicates of those supplied should be used to assure satisfactory operation. Many substitute parts may be used, however, on a temporary basis.

TABLE I

TEST DATA: RANGE UNIT BC-723-A, SERIAL NO.
a. Calibration Test:

Test Point	Dial Scale-Yards			Total Angular Movement of Phase Shifter, Degrees	Relative Angular Positions, Degrees	Order of Angular Progression or Plotting Order
	Nominal	Indicated	Deviation			
0	0,000			0	0	0
1	2,500			162	162	9
2	5,000			324	324	18
3	7,500			$360+126$	126	7
4	10,000			$360+288$	288	16
5	12,500			$2 \times 360+90$	90	5
6	15,000			$2 \times 360+252$	252	14
7	17,500			$3 \times 360+54$	54	3
8	20,000			$3 \times 360+216$	216	12
9	22,500			$4 \times 360+18$	18	1
10	25,000			$4 \times 360+180$	180	10
11	27,500			$4 \times 360+342$	342	19
12	30,000			$5 \times 360+144$	144	8
13	32,500			$5 \times 360+306$	306	17
14	35,000			$6 \times 360+108$	108	6
15	37,500			$6 \times 360+270$	270	15
16	40,000			$7 \times 360+72$	72	4
17	42,500			$7 \times 360+234$	234	13
18	45,000			$8 \times 360+36$	36	2
19	47,500			$8 \times 360+198$	198	11
20	50,000			$9 \times 360+0$	0	0
21	52,500			> $360+162$	162	9
22	55,000			$9 \times 360+324$	324	18
	etc.					

b. Tracking Test:

Maximum Tracking Error \qquad degrees at 1.64 kc .
Note 1. The progression from 50,000 to 100,000 yards is a repetition of that from 0 to 50,000.
Note 2. A typical set of deviations is plotted on Fig. 8. The test point and plotting order sequences are shown diagrammatically on Fig. 20.
Note 3. The dial scale readings are for convenience in setting the 29.5 - kc capacitor at successive 18 -degree positions only and are not to be associated with the respective deviations.

TABLE II
TYPICAL D-C VOLTAGES
(OPERATING CIRCUIT POWER SUPPLY SET FOR 250 VOLTS)
Refer-

ence	Tube	Tube
No.	Type	Function

1	2	3	4	5	6	7	8

Regulated Rectifier Circuit

84-1	274B	RECT 1	-	$+460$	-	0	-	0	-	$+460$
84-2	274B	RECT 2	-	+460	-	0	-	0	-	+460
83-1	2A3	REG 1	+250	+460	$\begin{aligned} & +102 \\ & +210 \end{aligned}$	+250	-	-	-	-
83-2	2A3	REG 2	+250	+460	$\begin{aligned} & +102 \\ & +210 \end{aligned}$	+250	-	-	-	-
83-3	2A3	REG 3	+250	+460	$\begin{aligned} & +102 \\ & +210 \end{aligned}$	$+250$	-	-	-	-
81	VR150-30	volt reg 1	-	$+100$	-	-	+250	-	-	-
82	VR105-30	volt reg 2	-	0	-	-	+105	-	-	-
80-4	6SJ7	REG CONT	0	0	+105	+100	+105	$+250$	-	$\begin{aligned} & +102 \\ & +210 \end{aligned}$

Oscillator Circuit

80-1	6SJ7	OSC	0	-	+1.0	0	+1.0	$\begin{aligned} & +31 \\ & +37 \end{aligned}$	-	$\begin{aligned} & +18 \\ & +23 \end{aligned}$
80-2	6SJ7	OSC AMP 1	0	-	+3.0	0	+3.0	$\begin{aligned} & +100 \\ & +102 \end{aligned}$	-	$\begin{aligned} & +182 \\ & +188 \end{aligned}$
76	6K6-GT	OSC AMP 2	-	-	$+246$	+250	-4 -7	-	-	+14
80-3	6SJ7	OSC OUT AMP	0	-	+2.8	0	$+2.8$	$\begin{aligned} & +100 \\ & +102 \end{aligned}$	-	$\begin{aligned} & +182 \\ & +188 \end{aligned}$

Multiplier Circuit A

79-1	6AC7	AMP Al	0	-	+3.0	0	+3.0	$+116$	-	$+250$
79-2	6AC7	HARM PROD A1	0			$5 \text { to - }$	30	116	-	+86
78-1	6SFS	HARM PROD A2	0	2.2	0		$\begin{aligned} & +116 \\ & +122 \end{aligned}$	-	-	-
77-1	6SK7	AMP A2	0	-	+6.4	0	+6.4	$+116$	-	+250

Multiplier Circuit B, as for A above, for equivalent tubes in positions 79-3, 79-4, 78-2, and 77-2, respectively.
Note: Upper figures are voltages measured with a 1000 ohm/volt voltmeter.
Lower figures are voltages measured with a Weston 772 Test Set (20,000 ohm/volt).
A single reading indicates that both meters read the same.

TABLE III

TYPICAL 60-CYCLE A-C VOLTAGES FOR 115-VOLT LINE

Tube

Power Supply Circuit

84-1	-	*	-	540	-	540	-	*
84-2	-	*	-	540	-	540	-	*
83-1	**	-	-	**	-	-	- -	-
83-2	**	-	-	**	-	-	-	-
83-3	**	-	-	**	-	-	-	-
81								
82								
80-4	-	0	-	-	-	-	6.7	-

Oscillator Circuit

$80-1$	-	6.7	-	-	-	-	0	-
$80-2$	-	6.7	-	-	-	-	0	-
76	-	6.7	-	-	-	-	0	-
$80-3$	-	6.7	-	-	-	-	0	-

Harmonic Producer A

$79-1$	-	6.7	-	-	-	-	0	-
$79-2$	-	6.7	-	-	-	-	0	-
$78-1$	-	-	-	-	-	-	0	6.7
$77-1$	-	6.7	-	-	-	-	0	-

Harmonic Producer B

$79-3$	-	6.7	-	-	-	-	0	-
$79-4$	-	6.7	-	-	-	-	0	-
$78-2$	-	-	-	-	-	-	0	6.7
$77-2$	-	6.7	-	-	-	-	0	-

*The voltage measured between these pins should be approximately 5.2 volts alternating current.
**The voltage measured between these pins should be approximately 2.5 volts alternating current.

TABLE IV

TYPICAL SIGNAL VOLTAGES, RMS

a. Notes

(1) Voltages are measured with a vacuum tube voltmeter between the desig. nated point and ground unless otherwise noted.
(2) Test plug is used in RANGE UNIT TEST jack unless otherwise noted.
(3) The oscilloscope is connected to the OSCILLOSCOPE CALIBRATE jack, and the multiplier circuits are tuned.

b. Oscillator Circuit

1 to 3 of D-161647 Crystal Unit . 55 volt(s)
Tube 80-2, pin 4 . 85
Tube 76, pin 5 36.
Tube 80-3, pin 41.
OSC OUTPUT jack, open circuit (test plug removed from RANGE UNIT TEST jack) 50.

c. Multiplier Circuit

Designations refer to circuit A, but voltages also apply to similar locations in circuit B.

Across resistors 11-1 plus 11-2
Tube 79-1, pin 4 . 3
Junction resistors 36-2 and 37-1 45.

Tube 79-2, pin $4 \quad \cdot 25$.
Junction resistor 38-1 and capacitor 66-2
20.

Tube 78-1, pin $3 \quad 2$.
Junction resistor 39-1 and capacitor 66-3
12.

Tube 77-1, pin 4, AMP A control max.
3.

Tube 77-1, pin 4, AMP A control min.
0.

Output side capacitor 3-3 AMP A control max.
45.

TABLE V
 CONTINUITY MEASUREMENTS

With the lead removed from terminal 8 of TS1, and no power applied to the calibrator, the following continuity measurements may be made (test plugs removed):
a. Terminal 8 of regulated rectifier terminal plate TS1 to ground, 150,000 $\pm 10,000$ ohms.
b. Grid terminal 3 of REG 1, REG 2, and REG 3 tube to ground, $201,000 \pm 10,000$ ohms greater than the resistance measured in a.
c. Terminal 8 of TS2 to ground, $6,240 \pm 400$ ohms.
d. The following resistances to ground should be measured at the tube socket grid terminals:

Tube
80-1 (OSC)
Terminal 4, 2 megohms $\pm 100,000$ ohms
80-2 (OSC AMP 1) Terminal 4, 14,000 ± 140 ohms
76 (OSC AMP 2) Terminal 4, 500,000 $\pm 25,000$ ohms
80-3 (OSC OUT AMP) Terminal 4, 6000 ± 300 ohms
79-1 (AMP A1) Terminal 4, 1000 ± 10 ohms
79.2 (HARM PROD A1) Terminal 4, $600,000 \pm 30,000$ ohms

78-1 (HARM PROD A2) Terminal 3, 14 ± 1.5 ohms
77-1 (AMP A2) Terminal 4, AMP A control min. 0 ohm
Terminal 4, AMP A control max. 50,000 $\pm 5,000$ ohms
79-3 (AMP B1) Terminal 4, 1048 ± 13 ohms
79-4 (HARM PROD B1) Terminal 4, 600,000 $\pm 30,000$ ohms
78.2 (HARM PROD B2) Terminal $3,14 \pm 1.5$ ohms

77-2 (AMP B2) Terminal 4, AMP B control min. 0 ohm
Terminal 4, AMP B control max. 50,000 $\pm 5,000$ ohms

ふ N న
Stock No. Name of Part

Draving No．
LIST OF RRPLACBABLB PARTS FOR CALIBRATOR BC－725－A
Function
Rectifier plate and filament supply

TABLR VI
LIST OF RBPLACTABLB PARTS FOR CALIBRATOR BC－725－A

\qquad
 ํ
ล
ํ
が が Amp Al grid circuit
 Oscillator plate circuit voltage divider Oscillator plate circuit voltage divider Oscillator plate circuit voltage divider Pulse circuit coil
Pulse generating coil
Pulse generating coil
Band Pass filter input coil
Band Pass filter output coil
Band Pass filter output coil
Voltage limiter
$1.64-k c$ pulse doubler
Amp Al plate circuit inductor
Amp al plate circuit inductor

Name of Part
Transformer 2,000 ohms $\pm 18 ; 106 \mathrm{~A}$
2,000 ohms $\pm 18 ; 106 \mathrm{~A}$ 2，000 ohms \pm 1\％；106A 2，000 ohms $\pm 18 ; 106 \mathrm{~A}$ 50,000 ohms $\pm 1 \% ; 107 \mathrm{~A}$ 5，000 ohms \pm 1\％；106A 9，000 ohms \pm 1\％；106A Retard： 0.1 henry at 1 ampere， $1,640 \mathrm{cps}$ Retard： 0.06 to 0.13 henry measured Effective resistance 1，000 ohms at $4,000 \mathrm{cps}$ Efrective resistance 1，000 ohms at 4，000 cps
Average d－c resistance 5 ohms； $\mathrm{D}-162306$

$$
\begin{aligned}
& \text { Input Transformer: } \\
& \text { Primary resonates at } 1,640 \text { cps with } \\
& \text { approximately } 0.11 \text { mf, } 1: 1 \text { ratio }
\end{aligned}
$$

$$
\begin{aligned}
& \text { approximately } 0.11 \mathrm{mf}, 1: 1 \text { ratio } \\
& \text { Resonant Impedance } 5,000 \text { ohms }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Input Transformer: } \\
& \text { Primary resonates at } 1,640 \mathrm{cps} \text { with } \\
& \text { approximately } 0.11 \text { mf, } 1: 1 \text { ratio }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Co11 Q at 1, } 640 \text { cycies }=30 \\
& \text { Secondary C.T. } \pm \text { 1\% impedance balance } \\
& \text { Blectrostatic shield; SR-1007 }
\end{aligned}
$$

D-161870

$$
\begin{aligned}
& \text { Coil Q at 1,640 cycles }=30 \\
& \text { Secondary C.T. } \pm 1 \% \text { 1mpedance balance } \\
& \text { Blectrostatic shield; SR-1007 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { approximately } 0.11 \text { mf, } 1: 1 \text { ratio } \\
& \text { Resonant } 1 \text { mpedance } 5,000 \text { ohms }
\end{aligned}
$$

Blectrostatic shield; SR-1007
D-162356
Stock No.

17－2

Drawing No.
EsO-683487-6
EsO-683487-5
ESO-683487-5
ESO-683487-4
ESO-683487-4
ESO-683487-4
ESO-683487-4

$$
\begin{aligned}
& \stackrel{4}{む} \\
& \substack{0 \\
\hline}
\end{aligned}
$$

\[

\]

Stock No. Name of Part

 $\dot{0}$
y
0
0
0
0
H
$\underset{\text { Desig. }}{\text { Ap. }}$
[43]
Mfr. Drawing No.
18
곳아삿ㅇㅅ사숫ㅇㅅㅅㅏ

		TABLE VI LIST OF REPLACBABLE PARTS POR CALIBRATOR		$\frac{\text { BSL_-68g123, Isaue } 3}{10 \text { Shoots, Shoot } 8}$
${ }_{\text {Desig. }}^{\text {Ap }}$. Stock No.	Name of Part	Description	Punction	Mfr . Draving No.
69-2	Capacitor	M1ca: $0.001 \mathrm{mf} \pm 58,500 \mathrm{~V}$; Type MWW 1227-5	Phase shifter capacitor	70
70	Capacitor	M1ca: $0.005 \mathrm{mf} \pm 58,375 \mathrm{~V}$; Type MWW 1239-5	Oscillator output stopping capacitor	70
71-1	Capacitor	Paper: $0.1 \mathrm{mf}-10 \%+20 \%, 600 \mathrm{~V}$: 011 imprognated туре хтimw6	By-pass capacitor	70
71-2	Capacitor	Paper: $0.1 \mathrm{mr}-10 \%+20 \%, 600 \mathrm{~V}$; 011 1mprognated Type XTIMW6	By-pass capacitor	70
71-3	Capacitor	Paper: $0.1 \mathrm{mf}-10 \%+20 \%, 600 \mathrm{~V}$: 011 1mpregnated тype xTIMW6	By-pass capacitor	70
71-4	Capacitor	Paper: $0.1 \mathrm{mf}-10 \%+20 \%, 600 \mathrm{~V}$: 011 1mpregnated тype xtinw6	By-pass capacitor	70
71-5	Capacitor	Papor: $0.1 \mathrm{mf}-10 \$+20 \%, 600 \mathrm{~V}$; 011 1mprognated Type xTIMW6	By-pass capacitor	70
71-6	Capacitor	Paper: $0.1 \mathrm{mf}-10 \%+20 \%, 600 \mathrm{~V}$; 011 1mprognated Type XTIMW6	By-pass capacitor	70
71-7	Capacitor	Paper: $0.1 \mathrm{mf}-10 \%+20 \%, 600 \mathrm{~V}$: ofl imprognated Type XTIMW6	By-pass capacitor	70
71-8	Capacitor	Paper: $0.1 \mathrm{mf}-10 \$+20 \%, 600 \mathrm{~V}$; 011 imprognated Type xTIMW6	By-pass capacitor	70
72	Capacitor	Paper: $0.95 \mathrm{mf} \pm 5 \%, 600 \mathrm{~V}$; 011 1mprognated; 	Osc Amp 2 plate circuit tuning	70
73	Capacitor	Mica: $0.094 \mathrm{mf} \pm 58,500 \mathrm{v}$; Type XSW . 5 -194	Pulse circuit capacitor	70
74	Moter	Milliammeter: Type 301, 0-1 ma DC flush 3-1/2" bakelite case, non-glare glass, for use with external shunts and multipliers for scale range $0-150 \mathrm{ma}$ and 0-300 V; per Navy Spec. 17-I-12	Test meter	28
75-1	Potentiometer	50,000 ohms, taper 4; Type M50MP	Multiplior A output adjuster	22
75-2	Potentiometer	50,000 ohms, taper 4; Type M50MP	Multiplior B output adjuster	22
76	Vacuum Tube	Pover amplifier pentode; 6x6-at	Osc Amp 2	26
77-1	Vacuum Tube	Triple-grid super-control amplifior; 6SK7	Amp A^{2}	26

 ESL $-678315-3$ESL $-678315-3$
 N

m
1
n
n
0
0
0
1
0
0

TABLE VI
LIST OF REPLACEABLE PARTS FOR CAWIBRATOR BC-725-A

Description
Triple-grid super-control amplifier; 6SK7
High-mu triode; 6SP5
High-mu triode; 6SF5
Television amplifier pentode; 6AC7
Triple-grid detector amplifier; 6SJ7
Triple-grid detector amplifier; 6SJ7
Triple-grid detector amplifier; 6SJ7

 Voltage regulator; VR150-30 Voltage regulator; VR105-30 Power amplifier triode; 2A3 Power amplifier triode; 2A3 Power amplifier triode; 2A3 Full-wave rectifier; 274B Full-wave rectifier; 274B Special octal socket Special octal socketq Name of Part Vacuum Tube Vacuum Tube
 Gas Tube Vacuum Tube Vecuum Tube

 Vacuum Tube

 Socket
 Socket Socket

[46]
$\frac{\text { ESL-689123, }}{10}$ Issue ${ }^{2}$

 H
ñ
ñ
0
0
0
0
\vdots
\vdots

on ટ-乌ऽโ989-0s⿷ | N |
| :--- |
| |
| 0 |
| -1 |
| 0 |
| 0 |
| \vdots |
| \vdots |
| 0 |
| 0 | m

$\hat{1}$
n

0
0
0
\vdots
0
0 1
n
n
n
0
0
0
0
0
0
0
0

TABLE VI
Apig.
Stock No. Name of Part
Function
For Tube $79-3$
For Tube $79-4$
For Tube $80-1$
For Tube $80-2$
For Tube $80-3$
For Tube $80-4$
For Tube 81
For Tube 82
For Tube $83-1$
For Tube $83-2$
For Tube $83-3$
For Tube $84-1$
For Tube $84-2$
Power supply cord
Oscilloscope cord
Range Unit cord
Test plug, Range Unit power
Test plug, Range Onit test

$$
\begin{aligned}
& \text { Description } \\
& \text { Special octal socket } \\
& \text { 4-contact socket; XC-4 } \\
& \text { 4-contact socket; XC-4 } \\
& 4 \text {-contact socket; XC-3 } \\
& \text { Special octal socket } \\
& \text { Special octal socket } \\
& \text { Cord assembly } \\
& \text { Cord assembly } \\
& \text { Cord assembly } \\
& \text { Plug assembly } \\
& \text { Plug assembly }
\end{aligned}
$$

Note 1. For list of manufacturers of components as indicated by
Note 2. In some cases, procurement difficulties may necessitate the substitution of equivalent, but not identical, parts
for those listed. Cord
Plug
Plug
 Socket Socket Socket Socket Socket Socket Socket Socket Cord 0

BL-10547, Issue 1

$$
\begin{aligned}
& \text { table vil } \\
& \text { LIST OF MANUPACTURERS POR CALIBRATOR BC-725-A } \\
& \begin{array}{l}
\text { Address } \\
\text { ló Hamilton Boulevard } \\
\text { South Plainfleld, N. J } \\
\text { Schenectady, N. Y. } \\
\text { 460 West 34th Street } \\
\text { New York, N. Y. } \\
\text { Hartford, Conn. } \\
\text { 401 North Broad Street } \\
\text { Philadelphia, Pa. } \\
\text { Indianapolis, Ind. } \\
\text { Malden, Mass. } \\
\text { Camden, N. J. } \\
\text { Newark, N. J. } \\
\text { New York, N. Y. } \\
\text { East Pittsburgh, Pa. } \\
\text { Collingdale, Pa. } \\
\text { 90 West Street } \\
\text { New York, N. Y. } \\
\text { Chicago, Ill. } \\
\text { Canton, Mass. } \\
\text { Chicago, Ill. } \\
\text { Chicago, Ill. } \\
\text { Bayonne, N. J. } \\
\text { 350 West } 31 s t ~ S t r e e t ~ \\
\text { New York, N. Y. } \\
\text { Harrison, N. J. }
\end{array} \\
& \begin{array}{l}
\text { Manufacturer } \\
\text { Cornell-Dubilier Electric Corp. } \\
\text { General Electric Co. } \\
\text { Hammarlund Manufacturing Co. } \\
\text { Arrow-Hart \& Hegeman Electric Co. } \\
\text { International Resistance Co. } \\
\text { P. R. Mallory \& Co., Inc. } \\
\text { The National Company, Inc. } \\
\text { RCA Manufacturing Co., Inc. } \\
\text { Weston Electrical Instrument Co. } \\
\text { Western Electric Co. } \\
\text { Westinghouse Electric and Manufacturing Co. } \\
\text { Shallcross Manufacturing Co. } \\
\text { Dial Light Company of America, Inc. } \\
\text { Cinch Manufacturing Corp. } \\
\text { Tobe Deutschmann Corp. } \\
\text { Littelfuse, Inc. } \\
\text { American Phenolic Corp. } \\
\text { Solar Manufacturing Corp. } \\
\text { Telephonics Laboratories of America, Inc. } \\
\text { Automatic Winding Co. }
\end{array}
\end{aligned}
$$

立酸

	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & B \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { No } \\ & \text { Ò } \\ & \text { à } \end{aligned}$	$\begin{aligned} & n \\ & \text { No } \\ & \text { N } \\ & \mathbf{o} \\ & \text { à } \end{aligned}$	$$			$\begin{aligned} & \text { 各 } \\ & \underset{\sim}{4} \end{aligned}$				$\begin{gathered} \text { あ } \\ \underset{7}{1} \\ \text { n } \\ \text { n } \\ \text { 2 } \end{gathered}$	$\begin{aligned} & \text { ㅇ } \\ & \text { 易 } \\ & \text { K } \end{aligned}$	XIJNW6- . 95-5	-1 0 0 1 0 on 1	
\dot{G}	\cdots	\＄	2	안	$\stackrel{N}{N}$	안	0	안	안	안	안	안	ㅇ	$\underset{\sim}{\infty}$	0

［49］
$\frac{\text { ESL-689302, } \frac{\text { Issue } 2}{}}{5 \text { Sheets, Sheet }}$

Contractor's
Draving and
Part Number
 \&

Contractor's
Draving and
Part Number

TABLE VIII		
$\begin{gathered} \text { Symbol } \\ \text { Designation } \end{gathered}$	Description	Mrr.
7	Transformer: $77 \mathrm{va}, 75$ vatts, 60 cps Primary: 115 V at 0.67 empere secondary: 6.75 V at 10 amperes	29
9	Transformer: Output	29
10	Transformer: 222 ve, 190 vatts, 60 cps Primary: 115 V at 1.92 amperes Secondary Mo. 1: 1,080 V at 0.177 ampere, C.T. Secondary No. 2: 5.13 V at 4 amperes Secondary No. 3: 6.64 V at 1 ampere, insulated for 300 V DC Secondary Mo. 4: 2.63 V at 7.5 amperes, C.T. insulated for 600 V DC	29
17-1, 17-2	```Transformer: Input Primary resonates at l,640 cjcles vith approximately 0.11 mf, 1:1 ratio Resonant impedance 5,000 ohms Co11 Q at 1,640 cycles = 30```	29
18	Varistor	29
19	Varistor	29
-	Motal Box	

Note 1. Por 11st of manufacturers of components, see BL-10547.
Note 2. For List of Spare Vacuum Tubes, see ESL-689303.
Note 3. The Depot Spare Parts consist of one set of the Equipment
Spares 11sted hereon, and one set of Vacuum Tube Spares

Spare Tubes
6
8
2
4
8
4
4
2
2
 VACOUM TUBE SPARES LIST FOR CALIBRATOR BC-725-A

Description
Power Amplifier Triode
Television Amplifier Pentode
Power Amplifier Pentode
High-mu Triode
Triple-grid Detector Amplifier
Triple-grid Super Control Amplifier
Full-Weve Rectifier
Voltage Regulator
Voltage Regulator

MORIN IT

Digitized by GOOgle

