This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

https://books.google.com

Digitized by GOOgle

W $1.35: 11: 513$

RADIO SET

AN/CRD-3

I

ADDEMDA TO
 TM 11-513

RADIO SET AM/CRD-3

The following information corrects portions of TM 11-513, 31 July 1945. Personnel using the equipment and having custody of this technic̣al manual will enter suitable notations beside each affected paragraph in the technical manual to indicate the presence of this information.

Page 18. Par. 9. Change nomenclature of counterpoise in paragraph heading to read: MX-318/CRD-3.

Page 18. Par. 9. In line 1 of subparagraph a, change "MC-318/" to read: MX-318/.
Page 37. Par. 17. In line 9 of subparagraph $f(1)$, Change "Case CY-253/CRD-3" to read: Chest CH-211.

Page 37. Par. 17. In line 2 of subparagraph $f(2)$, change "Case CY-253/CRD-3" to read: Chest CH-211.

Page 38. Par. 19. Change paragraph heading to read:
19. BEARING INDICATOR ID-121/CRD-3.

Page 77. Transpose columns on this page.
Page 177. Par. 135. Change "Signal Generator S-72-()" to read: Signals Generators I-72-G and I-72-H.

Page 191. Par. 147. Three lines fram the bottan of page, change "Case CH-211" to read: Chest CH-211.

Page 192. Par. 147. Add the following after "Chest CY-409/U":
Chest CY-528/CRD-3.
Page 19. Par. 147. . In lines 18 and 24, delete () after "Radio Set AN/CRD-3()".

Digitized by GOOgle
$W A R \quad D E P A R T M E N T \quad T E C H N I C A L$

$T M 11-513$

RADIO SET AN/CRD-3

WAR DEPARTMENT
-
$31 \quad J U L Y 1945$

WAR DEPARTMETY,

WASHINGTON 25, D. C. , 31 July 1945.
TM 11-513, Radio Sot AN/CRD-3, is published for the information and guidance of all concerned.
[A. G. 300.7 (4 Jun 45).]
BY ORDER OF THE SECRETARY OF WAR:

> G. C. MARSHALL,
> Chief of Staff.

OFFICIAL:
EDWARD F. WITSELL, Major General.

Acting The Adjutant General.
DISTRIBUTION:
AAF (5); AGF (5); ASF (2); S Div ASF (1); T/O \& E: 11-16 (2); 11-77 (2); 11-500, Sig Sv Orgn-CC, BC, EG, CQ (2); 11-587 (2); 11-597 (2). (For explanation of symbols see FM 2l-6.)
Paregrapk Page
PART ORIS. Introduction.
Section I. Deacription of Radio Set AN/CRID-3.
Ceneral 1 1
Tochnical characteristics of Redic Set AN/CRD-3 2 2
Table of components 3
Packaging data. 3
Description of major components 4
II. Installation of Radio Set AN/CRD-3.
Siting. 15
Unpacking, uncrating, checking 17
Orientation of antema system. 17
Installation of Counterpoise MX-318/CRD-3.. 18
Erection of anterna mast 19
Positfoning of directional antenna 21
Check of directional antenna alignment 21
Positioning of sense antenna 23
Phase inverter installetion. 23
Installation of ground conduetor. 23
Ereetion of Shelter $\mathrm{HO}-20-\mathrm{B}$. 24
Equipment installation in shelter and connection of cables. 17 32
Power Unit PE-197 37
FART TWO. Operating instructions.
Section III. Controls and thefr use.
Bearing Indicator ID-121/CRD-3 19 38
Radio Receiver Assembly R-128/CRD-3 20 38
Control-Rectifier Power Unit PP-135/CRD-3. 21 41
Amplifier-rectifier Power Unit PP-151/CRD-3 22 42
Junction Bex JB-126 43
Power Unit FE-197. 43
Model oan test oscillator. 43
IV. Operation.
General 26 44Starting procedure27
28
Operating instructions 44
29
Stopping procedure 46
Operation of OAN test oscillator ae target trememitter. 30 47
Autamatic bearing indicator pattern interpretation 31 47
Paragraph Page
Section V. Equipment performance check list.
Prurpose and use of check list 32 51
Frquipment performance check list 33
PART THERAR Whantenemoe instructions.
Section VI. Preventive maintenance techniques.
Meaning of preventive maintenance 54
Dearription of preventive maintenance techniques 35 57
Vacuum tubes 36
Capacitors 37 59
Resistors 38
Furges 39
Bushings and insulators 40
Relays 41
Switches. 42
43 44
Rheostats and potentiometers
Terminal blocks 62 62
Connectors, plugs, and receptacles 45
Cords and cables 46
Heters 47
Pilot lamps 48
Jacks and plugs 49
Mounting Table MT-347/CRD-3 50Reel Unit RL-495158606060616263636364
64Cabinets, chassis, and mountings5264
64
Headset and loudspeaker 53
Driving motor 54 65
55
Coupling shafts and control knobs 65
Gears 56 65
Power transformers, filter chokes, and 65
audio transformers 57 65
Slip rings and brushes
Goniometer Navy Type CFT-47372 66
Antenna Assembly AS-204/CRD-3 59 7070
VII. Itemized preventive maintenance.Introduction.
61 71
Preventive maintenance tools and materials
02
02 71 71
Item 1, modulator section of Radio Receiver Assembly R-128/CRD-3
63
63 71 71
Item 2, power indicator section of Radio Receiver Assembly R-128/CRD-3
64
64 72 72
Item 3, Junction Box J-99/CRD-3 65

Section VII. Iterized preventive meintemence (contd).

> Item 4, deflection coil assembly of Bearing Indicator ID-121/CRD-3.......... 66

$$
\begin{aligned}
& \text { Item 5, opt fcal housing of Bearing } \\
& \text { Indicator ID-121/CRD-3...................... } 67
\end{aligned}
$$

Item 6, cantrol box.............................
73Item 7, Amplifier-rectifier Power
Unft PP-I51/CRD-3........................... 69 73
Iten 8, Contral-rectifier Power
Unit PP-135/CRD-3. 73
Item 9, Jumetion Box JB-126 74
Itemin 10, Antenne Assembly AS-204/CRD-3. 74
Item 1l, Mounting Table MT-347/CRD-3 74
Item 12, Reel Unit RL-49. 74
Item 13, interconnecting cables 74
Preventive maintenance check list 75
VIII. Lubrication.
Approved lubricants for Radio Set AN/CRD-3 76
Bearing Indicator ID-121/CRD-3 76
Mounting Table MT-347/CRD-3 77
Junction Box J-99/CRD-3. 77
Radio Receiver Assembly R-128/CRD-3 77
OAN test oscillator equipment 77
Goniometer Navy No. CFT-47372. 77
Bearing indicator drive motor 77
Reel Unit Rl-49-A 77
Power Unit PE-197. 78
Cable connectors. 78
Telephone EFP-8-B. 78
IX. Moistureproofing and fungiproofing.
General. 89 78
Treatment to reduce fallures 78
Moistureproofing and. fungiproofing procedure 91 78
Moistureproofing and fungiproofing after repaire 92 80
PART FOUR. Auxiliary equipment.
PART FIVE. Repair instructions.Section X. Theory of equipment.
Pundamental principles. 93 81
Radio Set AN/CRD-3. 2493

Section X. Theory of equipment (contd)..

Antenna array 93
Junction Box J-99/CRD-3 95
Goniometer CFT-47372. 97
Radio Receiver Assembly R-128/CRD-3. 98
Amplifier-rectifier Fower Unit PP-151/CRD-3. 99 105
Bearing Indicator ID-121/CRD-S. 105
Control-rectifier Power Unit PP-135/CRD-3. 107
Model ONN test oscillator equipment 108
XI. Trouble shooting.
General trouble-shooting information. 103 110
Resistance measurements 104 112
Capacitor tests 105 113
Current mpasurements. 113
Tube checking 113
Parts replacement 114
Test oquipment 114
Trouble-shooting procedure 116
Secticaalizing trouble in Radio Set AN/CRD-3. 117
Tube locations. 121
Voltage measuroments. 125
Resistance measurements 131
XII. Repairs.
Ceneral 115 149
Replacement of parts in receiver assembly 149
Replacement of parts in automatic bearing indicator 117 152
Removing slip ring eccentricity in automatic bearing indicator. 154
Replaoment of parts in amplifier-rectifier Power Unit PP-151/CRD-3 119 155
Replacement of parts in goniometers 156
Removing rotary switch wafer in Junction Box J-99/CRD-3 157
Emergency repair. 157
Rustproofing amd ropainting 157
Unsatisfactory Equipment Report 157
XIII. Alignment and adjustment.
Initial alignment 125 161
Line Foltage check. 126 161
Preliminary adjustment of phase inverters 127 161

TABLE OF COWTENTS

ParagraphPageSoction XIII. Alignment and adjustment (contd).
Preliminary adjustment of radio receiver assembly. 128 161
Phase inverter balance 162
Automatic bearing indicator demagnotization 130 164
Goniometer alignment 165
Radio receiver alignment. 168
APPENDIX.Section XIV. Reforences.
Army regulations 177
Supply publications 177
Technical manuals on auxiliary equipment and test equipment 177
Painting, preserving, and lubrication. 177
Camouflage 177
Shipping instructions 177
Decontamination 177
Demolition 177
Other publications 178
Forms 178
Abbreviations. 179
Glossary 180
Outline drawings 181
Chests and crates 185
Table of components 191
Packaging data. 202
OAN test oscillator equipment. 209
XV. Maintenance parts.
Maintenance parts for Radio Set AN/CRD-3. . 150 209
Maintenance parts for Radio Receiver Assembly R-128/CRD-3 151 223
Maintenance parts for Control-Rectifier PP-135/CRD-3 152 243
Maintenance parts for Amplifier-Rectiflier Power Unit PP-151/CRD-3 153 248
Maintenance parts for Phase Inverter MC-411-A. 154 251
Maintenance parts for Phase Inverter MC-413-A. 155 253
Maintenance parts for Test Oscillator (Navy Model OAN) 156 255
Maintenance parts for Antenna Assembly AS-204/CRD-3 157 260
Maintenance parts for Bearing Indicator ID-121/CRD-3 158 262
Maintenance parts for. Junction Box J-99/CRD-3 159 265
Maintenance parts for Headset HS-29-().... 160 267
Maintenance parts for Tool Equipment TE-41. 161 268

DESTRUCTION MOTICE

WHY - To prevent the onemy from using or salvaging this equipment for his benefit.

WHEN - When ordered by your commander.
HOW - 1. Smash - Use sledges, axes, handaxes, pickaxes, hemmers, crowbars, heary tools.
2. Cut - Use axes, handaxes, machetes.
3. Burn - Use gasoline, kerosene, oil, flame throwers, incendiary grenades.
4. Explosives - Use firearms, grenades, TNT.
5. Disposal - Bury in slit trenches, fox holes, other holes. Throw in streams. Scatter.

USE ANYTHING IMMEDIATELY AVAILABLE FOR DESTRUCTION OF THIS EQUIPMENT.

WHAT - 1. Smash - All tubes, meters, switches, relays, instrument boards, castings, heaters, shelters, chests, gasoline engines, generator; and every electrical and mechanical part whether moving or fixed.
2. Cut - All wires, cables, fuel lines.
3. Burn - Charts, diagrams, and manuals.
4. Bury or scatter - Any or all of the above pieces after destroying. DESTROY EVERYTHING

Abstract

\section*{SAFETY NOTICE} BE FATAL IF CONTACTED BY OPBRATING PBRSONNSL. OPSRATORS MUST BE CARREUL NOT TO CONTACT HIGH-VOLTAGE PLATE CIRCUITS OR II6-VOLT, A-C INPUT CORTECTIONS WHILE CHECKING OR SERVIGING EQUIFMENT. A FEW SERVICE CHECKS MUST BE MADE INSIDE THE SET WITH THE HIGH VOLTACE ON. WHEN MAKING THESE CHECES, ALWAYS HAVE THE PRESENCE AND ASSISTANCE OF ANOTHER PERSON CAPABLE OF RENDERING AID. KEEP ONE HAND IN YOUR POCKET WHILE MAKING HIGH-VOLTAGE MRASUREMENTS. THIS WILL PREVENT TOUCHING THE ELBCTRICAL CIRCUIT WITH MORE THAN ONE PART OF. THE BODY AT ONE TIME. MAKE CERTAIN THAT POWER IS TURNED OFF WHEN DISASSEMBLING ANY PART OF THE EQUIPMENT.

RESCUE.

In case of electric shock, shut off the high voltage at once and ground the circuits. If the high voltage cannot be turned off without delay, free the victim from contact with the live conductor as promptly as possible. Avoid direct contact with either the live conductor or the victim's body. Use a dry board, dry clothing, or other nonconductor to free the victim. An ax may be used to cut the high-voltage wire. Use extreme caution to avoid the resulting electric flash.

SYMPTOMS.

a. Breathing stops abruptly in electric shock if the current passes through the breathing center at the base of the brain. If the shock has not been too severe, the breath center recovers after a while and normal breathing is resumed, provided that a sufficient supply of air has been furnished meanwhile by artificial respiration.
b. The victim is usually very white or blue. The pulse is very weak or entirely absent and unconsciousness is complete. Burns are usually present. The victim's body may become rigid or stiff in a very few minutes. This condition is due to the action of electricity and is not to be considered rigor mortis. Artifial respiration must still be given, as sevcral such cases are reported to have recovered. The ordinary and general tests for death should never be accepted.

TREATMENT.

a. Start artificial respiration immediately. At the same time send for a medical officer, if assistance is available. Do not leave the victim unattended. Perform artincial respiration at the scene of the accident, unless the victim's or operator's life is endangered from such action. In this case only, remove the victim to another location, but no farther than
is mecessary for saicty. If the new location is mone than a lew leet away, artiscial respiration should be siven while the victim is beling moved. If the method of tramsportation promithiss the use of the Shaefler prone pressure method, other methods of resusctiation may be used. Preasure may be exerted on the fromt of the victim's diaphragm, or the direct mouth-io-mouth method may be used. Artificial respiration, once started, must be conthoued, without loas of rhythre.
b. Lay the victim in a prone poaition, one arm extended directly overhead, and the other arm beat at the elbow so that the back of the hand supports the head. The face should be turned away from the bent elbow so that the nose and month are free for breathing.
c. Open the victim's mouth and remove any foreign bodies, such as false teeth, chewing gum, or tobacco. The mouth should remain open, with the tongue extended. Do not permit the victim to draw his tongue back into his mouth or throat.
d. If an assistant is available churing resuscitation, he should loosen any tight clothing to permit free circulation of blood and to prevent res.riction of breathing. He should see that the victim is kept warm, by applying blankets or other covering, or by applying hot rocks or bricks wrapped in cloth or paper to prevent injury to the victim. The assistant should also be ever watchiul to see that the victim does not swallow his tongue. He should continually wipe from the victim's mouth any frothy mucus or saliva that may collect and interfere with respiration.
-. The resuscitating operator should straddle the victim's thighs, or one leg, in such manner that:
(1) the operator's arms and thighs will be vertical while applying pressure on the small of the victim's back;
(2) the operator's fingers are in a natural position on the victim's back with the little finger lying on the last rib;
(3) the heels of the hands rest on either side of the spine as far apart as convenient without al. lowing the hands to slip off the victim;
(f) the operator's elbows are straight and locked.
f. The resuscitation procedure is as follows:
(1) Exert downward pressure, not exceeding 60 pounds, for 1 second.
(2) Swing back, suddenly releasing preasure, and sit $O p$ the heels.
(3) After 2 seconds rest, swing forward again, positioning the hands exactly as before, and apply pressure for another second.
g. The forward swing, positioning of the hands, add the downward pressure should be accomplished in one continuous motion, which requires 1 second. The release and backward swing require 1 second. The addition of the 2 -second rest makes a total of 4

seconds for a complete cycle. Until the operator is thoroughly familiar with the correct cadence of the cycle, he should count the seconds aloud, speaking distinctly and counting evenly in thousands. Example: one thousand and one, one thousand and two, ete.
h. Artilicial respiration should be continued until the victim regains normal breathing or is pronounced dead by a medical officer. Since it may be necessary to continue resuscitation for several hours, relief operators should be used if available.

RELEVING OPERATOR.

The relief operator kneels beside the operator and follows him through several complete cycles. When the relief operator is sure he has the correct rhythm, he places his hands on the operator's hands without applying pressure. This indicates that he is ready to take over. On the backward swing, the operator moves and the relief operator takes his position. The relieved operator follows through several complete cycles to be sure that the new operator has the correct rhythm. He remains alert to take over instantly if the new operator falters or hesitates on the cycle.

STIMULANTS.

c. If an inhalant stimulant is used, such as aro-
matic spirits of ammonia, the individual administering the stimulant should first test it himself to see how close he can hold the inhalant to his own noetril for comfortable breathing. Be sure that the inhalant is not held any closer to the victim's nostrils, and then for only 1 or 2 seconds every minute.
b. After the victim has regained consciousness, he may be given hot coffee, hot tea, or a glass of water containing $1 / 2$ teaspoon of aromatic spirits of ammonia. Do not give any liguids to an unconecions victim.

CAUTIONS.

a. After the victim revives, keep him LYING QUIETLY. Any injury a person may have recelved may cause a condition of shock. Shock is present if the victim is pale and has a cold sweat, his pulse is weak and rapid, and his breathing is short and gasping.
b. Keep the victim lying flat on his back, with his head lower than the rest of his body and his hips elevated. Be sure that there is no tight clothing to restrict the free circulation of blood or hinder natural breathing. Keep him warm and quiet.
C. A resuscltated victim must be watched carefully as he may suddenly stop breathing. Nover leave a resuscitated person alone metil it is CRE TAIN that he is fully conscious and breathing nonmally.

Figure 1. Radio Set AN/CRD-3.

PART OME
 IMTRCDUCTIOM

SECTION I

DESCRIPTIOM OF RADIO SET AM/CRD-8

1. GEMERAL.

2. Fadio Set AN/CRD-3 consists of a roceiving and indicating system, crossed-U Adcock antennas, a sense antenne, and
accessory equipment. It is designed for mediun frequency radio direction finding; transportable bi air or vehicle, and may be operated from commercial power or from the power generator supplied with the radio set.

Figure 2. Block diagram of Radio Set AN/CRD-3.
b. The inconing signal is collected by an antenna array oriented with respect to north. Either of two goniometers combines the outputs of the antennas in proper relationship; ane is used in taking azimaths manually, the other automatically. Three modes of indicating azimuths are provided:
(1) Matched-line indication on the face of a 2 -inch oathode-ray tube through the use of a manually operated goniameter.
(2) Instantaneous propeller-shaped patterns on the face of a 5 -inch cathoderay tube through the use of a motor driven goni ameter.
(3) Null method which can be observed aurally on the loudspeaker or visually an the 2-inch cathode-ray tube through the use of the manually operated goniameter.
C. Figure 2 is a simple block diagram showing the relationship between various components of the direction finder.
(1) The antenna array consists of five Antenna Assemblies AS-204/CRD-3. The antennas are approximately 64 feet high. Four of these are used for direction finding and are erected at the corners of a square whose diagonals measure 180 feet. The fifth antenna is erected in the center of the other four and functions as a sense antenna.
(2) Phase Inverters MC-411-A are installed at the base of each directional antenna. Phase Inverter MC-4 $3-A$ is in= stalled at the base of the sense antenna. The phase inverters act as coupling units between the antennas and transmissian lines.
(3) Control-Rectifier Power Unit PP-135/CRD-3 provides the proper voltages for the operation of the phase inverters.
(4) Goniometers CFT-47372 combine the antenna outputs in proper relationship and feed them to the receiver input.
(5) Padio Receiver Assembly R-1 28/CRD-3 consists of two sections: the power indicator section, and the modulator section.

The receiver assembly may be used independently for monitoring purposes, as well as for matched-line and null indication.
(6) Bearing Indicator ID-1 21 /CRD-3 is the autamatic or instantaneous azimuth indicator.
(7) Ampifier-Rectifier Power Unit PP-151/CRD-3 provides the alternating current and the rectified, filtered direct current voltages required for operation of the automatic bearing indicator. The indicator deflection coil amplifier and its power supply are also included in this power unit.

2. TECHNICAL CHARACTERISTICS OF RADIO SET AN/CPD-3.

Prequeacy rage:
Band 1........ 250 to 610 ke
Band 2......... 610 to 1,600 ke
Receiver type.......siperheterodyae
Receiver intermediate
frequeacy.......... 176 kc
Selectivity (two times down)

$$
\text { At } 1000 \mathrm{kc} \text { (SHARP)......8.0 ke }
$$

At 1000 ke (BROAD).....7. 5 kc
At 480 kc (SHARP)....... 2.8 kc
Lt $480 \mathrm{kc}($ BROAD)...... 5.0 kc
Seasitivity for $\pm 1^{\circ}$ repeatability:

At 1500 kc...... 4 microvolts per meter

At 1000 kc...... 7 microvolts per meter

At 750 kc........ 9 microvolts per meter

At 500 kc...... 12 microvolts per meter

At 250 kc....... 15 microvolts per meter

Power output :

Undist orted headphane output....... 15 milliwatts

Maximam loudspeaker output (less than 5 percent harmonic distortion) 1.1 .5 watts

Antenna
Directional.... Crossed-U Adcock,
manopole type
masts, with
phase inverters

Sense.....Monopole type
with phase inverter

3. TABLE OF COMPONENTS.

This table is located in the appendix, paragraph 147.

4. PaCKAGING DATA.

This information is located in the appendix, paragraph 148.
5. DESCRIPTION OF MAJOR COMPOMENTS.
a. Antenna System. The antenna system (fig. 1) used with Padio Set AN/CRD-3 is a type known as a U-Adcock system and consists of the following components:
(1) Antenna Assembly AS-204/CRD-9. The five monopoles of the system, consisting of two directional pairs and a sense antenna, are exactly alize. Four are installed at the corners of a square, whose diagonals are 180 feet, and the fifth at the intersection of the diagonals. Each monopole consists of a nine-section mast, approximately 64 feet high (fig. 3). The mast is supported on a swivel type base of steel. The base comprises a double tubular cast-steel socket and a steel plate to which a hinge support for the socket is welded. The socket is provided with an insulating sleeve for insulating the antenna mast. A silver-plated stripe on the bottom mast section indicates where the mounting collar for the phase inverter is to be fastened. A guy rope and chain assembly together with a stake type ground anchor forms an effective holddown system for each mast. A 9 foot gin pole of aluminum alloy tubing that plugs into the mast base is used to aid in the raising of the antenna mast.
(2) Antenna Mooring Platform $A B-821$ CRD-3. This platform provides a more solid footing when the antennas are erected on soft ground. It is made of wood, 4 feet square, and equipped with four steel mounting plates which are threaded and so spaced that the mast base can be bolted to it. In ad-

Figure 3. Antenna Assembly $A S-204 / C R D-3$, (one monopole).
dition, each of the four corners of the plat form has two 1/2-inch bolt holes so that the platform can be fastened to wooden piles by means of $1 / 2$-inch lag screws (fig. 4).

> Figure 4. Mooring Platform $A B-82 / C R D-3$.
(3) Counterpoise MX-318/CRD-3. Each antenna has its separote counterpoise system of the mat type connected to the respective phase inverter casing (figs. 20 and 22). Each of the five counterpoise mats is composed of a 32 -foot square meshwork of tinned copper braid con-
ductors at right angles to each other, and fastened together by means of male and female United Carr "Dot" fasteners. The counterpoise is attached to nine ground stakes by means of six-inch lengths of tinned copper braid. Eight of the stakes are equally spaced around the outer edge of the counterpoise, and one of the stakes is placed at approximately the center of the counterpoise.
(4) Phase Inverters MC-411-A and $M C-413-A$. Two types of phase inverter antenna coupling units (MC-411-A and MC-413-A) areused with Radio Set AN/CRD-3. One type (MC-411-A) (fig. 5) has two tubes, one in use and one spare, and is used with each of the four corner antennas. The other (MC-413-A) (fig. 6) has four tubes, two in use and two spares, and is used with the central or sense antenna. Phase Inverter MC-413-A is actually two Phase Inverters MC-411-A in a single mount casting with input; connected in parallel. However, in Radio Set AN/CRD-3 only one of the outputs of MC-413-A is used. The unused output receptacle is covered with a metal cap. Each phase inverter is mounted in a cylindrical aluminum casting with overall dimensions of $7-1 / 4$ and 12-3/4 inches. The internal radio-frequency (r-f) section is a.plug-in unit, and all power and $r-f$ connections are made simultaneously when it is properly

Figure 5. Dismantled view of Phase Inverter MC-411-A.

Figure 6. Dismantled view of Phase Inverter MC-413-A.
positioned and pushed into place in the mount casting. A cast-aluminum mount cover supports a terminal board to which the r-f unit makes connection on the inside. The AN type receptacles for the connecting cords are on the outside and each is color-coded to correspond to mating receptacles. Four hook-like extensions engage 5/15-inch threaded posts fastened to the cyli..drical mount casting. Wingnuts and washers on the post hold the cover in place. A gasket on the cover keeps out moisture. A large banana plug for making connection to the banana jack on the mounting collar is supported by a feed-through insulator at the other end of the mount costing. Three grooved studs on the insulator end of the cylindrical cover hold the phase inverter to the mounting collar which attaches to the antenna mast.
(5) Bigh-Frequency Cords CD-829 and CD-1020 (Transmission Lines). Cord CD-829 is a twin coaxial high-frequency (h-f) transmission line. It is a solid dielectric, flexible cable, 92 feet long with two central conductors, each of which is inside a copper braid. Another copper braid and outer vinylite sheath encase the entire assembly. Four of these cords are used to connect the phase inverters on the antenna masts to Junction Boxes

JB-91-A. Cords CD-1020 are similar to Cords CD-829 except that they are 40 feet in length. Two Cords CD-1020 connect between Junction Boxes JB-91-A and Junction Box J-99/CRD-3. The third Cord CD-1020 connects between sense Phase Inverter and Junction Box J-99/CRD-3. Each cord is color-coded and labeled at both ends with its CD number on a metal band.
(6) Power Cords CX-402/ CRD-3. From the Control-Rectifier power Unit Pp-135/ CRD-3, five 5 -conductor power cables are used to supply power to the individual phase inverter coupling units of the antenna array. The cords connecting to the MC-411-A phase inverters are 135 feet in length; the cord connecting to the MC-413-A phase inverter is 40 feet in length. Each cord is color-coded and labeled at both ends with its CD number on a metal band.
(7) Junction Box JB-91-A. Junction Box JB-91-A (fig. 7) contains the crossover connections for the r-f transmission lines from the U-Adcock antenna of the array. It consists of a casting with three receptacles and connecting wiring. Color coding on the cover plate next to the receptacles corresponds to the coding of the mating plugs.

Figure 7. Junction Box JB-91-A.
b. Junction Box J-99/CRD-3. The r-f cables from the antenna system and from the receiver and indicator goniometers connect to Junction Box J-99/CRD-3. Photographs of the junction box are shown in figures 8 and 9 and a circuit diagram in figure 79. An electrically operated rotary switch inside the junction box switches the antenna, goniameter, and
radio receiver assembly circuits to produce the three types of azinuth indication. The junction box is made of $1 / 16$-inch sheet steel on a rigid steel framework. It is finished in baked gray wrinkle enamel and has over-all dimensions of 18 by $10-1 / 2$ by $6-3 / 4$ inches. The AN receptacles on the botton connect to the receiver sense and directional input channels, and to the switch con-

Figure 8. Junction Box J-99/CRD-3, bottom view.

Figure 9. Junction Box J-99/CRD-3, top view.
trol circuits through suitable cables. Three AN type connectors on top feed the h-f transmission lines to the terminal strips inside the junction box. The individual connectors on top and bottom are color-coded, and numbered for easy identification of the connecting cables. Shields separate the junction box into five individual compartments. A knob on the end of a switch shaft extension on one side of the junction box permits manual operation of the switch, if required.
c. Goniometer Navy No. CFT-47372. The goniometer is a rotating r-f transformer which combines the outputs of the antenna assemblies in the proper phase and amplitude relationships and supplies the output from a rotor to the directional input of the radio receiver. A photograph is shown in figure 10 and a circuit díagram in figure 81. The components of Goniometer CFT-47372 are inside a die-cast aluminum housing $8-1 / 8$ by $5-3 / 4$ by $5-3 / 4$ inches. Three $\mathrm{AN}-31 \mathrm{O} 2-5 \mathrm{P}$ type receptacles on the top connect to h-f cables from the switching circuits in the junction box.

The indicator goniometer is held to the rear of the bearing indicator by knurled thumbscrews and is driven by the bearing indicator motor. Another Goniometer CFT-47 372 is mounted inside the modulator receiver section of the Radio Receiver Assembly R-128/CRD-3 and is coupled to a 7-1/2 inch, 360° calibrated dial on the front panel.

TL-19591

Figure 10. Goniometer CFT-47372.

d. Radio peceiver Assembly R-128/CRD-3.

Radio Peceiver Assembly R-128/CRD-3 is a highly sensitive superheterodyne and

TLI3586S
Figure 11. Radio Receiver Assembly R-128/CRD-3.
consists of two units (modulator receiver and power indicator) mounted one above the other in a single aluminum case 19 inches wide, 19 inches deep, and 26-1/4 inches high. The lower unit is the modulator receiver and the upper the power indicator. A photograph of the radio receiver assembly is shown in figure 11 and a block diagram is shown in figure 82. Circuit diagrams of the two units are contained in figures 157 and 158.
e. Amplifier-Rectifier Power Unit PP-15I/CPD-3. This component operates fram a 110- to 120-volt, 55-to 65-cycle, single-phase, alternating-current ($a-c$) source to provide the alternating current and the rectified, filtered direct-current (d-c) voltages required for operation of the automatic bearing indicator. The indicator deflection coil amplifier and its power supply are also included in the power unit. The aluminum front panel and aluminum chassis form an integral unit on which the companent parts are mounted and wired. The chassis is mounted at right angles to the frant panel and is supported on the three remaining sides by a stiff U-shaped aluminum wrap-around also attached to the front panel. The entire

Figure 12. Amplifier-rectifier Power Unit PP-151/CRD-3.
unit is inclosed in as aluminum cabinet with over-all dimensions 19 inches wide by $8-3 / 4$ inches high by 13-1/2 inches deep (fig. 12). There are louvers on the rear for ventilation. Two pull knobs are on the front panel to assist in removing the chassis from the cabinet. The entire assembly is mounted on a shelf on the mounting table to the rear of the automatic azimuth indicator.
f. Bearing Indicator ID-121/CRD-3. The bearing indicator is an electramechanical unit for producing instantaneous visual azimuth and sense patterns characteristic of the antenna and goniometer outputs. Goniomater CFT-47 372 is mounted at the rear of the indicator and is driven by the indicator motor. A photograph of the two units is shown in figure 13 and circuit diagrams in figures 81 and 161. The principal housing consists of a tubular type heavy aluminum cast ing supported on a steel truss assembly attached to the equipment mounting table. Two shock mounts support the indicator in its normal operating position. By removing the shock-mount supporting nuts, the indicator may be lowered on a chain for minor servicing. The indicator motor is mounted at the rear and hinged thumbscrews clamp the goniometer in back of the motor. A hinged cover over the rotating assembly permits access to the brushes and slip rings.
(1) The control box is of the plug-in type and mounts under the front and of the athode-ray tube. Receptacles J5O1 and J5O2, for connection to the rectifier power unit, are at the rear of the control box. The light shield and azimuth scale assembly may be swung aside for remoring the a thode-ray tube.
(2) The motor is a $1 / 8$ horsepower, single-phase, capacity start, induction run motor with a normal rumning speed of 1,140 revolutions per minute (rpm). A switch cuts out the capacity when the motor has reached its operating speed. At 110 volts the motor draws 3.2 anperes. It is designed for operation from a 110- to 120-volt, 55- to 65-cycle, singlephase altemating current.
g. Control-Rect ifier Power Unit PP-135/ CRD-3. Control-Rectifier Power Unit PP-135/CRD-3 operates from a 110 to 120-volt, 55- to 65-cycle a-c power source to provide the alternating current and the rectified, filtered d-c voltages required for operating Phase Inverters MC-411-A and MC-413-A. The steel front panel and chassis form a single unit on which the component parts are mounted and wired. Stiff side brackets secure the chassis to the panel. A steel botton plate completely incloses the under chassis. The over-all dimensions of Control-Rectifier Power Unit PP-135/CRD-3

Figure 13. Bearing Indicator ID-121/CRD-3.

Figure 14. Control-rectifier Power Unit PP-135/CRD-3.
are 22 inches wide by $10-3 / 4$ inches high by 11-1/4 inches deep (fig. 14). The frant panel is finished in oven-baked, scratchproof gray wrinkle enamel and the rear of the panel, the chassis shields, bottan plate, etc. are finished in pastel gray lacquer.
h. Accessor les. The accessories described below are part of Radio Set AN/CRD-3.
(1) Shelter $\mathbf{B O}-20-B$. Shel ter HO-20-B is a prefabricated hous ing for the main components of the direction finder. When assembled, it forms an insulated house approximately 5 feet by 9 feet by 6 feet, with a rounded roof (figs. 24 to 32), two side windows with screens and blackout blinds, and a door. The floor, roof, and side panels are made of fabricated plywood, and are numbered for ease of assembly. Cable entry cut-outs are provided in two of the walls. When dismantled, the shelter components, plus two folding tables and two chairs, are packed for shipment on two crates.
(2) Hownting Table $M T-347 / C P D-3$. Padio Set AN/CRD-3 operating components are shoct mounted on a compact equipment table (figs. 36 and 37). The table is constructed
of a 1-1/4 inch outside diameter by a 1/8inch thick, cold-drawn, seamless stee? tubing. The over-all dimensions of the table are 24 inches wide by 36 inches high by $32-1 / 2$ inches deep. It is finished in an oven-boked, scratch proof gray wrinkle enamel. The autamatic bearing indicator is fitted with a truss which supports it in a diagonal position with the table frame, permitting easy view of its cathode-ray tube face. Two arms at tached to the table frame slope downard at right angles to the bearing indicator axis, and support a hinged metal plate which surrounds the optical housing. The autamatic bearing indicator mounting is such that it mary be dropped on a chain for minor servicing or adjustment. The rectifier power unit is mounted on a shelf behind the automatic bearing indicator. By releasing a spring bar under the shelf it can be lowered a few inches to give access to the unit. The radio receiver is shock mounted on the table top. The table mounts to the floor on four flanged feet.
(3) Electric Heater. Two electric heaters for use with Shelter HO-20-B are part of Radio Set AN/CRD-3. A complete description is contained in the instructions accompanying the unit.

Figure 15. Power Unit PE-197 ready to operate.
(4) Power Unit PE-107. This is a selfcontained power plate consisting of a gasoline engine, a power generator, and a control panel. The ontire assembly is mounted on a welded steel skid base and inclosed in a sheet-metal housing (fig. 15). The engine, generator, control panel; fuel gauge, fuel filler cap, radiator filler cap, oil filler cap, and bayonet oil gauge can be reached through hinged panels on the sides and top of the housing. A storage battery can be reached through a hinged panel on ane end of the unit. Five terminals, mounted ona terminal
board, are reached through a hinged panel on the left side of the unit directly below the control panel. A 5-golion fuel tank, mounted within the housing above the main generator, is provided with a fuel gauge and a hinged filler cap. A 150 -foot power cable and a 150 foot remote control cable are mounted on separate reels. The power cable is provided with plugs on both ends, while the remote control cable has a plug on one end and an on-off remote control switch at the other. A flexible exhaust tube is also provided to carry the exhaust away from the unit.

Figure 15. Junction Box JB-126.
(5) Junction Box JB-126-(). This junction box (fig. 16) is a shoet-steol unit approximately 17 inches by 10 inches by 8 inctree. It has a handie on the top, and two waterproof receptacies on the bottom for connection to the ame cord from the power source. A dreuit breakor is mounted
on the front, three polarized 115-volt receptaclee on one side, and two single anc receptacl es on the othor. Inalde the junction box is a 115 - to 230-rolt, so to $60-\mathrm{crcle}$ e autotranaformer for trenaforming a $230-\mathrm{vol}$ t, 60 -crcle, single-phose scurce 8 to 115 vol to for oporating the equipment.
(6) Interconnecting Cords. Armored, flexible cords with plugs on each end are used to interconnect the direction firder components. Each cord has a metal band on each end with its CD designation. The plugs, in addition, have color bands which correspond ta color markings on the connecting receptacles.
(7) Model OAN Test Oscillator Equipment.
(a) General. This assembly (fig.
ter for balancing the anterna system of Radio Set AN/CRD- 3 and as a signal generator to provide test frequencies for the radio set. It consists of one test oscillator unit type CFT-60054-A complete with tubes, and internal a-c power supply, and a battery pack; Janction Box J-97/CRD-3 which serves as a distribution point for test signals from the signal generator: Cord $\mathcal{O}-241 /$ CRD-3 which connects the signal generator to Junction Box J-97/CRD-3; a waterproof carrying case; and one 45-foot whip antenna type CFT-66082, with carrying case.

Figure 17. Model OAN test oscillator equipment.
(b) Frequency Range. The frequency range is fram 200 to 2000 kilo cycles (ke) in three bands as follows:

Bagd	Frequercy rase (te)
1	$800-500$
8	$500-1,000$
8	$1,000-8,000$

(c) Power Requirements. Power is supplied by either seven dry batteries; three 45-volt B batteries (Battery $\mathrm{BA}-35$) and four 1-1/2-volt A bateries (Battery BA-59), or a 115-volt, 60-cycle, single-phasie, a-c source. The a-c power required is approximately 21 watts.
(d) Battery Life. The battery life is approximately as follows:

Trbe zype	Battasice	Continzors sortice (hes)	Intermiteaz sortice (hre)
गА1-685	B-59	5	8
	BA-36	85	50
J11-6887	M-69	16	80
	M-85	85	50

(8) Tools and Test Equipment. A complete set of tools and test equipment, sufficient for maintenance and servicing, are supplied as part of Radio Set AN/CRD-3. They are listed in paragraph 147.
(9) Miscellaneous Spare Parts. A complete assortment of spare electrical and mechanical parts are supplied with Radio Set AN/CRD-3. These are listed in paragraph 147.
(10) Chests and Crates. Radio Set AN/CRD-3 can be dismantled and packed into separate units consisting of chests, crates, and reels. These are illustrated in paragraph 146.

SECTION II

IISTALLATION OF RADIO SET AN/CRD-3

6. Sitimg.

a. Visual Insoection.

(1) The area should be substantially flat for at least 150 yards from the center of the Rodio Set AN/CRD-3 antenna system and not more than a gentle slope for several times that distance.
(2) The area should be the highest level area in the vicinity. A site in a valley is usually unsatisfactory.
(3) Mountainous or hilly count ry should be avoided.
(4) The area should be inland as far as possible from the shoreline of large bodies of water. If the installation must be made on or near the coast, the flattest area should be selected and the direction finder erected at a position on the coast where the center of the target area to be serviced is perpendicular to the coast.
(5) The earth at or around the site should have uniform high conductivity and moisture content. Areas uniformiy covered with grass or vegetation usually meet this requirement. Rocky or sandy soil is poor as a site. However, areas having uniform low conductivity are preferable to areas having high conductivity spotted with rock formation, sand, or varying moisture content.
(6) Regions where there are abrupt discontinuities of the earth should be avoided, as this usualiy indicates the presence of rock or mineral outcroppings, or underground atreams.
(7) The site should be removed from tall trees, buildings, wire fences, power or telephane lines, radio anteninas, railroad tracks, sharp ground contours (mountains, cliffs, and ravines), buried metal conductors (cables and pipelines), chimey stacks, water towers, rivers, lakes, and streams.
(8) Distances to be maintained between Radio Set AN/CRD-3 and these obstructions, in order to minimize their effect on accuracy, are given in the following table.
transmitter at an azimuth of 20°, then 40°, then 60°, continuing at interval s of 20°, keeping the distance at 500 feet in each case, untij the transmitter has been moved in a complete DISTANCES BETWEEN RADIO SET AN/CRD-3 AND OBSTACLES

Obstruction	Diatance to be matataiged
Scatrored trees and siagle amall billdisge.	300 jarde.
Wire feaces.	200 jarde.
High clifis and deep ravises.	More elas 1 mile.
Buried metallic coaductors lother that telephone lises to Radio Sot \triangle II (CRD-8).	300 jards.
Cbimaey etacke and weter towers.	500 jards.
Orerhead condectors and railroad tracks (power and teleplose lines and antolacif.	500 jards.
Rivers, stroame, and lakes.	600 jasde.
Foreste and metal stractures.	60020 1,000 jarde.
Moneraise.	6 to 85 miles

b. Electrical Insoection. After the most favorable site has been surveyed, it is desirable to make the following electrical tests before installing Radio set AN/CRD-3.
(1) Noise Measurement. Measure the noise level with a field strength meter at the major frequencies on which Radio Set AN/CRD-3 will be operated. If the equipment is to be used over a band of frequencies, measurements should be made throughout the band. For a suitable Radio Set AN/CRD-3 site, the noise level (other than temporary atmospheric noise) should not exceed 5 microvol ts (uv) per meter.
(2) Ficld Pattern. This test is made to determine uni formity of reception for the site of Radio Set AN/CRD-3.
(a) Place a field strength meter at the spot where the antenna of Radio Set AN/CRD-3 is to be erected.
(b) Using the pocket transit compass, place the OAN Test Oscillator furnished with Radio Set AN/CRD-3 at a point 500 feet from the field strongth meter and at an azimuth of magnetic North. See parayraph 30 for detailed instructions for setting up the ONN Test Ocillator as a target transmitter. Then place the target
circle (fig. 18). Mark these positions with stakes.
(c) Take field strength measure ments for each position of the target transmitter on the major frequencies. Make all measurements as accurate as possible.

1
Figure 18. Field pattern.
(d) Plot on rectangular coordinate paper as field strength versus azimuth for each frequency. The resulting graph should be a substantially straight line Any irregularities indicate an absorp$t i o n$ or reflection of the wave which would affect the accuracy of Radio Set AN/CRD-3. If the variations exceed 25 percent of the average field strength especially in azimuth arcs where ext reme accuracy is desired, the site is unsuitable for direction finding. If the visual and electrical inspection discloses no objection to the use of the site, Radio Set AN/CRD-3 should be erected.

7. UNPACKING, UNCRATING, AND CHECKING.

a. The components of Rodio Set AN/CRD-3 are shipped in 42 crates. Two packing lists are shipped with each box; one inside the crate and one outside. Do not open any crate until its contents are needed for immediate use. For example, if Radio Set AN/CRD-3 is to be operated on local commercial power, do not open crates Nos. 1 and 2 which contain the two Power Units PE-197.
b. The following procedure for uncrating, unpacking, and checking Radio Set AN/CRD-3 is recomended.
(1) Place each packing crate as near the operating location as is convenient.
(2) Cut the steel strops.
(3) Remove the nails, using a nail puller, and remove the sides of the packing crate. Prying the sides off may result in damage to the equipment.
(4) Cut and remove the four metal straps around the corrigated fiberboard boxes.
(5) Remove the corrugated fiberboard
boxes and mois tureproof vaporproof barriers.
(6) Remove the pressure-sensitive tape that secures the handies of the chests.
(7) Open chests and remove dustproof bags containing dehydrating agent.
(8) Remove all blocks and braces used to secure itens in chests.
(9) Check the contents of each crate against the packing list. Use particular care when handling the equipnent because it may be damaged easily.

8. ORIENTATION OF ANTEMYA SYSTEM.

a. General. After the site has been selected and properly cleared, drive a stake to mark the site of the sense antenna in the approximate center of the cleared area. The layout and connection of the antenna system for Radio Set AN/CRD-3 is shown in figure 164. The system must be installed exactly as shown with the antema masts spaced on the corners of a square whose diagonals are 180 feet. These diagonals must point exactly to true North-South, East-West or magnetic North-South, East-West depending upon whether the direction finder is to be oriented to true North or magnetic North.

b. Orientation.

(1) Remove the compass and tripod from the proper chest. Calibrate the compass to magnetic North if magnetic North orientation is required or for proper declination of the particular locality if true North orientation is required. For this calibration rotate the compass azimuth scale by adjust ing the screw on the side of the compass,
until the figure on the scale, corresponding to the local declination coincides wi th the scale index. Examples of compass clibrations are shown in figure 19 for magnetic North and for declinations of 10° East and 10° West respectively.
(2) When the compass is properly calibrated, attach it to the tripod and move the tripod to the position previously marked as the center of the sense antenna.
(3) Attach the plumb bob to the hook under the center of the tripod. Position the tripod so that the plumb-bob hangs directly over the center of the position marked for the center of the antenna system.
(4) With the compass correctly calibrated and leveled, and the tripod correctly positioned, turn the compass until the north end of the needle points to 0°. Sight through the compass sights and with the steel tape, measure al ang the line of sight a distance of 90 feet from the plumb-bob string attached to the tripod. At this point, exactly 90 feet from the plumb line, drive a stake to mark the position of the north antenna. Care must be erercised to locate this stake as accurately as possible.
(5) Without disturbing the tripod position, turn the compass until the north end of the needle points to 90° on the compas scale.
(6) Follow the same procedure used in locating the stake for the north antenna to mark the position for the 90° or east antenna.
(7) Similarly turn the compass until the north end of the needle points to 180°, and then to 270°, and mark the sites of the south and west antennas respectively.

CAUTION: Do not move compass and tripod from its position until final alignment is completed.

9. IMSTALLATIOM OF COUNTERPOISE MC-318/CRD-3.

a. Remove five Counterpoises MC-318/ CRD-3 from two Reels DR-10-A and assemble as follows (fig. 20).
b. If possible, drive the stake marking the site of the directional anternas into the ground until it is even with the surface.

Figure 19. Compass scale settings for magnetic declinations of 0° or magnetic North, 10° East, and 10° West.
C. Select any two of the longest strips (32 feet) of braid and place them on the ground so that they bisect each other exactly over the location of the stake. Position the two strips in a North-South and East-West direction. Fasten the dot type fasteners at the point of crossing. These two conductors form the crose ribs for the remainder of the counterpoise, and mark the center for the location of the antenna base.
d. Assembla the remaining long strips (fig. 20) and fasten them securely in place.
e. Select the four medium length (8 feet) strips and assemble them according to the diagram. Carefully secure each intersection to accomplish adequate contact.
f. Fasten the four short strips (4 feet) in place as indicated in the diagram.
g. Remove eight Ground Conductors CX-463/CRD-3 (0 -inch strip) from Reel DR-10-A. Fasten one to each corner of the counterpoise, and one at a point midway on each side.
h. Remove eight stakes GP-2 from Case CY-319/CRD-3. Drive one of these stakes not more than 6 inches from each ground conductor so that it passes through the terminal ring of the conductor and makes efficient electrical contact.
l. Follow the same procedure to assemble the four remaining counterpoises in their respective positions.

10. ERECTION OF ANTENNA MAST.

a. The four corner (directional) antennas are erected first. The tripod and compass are still in position over the site of the center (sense) antenna. The following instructions are given for one Antenna Assembly As-204/CRD-3; the other assemblies are similar.
b. Place one Mast Base AB-57/CRD-3 on the counterpoise, centering the base directly over the siting stake (or the
location of the siting stake if it has been removed). Drive a Stake GP-2 through the hole provided in each corner of the bottom plate of the mast base. Sight along the compass sights to check the location of the mast base. The center of the mast base should be in direct line.

CAUTION: Do not sight on socket for gin pole. Make certain that sighting is accomplished on socket for mast sections.

Rotate the socket so that the antenna may be assembled on the ground. The socket for the gin pole should face away from the ground.
C. Insert Mast Section AB-65/CRD-3 into the mast base (fig. 164). Mast Section AB-65/CRD-3 is fitted with a rain shield and base plug.
d. Insert Mast Section AB-66/CRD-3 into the free end of Mast Section AB-65/ CRD-3 and secure by a slight rotation of the mast section. Select the guy collar of the same diameter (3 in.) as the mast section and fasten near the top end of the mast section. Determine the most desirable position for the guys and orient the guy collar accordingly.
e. Insert Mast Section AB-67/CRD-3 into the previous section and secure.
f. Insert Mast Section AB-68/CRD-3 into the previous section and secure. Fit with proper guy collar. Orient in line with previous guy collar, and fasten in place.
g. Insert and secure Must Section AB-69/CRD-3.
h. Insert and secure Mast Section AB-7O/CRD-3. Fit with proper guy collar, orient, and fasten. Mast Section AB-70/ CRD-3 is provided with a top plug and socket for Mast Section M8-116. Insert the three Mast Sections Ms-116.
i. In a line perpendicular to the line of rotation of the gin pole, measure a distance of 30 feet on either side

TL-Nenss-2

Figure 20. Counterpoise MX-318/CRD-3 Assembly.
from the center of the ground mat and mark with a Stake GP- 25 driven through the terminal ring of a guy spreader chain (fig. 164). Similarly stake points 90° from the first two stakes and 30 feet from the center of the counterpoise.
j. Fasten four Guys MX-298/CRD-3 to the lowest guy collar. Fasten the other end of these guys to the guy spreader chains with the exception of the one that will fall into the line of rotation of the gin pole. The three guys that fall in this line are utilized in raising and lowering the antenna.
K. Fasten four Guys MX-299/CRD- 3 to the middle guy collar. Fasten the other end of three of the guys to the respective guy spreader chains. In like manner, attach four Guys MX-300/CRD-3 to the top guy collar, and fasten three to the guy spreader chains.

NOTE: The guys fastened to the stakes in a perpendicular line to the rotation of the gin pole should be relatively taut. These guys will aid in guiding the antenna erection.

The guys fastened to the stake in line with the rotation of the gin pole should be arranged in such a manner that they do not become fouled during the erection of the antenna. The guys fastened to the stake in line with the antenna mast should be adjusted to the same length as the two previous groups of guys. Also, they should be arranged in such a manner that they do not become fouled during the erection of the antenna mast.

1. Insert the gin pole into the socket provided in the mast base. Check the guys to prevent any mishaps during erection. Raise the antenna by pushing upward on the antenna mast while pulling on the gin pole and at the same time handle the free ends of the three guys to aid in raising the top portion of the antenna assembly.
m. When the antenna is settled in an upright position, fasten the free onds
of the fourth set of guys to the remaining anchor chain. The guys are somewhat langer than required for the 30 ft . radial guy spacing. Therefore it may be necessary to loop the ends so that the adjusting S hooks will be within reach when leveling the antenna mast.

II. POSITIOWING OF DIRECTIONAL ANTENMA.

a. Remove the spirit level from the Chest containing it and hold it against the surface of the lower mast section. Adjust the guys until the lower mast section is vertical in all planes. Sight along the compass sights to check any shift occurring during erection. The lower mast section should now be in alignment.
b. Sight upward along the lower mast section and align the remaining portion of the antenna assembly by adjusting the guys. Frequentiy check the lower mast section with a level.
C. Remove Mounting Collar MT-334/CRD-3 from Chest Cr-252/CRD-3 and fasten to the silver-plated portion of the lower mast section (fig. 21).
d. Follow the same procedure to erect the three remaining corner antennas.
e. On exceptionally soft ground or in swampy locations, it will be necessary to use the Antenna Mooring platform AB-82/CRD-3 to provide a more solid footing for the antenna mast base. In such cases place the counterpoise over the mooring platform and erect the antenna assembly on the plat form.

12. CHECK OF DIRECTIOULL ANTENA ALIGMENT.

a. Turn the compass until the north end of the needle reads 0° and drive a stake at approximately 150 yards from the center of the array, in line of sight of the compass. Follow the same procedure for the east or 90° direction.
b. Move the compass and tripod to the position marked off on the line of sight of the north and south antennas. Turn the compass until sighted on the north antenna. If the antenna system

Figure 21. Installation of Phase Inverter MC-411-A.
is properly erected, the south antenna will follow in the line of sight of the north antenna.
C. Move the compass and tripod to the position marked on the line of sight of the east and west antennas. The east and west antennas should follow in the line of sight.
d. Measure the distance from the center of the counterpoise of the north antenna to the center of the counterpoise of the east seat antenna. This distance should be 127 teet, 4 inches, (± 6 inches).

Similarly measure the distance between the east and south antennas, the south and west antennas, and west and north antennas. The distance in each case should measure 127 feet, 4 inches (± 6 inches).
e. If any of these final check measurements disclose errors in orientation, set up the tripod, compass, and plumb-bob exactly over the center of the antenna system and repeat the entire alignment procedure. Use extrethe core ard accuracy during alignment beccuse the fundamental accuracy of the direction f inder depends
upon the correct orientation of the antenna system. If the check discloses no errors in orientation, continue with the installation.

13. POSITIONIMG OF SEMSE MTEEMA.

a. Erect the center or sease antenna following the procedure described for the other masts.
b. Position the fifth mast base on the counterpoise directly over the spot morked as the center of the antenna systen.
C. Check the vertical alignment of the antenna with the spirit level and make the necessary adjustments with the guys.
d. From the point previously marked 150 rards north of the center antenna, sight along the north and south antenna line. Move the sense antenna mast into this line of sight. From the point marked 150 yards east of the center antenna, sight along the east-west antenna line. Without disturbing the north-south alignment, place the sense antenna mast in this line of sight.
e. Fasten Mounting Collar MT-334/CRD-3 to the silver-plated part of the lower mast section.

14. PHASE INVERTER INSTALLATION.

a. Remove four Phase Inverters MC-411-A and one Phase Inverter MC-413-A from Chest CY-251/CRD-3. Attach Phase Inverter MC-411-A color-coded in green to the Mount ing Collar MT-334/CRD-3 on the north antenne mast.
b. Insert the banana plug on the phase inverter into the antenna jack on the box of the mounting collar (fig. 21).
C. Pueh the studs on the top of the phase inverter into the keyed slots on the mounting plate of the box and turn. A spring clip latches over one stud of the phase inverter and locks it securely in place.
d. In a similar manner, at tach the rellow color-coded phase inverter to the south antenna, the blue to the east anteana, and the brown to the west antenna.
e. Attach Phase Inverter MC-413-A, color-coded red, to the center or sense antenno mast .

CAOTIUN: In attaching the phase inverters, position the top studs in such a manner that the bottom portion of the phase inverter does not make cantact with the antenna mast.

15. IMSTALLATIOM OF CROMAD COMDUCTOR.

At tach Ground Comaluctor CR-459/CRD-3 in the following maner (fig. 22) making certain that good electrical contact is obta in ed.
a. Fasten the end lug under the outer wingnut of each phase inverter.
b. Fasten the second lug umider the wingnut on the base plate of the antenna mast base.
C. Fasten the third Iug ander the wingnut located at the side of the gin-pole socket.
d. Fasten the other and (fitted with dot fasteners) to any converient point on the counterpoise.
e. Be sure that all comeections are securely made. Tighten all wingnuts and check frequently to make certain that they remain tight. Also check for corrosion which introduces high resistance contacts. If corrosion occurs, remove it with a file and coat the surface with petroleus jelly to protect against further corrosion.

[^0]

Figure 22. Mast base detail of antenna assembly.

16. ERECTION OF SHELTER HO-20-B.

a. General. The floor, roof, side panels, and the posts and roof supports of Shelter HO-2O-B are numbered to facilitate assembly. The side panels, posts, and roof supports are numbered counterclockwise, starting from the first panel to the right of the door, and the floor and roof panels are numbered fram front to rear.
b. Location. Shelter HO-2O-B should
be positioned with respect to the antenna array and at approximately the 45°, 135°, 225° or 315° position with respect to the directional antennas. Erect the shelter at the edge of the center counterpoise, between 15 and 20 feet fram the sense antenna, and approximately midway between guy lines (fig. 164). The rear of the shelter should face the sense antenna. The shelter should be so positioned that it does not interfere with the erection and lowering of the sense antenna.

Figure 23. Shelter $10-20-B$, crated.

c. Unpacking.

(1) Clean and level an area approximately 8 by 12 feet marking the position for the shelter.
(2) Place the two crates on the ground with their stencilledsides facing up.
(3) Remove the six cotter pins from the hasps on three sides of each crate lid and open the lids as far as possible.
(4) Remove the contents of both crates and place them on the ground near the shelter site. Each wooden part of the assembly is stencilled for identification. When the shelter is erected, all stencilling will be on the inside. When installing posts and panels, be sure that stencilled ends are near the top. All hardware required for the assembly of the shelter is stored in the kit box.

d. Erection.

(1) Place FIOOR No. 1 on the ground with its f inished end next to the shel ter site.
(2) Place FLOOR No. 2 against FLOOR No. 1 as shown in figure 24. Only one mud sill is provided on FLOOR No. 2. The other end is supported by the projecting sill on one end of FIOOR No. 1 .
(3) Insert the FLOOR CONNECTOR in the groove between the two floor sectians (fig. 25) so that the two cut-outs will drop over the steel hooks attached to the floor sections. In this position the connector will be flush with the floor surface, but will eatend approximately 1 inch on one side of the floor. Drive the connector in until it is tlush at both sides; the pins in the cut-outs will then be engaged with the steel hooks, and the floor sections will be locked together (fig. 26).
(4) Attach the four corner posts (POSTS No. 1, No. 3, No. 4, and No. 6) to the floor using the plates and wingnuts provided. Proceed in a counterclockwise direction beginning with POST No. 1 which must be positioned as shown in figure 26 with the stencilled end up.
(5) Position PANEL No. 6 at one end of the floor between POSTS No. 1 and 6. Pest the bottom of the panel on the floor and push the top into place. Six turnbuttons on the back of each panel should be turned to a horizontal position and the wingnuts tightened to hold the panel in place (fig. 27). The turnbutton on the outside of the shelter at the lower edge of the panel must be turned to a vertical position and its wingnut tightened. Follow this procedure for secring each of the remaining panels.
(6) Remove the two handles and setscrews fran the k it bor. Install the painted handle on the outside of the door and the plated handle on the inside, securing them to their shafts with setscrews.
(7) Install POST No. 2, using the plates and wingnuts provided. PANEL No. 1 should be placed in position while supporting POST No. 2 in the manner shown for installing POST No. 5 and PANEL No. 4 in figure 28.
(8) After PaNELS No. 2 and 3 are fastened in place, repeat the procedure outlined in subparagraph (7) above for placing POST No. 5 and PANEL No. 4. Complete the panel installation by fastening panel No. 5 in place.
(9) PJace five roof supports (No. 1, 2, 4, 5, and 7) into position. ROOF SUPPORT No. 1 is installed over PANEL No. 1; POOF SUPPORT No. 2 over PANEL No. 2, etc. ROOF SUPPORT No. 7 is fastened between POST No. 2 and POST No. 5. Place four L bolts (stored in $k i t$ box) in the holes at one end of ROOF SUPPORTS No. 1, 2, 4, and 5 with one threaded end extending through the hole in the metal plate at the outside of the shelter (fig. 29). Before ROOF SUPPORTS No. 3 and 6 are seated in their grooves, the other ends of the L bolts wast be pushed through the hol es provided in each end. The threaded ende must extend througin the metal plates
at the outside of the shelter. Seat ROOF SUPPORTS No. 3 and 6 into grooves by tapping; thread wingnuts on both ends of the L bolts, and bolts directly opposite the L bolts on the roof supports; tighten alj wingnuts (fig. 30).
(10) Install foor No. 1 over PANELS No. 1 and 5; ROOF No. 2 over PANELS No. 2 and 4 as shown in figure 31. Be sure that both roof sections are seated in the grooves.
(11) Insert a machine bolt and flatwasher in each end of the three batens. Fasten the battens over the roof and tighten down with wingnuts (fig. 32).

Figure 24. Floor section assembly.

Figure 25. Floor connector installation.

Figure 26. Corner post assembly.

Figure 27. Fastening panel in place.

Figure 28. Panel installation.
e. Repacking Shelter $\mathrm{HO}-20-\mathrm{B}$.
(1) In dismantling shel ter $\mathrm{HO}-20-\mathrm{B}$, follow in reverse the procedure outlined for erection. All T and I brackets must be turned 180° from the position that they occupied during the shel ter assembly. It is suggested that all angle brackets be removed and stored in the kit box to facilitate the placement of the posts in the packing crate. Place all wingnuts, not used to secure
brackets to the posts, in the kit box.
(2) It is important that all shelter components be packed EXACTLY as shown in figures 152 and 153 or else the crates will not accomodate all of the parts. The order of placement of components is also stencilled on the inside of the lid on each crate. After both crates are packed, close the lids and secure with the cotter pins provided.

Figure 29. Installation of L-bolt in end roof support.

Figure 30. End roof support, installed.

Figure'3̣1. Roof section installation.

Figure 32. Shelter $10-20-B$ with roof battens in place.
17. EQUIPMENT INSTALLATION IN SHELTER AND CONNECTIOM OF CABLES.

a. Antenna Cords.

(1) Use Reel Unit RL-49-A (fig. 33) to hold Reels DR-10-A while unreeling the various cords. Refer froquently to figures 163 and 164 when connecting the cords. Follow these figures EXACTLY to insure proper performance of the equipenent.
(2) Remove four Cords CD-82.9 from the reel, one at a time, positioning each one according to figure 164 as it is removed. Match the color coding on the cords with the phase in-
verters. Either end of the cord may be connected to the phase inverter. Take two Junction Boxes JB-91-A from Chest $\mathrm{CH}-251 / \mathrm{CRD}-3$ and connect them to the proper $h-f$ cords, being careful to match color codings on cover plates with corresponding color bands on cords (fig. 34).
(3) Remove three Cords CD-1020 from the reel. Select the cord colorcoded green-yellow and connect aither end to the connector of Junction Box JB-91-A similarly color-coded. Connect either end of the cord color-coded blue-brown to the connector of the remaining Junction Box JB-91-A. The color-coding should match. Attach Cord CD-1020 color-coded red to the

Figure 33. Reel $D R-10-A$ in Reel Unit RL-49-A.

Figure 34. Installation of Junction Box JB-91-A.
proper connector of Phase Inverter MC-413-A (on sense antenna). Run Cords CD-1020 to the rear panel of Shel ter HO-20-B.

b. Junction Box J-99/CRD-3.

(1) Locate the wooden frame for mounting Junction Box J-99/CRD- 3 from the chest containing tools, hardware, and miscellaneous equipment. The necessary, wood screws are packed with the frame. Fasten the wooden frame to the rear wall of Shelter $\mathrm{HO}-20-\mathrm{B}$, midway between the two sides of the panel, and approximately 4 to 6 inches from the top (fig. 36). Mount junction Box J-99/CRD-3 to the wooden frame in the proper position so that the ten AN connectors on the junction box face
downward. Al low sufficient clearance over the top of the junction box to permit easy bends in the cords to be attached to the box.
(2) Allow for enough length of Cords CD-1020 inside the shelter to make an easy bend al ong the side and top of the shelter. Connect Cords CD-1020 to the proper connectors on the top of Junction Box J-99/CRD-3, observing the color coding (fig. 36). Remove three harness clips and the necessary wood screws from the chest containing tools, hardware, and miscellaneous equipment. Fasten the harness clips around three Cords CD-1020 in the manner indicated in figure 36 and fasten to the wall of the shelter wi th wood screws.

Figure 35. Radio Set AN/CRD-3 installed in Shelter H0-20-B, rear view.

Figure 36. Radio Set AN/CRD-3 installed in Shelter HO-20-B, front view.
c. Mounting Table MT-247/CRD-3, Bearing Indicator 1D-121/CRD-3, and Am-plifier-Rectifier Power Unit PP-151/ CRD-3.
(1) Locate Chest CY-318/CRD-3. Unpack Mounting Table MT-347/CRD-3 with assembled Bearing Indicator ID$121 /$ CRD 3 and goniometer. Remove the two pins on the lower bearing indicator support at the base of the mounting table. Lift the hinged metal flap on the front of the mounting table and brace the back with the rod at the left of the hinge. Remove the two nuts on the shockmount support and drop the bearing indicator on its chain (fig. 37).
(2) Remove Amplifier-Rectifier Power Unit PP-151/CRD-3 from Chest

CY-317/CRD-3. The shelf behind the bearing indicator is the mounting for this unit. Release the bar under the shelf and drop the shelf forward on its support. Loosen the screws that hold the rectifier power unit panel in its cabinet. Remove the unit and fasten the cabinet on the shelf of the mounting table with the hardware supplied. Slide the unit into its cabinet, tighten the captive screws, and return the shelf to its operating position.
d. Radio Receiver Assembly R-128/ CRD-3.
(1) Remove Radio Receiver Assembly R-128/CRD-3 from chest CY-315/CRD-3. Mount the assembly on the mounting table with the hardware supplied.

Figure 37. Bearing indicator and mounting table showing bearing indicator dropped on its chain.
(2) Connect all interconnecting cables between the radio receiver as sembly, bearing indicator, Junction Box JB-99/CRD-3, and Amplifier-Rectifier Power Unit PP-151/CRD-3. Carefully study the cording diagram in figure 163 and then proceed to connect the cords. Figure 35 shows the interconnecting cables properly installed. These cords are located in Chests CY-317/CRD-3, CY-318/CRD-3, and CY-315/CRD-3.
e. Power Cords to Phase Inverters. Remove four Cords CX-402/CRD-3 (135 feet) from one of the Reels DR-10-A. Remove one Cord CX-402/CRD-3 (40 feet)
from the same reel. Connect the proper end of each 135-foot cord to the remaining connector on each Phase Inverter MC-411-A. Connect the proper end of the 40-foot cord to Phase Inverter MC-413-A. Observe the color coding on the cords and phase inverters when making connections. Run the cords to Shelter HO-20-B.

f. Control-Rectifier Power Unit PP-135/CRD-3.

(1) Unpack and assemble one of the wooden tables (fig. 38) and place it in position next to the steel table. Remove the wooden frame for support-
ing PR-135/CRD-3 from the set of tools, hardware, and miscellaneous equipment. Fasten this frame at the bottom of the table (fig. 36) allowing enough clearance for Case CY-253/CRD-3 containing Control-Rectifier Power Unit PP-135/CRD-3.
(2) Remove the front and rear covers of Case CY-253/CRD-3 and place the case (with the unit installed) on the table frame. Stake the two covers on top of the case. Fasten the table leg supports.

Figure 38. Shelter $B O-20-B$ equipment table erection detail.
(3) Connect the phase inverter power cords (CX-402/CRD-3) to the connectors on the rear panel of ControlRectifier Power Unit PP-135/CRD-3, observing the color coding (fig. 35).
(4) Connect ore end (Hubbell connector) of Cord CX-456/CRD-3 to the control unit. Connect the other end (AN connector) to the Radio Receiver Assembly $R-128 / C R D-3$, power indicator section (fig. 163).
(5) Connect the remaining cords according to figure 163.
g. Junction Box JB-126. Mount Junction Box JB-126 on the side wall of Shel ter HO-20-B, at the left of the operator as illustrated in figure 36. Connect associated cords.
h. Miscellaneous Equipment.
(1) Mount the light fixture as indicated in figure 36. Plug the light fixture into Junction Box JB-126.
(2) Mount one heater on the front panel, directly behind the operator's chair. Plug it into Junction Box JB-126. If one heater is not sufficient, the other heater may be mounted in any convenient place for use.
(3) Place the operator's chair in a position near Mounting Table MT-347/ CRD-3. Store the second collapsible wooden table at the left of the steel table.
(4) Tel ephone EE-8-B may be mounted at any convenient point on the sholter wall.
(5) The fire extinguishers should be mounted within easy reach.
18. POWER UNIT PE-I97.
a. Refer to TM 11-940.
b. Install the power unit at a point approximately 275 ft . from the center of the antenna array and in the same azimuth position as Shelter HO-20-B.
C. Connect one end of the power extinguish cord (part of power Unit PE197) to the power unit, and the other end to Cord CX-565/CRD-3. Connect the other end of Cord CX-565/CRD-3 to Junction Box JB-126.

NOTE: No provision has been mode to use the remote control cable.

PART TWO

OPERATIMG IMSTRUCTIOMS

NOTE: FOT information on destroying the equipment to prevent eneny use, refer to the destruction notice at the front of the manual.

SECTION III

CONTROLS AND THEIR USE

19. BEATING. INDICATOR ID-12I/CRD-3.

The front operating panel of the cutomatic bearing indicator control box (fig. 39) includes the following controls:
a. HORI ZONTAL (R5O2) (screwdriver slotted) which controls the horizontal positioning of the automatic azimuth pattern on the screen, adjusts the d-c vol tage applied to the cathodo-ray tube horizontal deflection plates.
b. VERITCAL (RSOA) (screwdriver slotted) which controls the vertical positioning of the automatic azimuth pattern on the screen, adjusts the d-c woltage applied to the cathode-ray tube vertical deflection plates.
C. FOOUS (R5O6) which adjusts the focus (sharpness) of autonatic azimuth pattern, varies the vol tage applied to the cathoderay tube first anode. An adjustment of this control produces a slight interaction

Figure 39. Bearing Indicator ID-121/CRD-3 control box.
on the adjustment of the INTENSITY control described below.
d. INTENSITY (RSO7) which adjusts the intensity (brightness) of the autamatic azimuth pattern, varies the bias applied to the cathode-ray tube contral electrode. An adjustment of this control produces a slight interaction on the adjustment of the rodus control doscribed above. It is necessary therefore to readjust both of these controls whenevor ane is varied until no further iumpovement can be obtained.
e. The azimuth scole laups are dimed or extinguished by control R509 located on the right-hand side of the indicator housing.

20. RADIO RECEIVER ASSEMBLY R-I28/CRD-3.

a. Modulator Section (fig. 40). The following controls except that of subparagroph (9) are located on the front panel of the modulator section of the receiver assenbly.
(1) Tuning control including a fre quency calibrated dial.
(2) Frequency band change switch.
(3) R.F. GAIN (R131) varies the sensitivity of the receiver as follows:
(a) For M.V.C. or C.W. operation potentioneter R131A varies the amplificotion of the second r-f mixer and the intermediate-frequency (i-f) stages by adjusting the bias voltage applied to the grids of these tubes.
(b) For A.V.C operation PluB varies amplification of the indicator l-f tube by adjusting the bias on this tube.
(4) The INDICATION switch (3107) has three positions: MAN.; NULL, and INST. It switches the signal input to either the

Figure 40. Modulator section of Radio Receiver Assembly R-128/CRD-3.
receiver goniometer or the automatic bearing indicator gonioneter and switches in the proper circuits required for various mothods of azimuth indication.
(a) In MAN. position the receiver goniometer and receiver cathode-ray indicator are used to obtain the matchedline method. Sense indication is obtained autanatically.
(b) The NULL position allows an aural indication with the loudspeaker or heatset, or a visual indication on the receiver cathode-ray tube. The receiver goniometer is used.
(c) The INST. position permits continuous instantaneous visual azimuth indications. The automatic bearing indicator and its goniometer are used.
(5) SEARCH-INSTANT. BEARTNG-SENSE keY
switch (8106) controls the method of operation of the receiver indicating equipment in the NULL and INST. positions of the INDICATOR swi tch.
(a) The SEARCH position permits the use of the radio receiver wi thout directional properties. Only the sense amplifier circuits are operating.
(b) The INSTANT. BEARING position permits reading of the azimuth by either the NULL or INST. methods. The direction amplifier circuits of the receiver are operating:
(c) The SENSE position is used for sense indication. In this position, sense and directional amplifiers are operating. This switch is rendered inoperative when INDICATION switch S1O7 is in the MAN. position.
(6) Manual operation of the GaNIaMETER INSIDE dial permits reading of azimuth when the null and matched-line methods are used.
(7) GONI. GAIN (R117) is a slotted screw adjustment which allows varying of the amplification of the directional channel amplifier. Presetting of this contral balances the gain of the goniometer channel for the various modes of operation thus permitting switching from matchedline indication to automatic azimuth indication wi thout readjustment of the R. Г. GAIN control.
(8) DIM control (R139) dims or extinguishes the receiver dial lamps.
(9) Balanced modulator adjustment (R127) adjusts the screen vol tage supply to the balanced modulator tubes (V1O8 and V1O9) to balance their amplification. It is located on the top right-hand side of the chassis approximately 6 inches from the front panel.
b. Power Indicator Section (fig. 41). The following controls except those of subparagraphs (17) and (18) are located an the front panel of the power indicator of the receiver assembly.
(1) OfF-STANDBY-ON switch (s205) controls the power input to the receiver as follows:
(a) In OFF position the awc power to the receiver circuits is turned off.
(b) In the STANDBY position the highvoltage direct current is disconnected from the receiver circuits, but the filament and bias voltages are left on.
(c) In the aN position the a-c power supply to the receiver circuits is tumed on.
(2) A.V.C.-M.V.C.-C.W. switch (s202) permits reception of either modulated or unmodulated signals as folluws:

Figure 41. Power indicator of Radio Receiver Assembly R-128/CRD-3.
(a) The A.V.C. position allows automatic volume control. The beat-frequency oscillator is automatically turned off.
(b) The M.V.C. position allows manual volume control. The beat-frequency oscillator is autanatically tumed off.
(c) The C.W. position turns on the beat-frequency oscillator, and permits the reception of unmodulated signals using manual volume control.
(3) AUDIO GAIN control (R210) varies the audible output fram the receiver by controlling the audio voltage applied to the first audio-frequency ($a-f$) stage.
(4) RADIO SELECTIVITY (BROAD-SHARP) switch (s201) controls the band width of the intermediate-frequency amplifigr so that selectivity may be el ther BROAD or SHARP depending on the switch position used.
(5) LINE SPRD. control (R270) is a slotted screw adjustment to vary the spacing between the two lines obtained on the receiver cathode-ray tube in the MAN. position of the INDICATION switch.
(6) VERC ADJ. control (R264), a slotted screw adjustment, controls the vertical position of the trace on the re ceiver cathode-roy tube.
(7) FOCUS control (R266), a slotted screw adjustment, permits focusing of the beam of the receiver cathode-ray tube by varying the voltage applied to the first anode.
(8) BRILL control (R268), a slotted screw adjustment, controls the intensity (brilliance) of the trace on the receiver cathode-ray tube by varying the bias on the control electrode G1.
(و) PHONES jack (J2O4) provides connection to the audio output tube. The receiver loudspeaker is autamatically disconnected when the headset is plugged into this jack. One side of the headset is grounded through the inserted headset plug.
(10) BFO VERNIER (C224) permits varying the pitch of the beat note obtained when
the A.V.C.-M.V.C.-C.W. switch is on C.W.
(11) Panel light (I201) indicates that automatic bearing indicator should not be used because RADIO SELECTIVITY is in the BROAD position and bearings taken in this position are in error.
(12) MASTER power switch (3206) controls the a-c input power to the equipment through the other switches on the power indicator unit.
(13) MOIOR power switch (8207) controls the a-c power and lampe in the illuminated scale of the autamatic bearing indicator.
(14) BEAM power switch (3208) controls the a-c power to the power supply of the automatic bearing indicator cathode-ray tube.
(15) AMPLIFIER power switch (S209) controls the a-c power to the power supply of the autamatic indicator amplifier.
(16) Pilot lamps for switches as listed in subparagraphs (12), (13), (14), and (15) above.
(17) Blanking switch (s204) turns the trigger circuit an or Off for blanking the center portion of the receiver cathodoray tube pattern. It is located on the right-hand side of the chassis about 8 inches from the front panel.
(28) Blanking control (R272) adjusts the amount of blanking of the receiver cathode-ray tube pattern by varying the trigger voltage supply to the control grid of the trigger amplifier tube. It is located on the right-hand front corner of the chassis.

21. CONTROL-RECTIFIER POWER UNIT PP-135/ CRD-3 (fig. 42.).

a. The SENSE GAIN control varies the sense antenna phase inverter output.
b. The ON OFF AC SWITCH turns the 115 volt power input to the control-rectifier power unit on or off.
C. The FIL SWITCH shifts the filament voltage from the No. 1 set of the phase
inverter tubes to the No. 2 or spare set.
d. $0^{\circ}, 180^{\circ}, 90^{\circ}$, and 270°, ON-OFF 8 witches tum the plate voltage to the respective Phase Inverter MC-411-A on or off.
e. The BALANCE ADJUSTMENT $0^{\circ}, 180^{\circ}$, $90^{\circ}, 270^{\circ}$, screwdriver controls adjust the plate current of the respective Phase Inverters MC-411-A.
f. The plate ma. ANT. COUPLING UNITS meter (50 milliamperes (ma)) indicates the plate current of all phase inverter units connected by the switches described in subparagraph d above.
g. SELECTOR SWITCH DF-SENSE- $0^{\circ}-180^{\circ}$ -$90^{\circ}-270^{\circ}$ performs the following functians:
(1) DF. In the DF (extreme left) position the total plate current of all four Phase Inverters MC-411-A are indicated on the panel meter provided of course the $0^{\circ}, 180^{\circ}, 90^{\circ}$, and 270° toggle switches are at the ON position.
(2) SENSE. In the SENSE position, the panel meter reads the plate current of the tubes in Phase Inverter MC-413-A. The
moter is switched out of the circuits of the MC-411-A phase inverters.
(3) $0^{\circ}, 180^{\circ}, 90^{\circ}$, and 270°. By switching to any ane of these four positions, it is possible to read the plate current of any one of the four Phase Inverters MC-411-A without turning the other phase inverters off.
h. The pilot lamp indicates when the aN OFF AC SWITCH is on.

1. AUX. 115 A.C receptacle is an auxiliary a-c outlet.
j. Fuses for the input a-c and meter circuits.
k: Spare fuses for the input a-c and reter circuits.

22. AMPLIFIER-RECTIFIER POWER UNIT PP-151/CRD-3 (fig. 12).

a. DEFL. SENS control (R4O1), a slotted screw adjustment, varies the size and shape of the autanatic azimuth pattern by controlling the amount of the rectified

Figure 42. Control-rectifier Power Unit PP-135! CRD-3 panel.
carrier voltage fed to the deflection amplifior grid.
b. CIRCIE DIA. control (R403), a slotted screw adjustment, controls the diameter of the circle on the automatic bearing indicator cathode-ray tube by varying the bias on the doflection amplifier tube. This in turn controls the current through the deflection coils.

23. JNCTION BOX JB-I26 (fig. 16).

The circuit breaker on the front of the junction box turns the power for entire equipment on or off.

24. PONER UNIT PE-I97.

The controls for this unit are described in TM 11-940.
25. MCDEL OAN TEST OSCILLATOR (fig. 43).
a. BAND 1-2-3, a three-position band switch (3601) is used to select the desired frequency range.
b. The frequency calibrated tuning dial selects the desired frequency, and the tuning dial is locked by means of the lock knob located below the tuning knob.
C. The A.C. INPUT is the a-c input receptacle (J601). It is provided with a shield.
d. The A.C.aN-OFF switch (S603) is a toggle switch in the lower left-hand corner of the panel. It controls the 115 volt input to the signal generator.
e. BATT. Ol-OFF switch (3604) performs the double function of switching the oscillator-amplifier circuits from the a-c power supply outputs to the batteries and vice versa. When this switch is at the an position, the output of the a-c power supply is disconnected and cannot deliver power whether energized or not. The BATT. af-OFF swi tch must be OFF when a-c operation is desired. Turn to the aN position only that control corresponding to the type of operation required; i.e., alternating current or battery.

Figure 43. OAN test oscillator panel controls.
f. The TRDMER control varies the tuming trimener capacitor (C610) which is connected across the amplifier section ($O O 1-D$) of the main'tuning capacitor, to peak for maximom output.
9. The tuning indicator, consisting of a nean lamp (V603) mounted behind a window in the upper left-hand corner of the panel, indicates when the TRIMAER control has been adjusted for maximum antensa current. Maximum brilliance of this lamp indicates maximum antenna current.
h. The OUTPUT CONTROL is a switch (S602) that varies the output of the signal generator insteps of $0.04,0.02,0.04$, and 0.005 of maximum to zero. In the CFF position, the output at the OUTPU receptacle located in the lower right-hand corner of the panel is zero. However, there is still an output at the antenna.
i. The OUPPUT control is a receptacle (J602) fran which the output of the signal generator is taken. When the OAN Test ascillator is used as a target transmitter, this control will not be used, as the signal output will then be radiated fram the antenna. A shield is provided to cover this receptacle when not in use.

SECTIOM IV

OPERATIOM

28. GENERAL.

Operation of Radio Set AN/CRD 3 consists of selecting the proper switch positions for the required mode of operation, tuning the receiver to the required frequency, and interpreting the patterns which appear on the bearing indicator screen. For manual operations it is also necessary to set the receiver goniameter to the null point. Good judgement based on experience is more important than printed instructions. Be sure the initial alignment checks outlined in paragraph 125 have
been made before the equipment is operated after installation or repair.

27. STARTING PROCEDURE.

a. Start the power unit.
b. Close the circuit breaker on Junction Box JB-126.
C. Turn the following switches located on the control-rectifier power unit to the ON position:
(1) ON-OFF AC SIVITCH.
(2) Four switches av-Orf $0^{\circ}, 180^{\circ}$, 90°, and 270°.
d. Turn the following switches, located on the power indicator panel of the receiver assambly, to the ON position:
(1) OFf-STANDBY-CN.
(2) MASTER ON-OFF.
(3) MOTOR ON-OFF.
(4) BEAM ON-OFF.
(5) AMPLIFIER CN-OFF.

28. OPERATING INSTRUCTIONS.

a. General. Azimuths can be taken by any one of three different methods with this equipment. These methods provide instantaneous autamatic, manual, and null azimuth indications. Before attempting to operate the equipment check to see that the proper preliminary adjustments given in paragraph 128 have been made. Then proceed as follows.
b. Common Operating Adjustments. Make the following adjustments for all three modes of operation.
(1) Switch the SEARCH-INSTANm. BEARING-SENSE switch to SEARCH.
(2) Switch the RADIO SELECTIVITY switch to BROAD.
(3) Select the proper frequency band and tune the main tuning dial to required frequency.
(4.) Set the R.F. GAIN and AUDIO GAIN switches at approximately threequarters of mazimum.
(5) Turn ON the beat-frequency oscillator ($B F O$) to assist in tuning or monitoring the $0-w$ or i-c-w signals.
(6) After the signal is tuned in, turn the RADIO SELECTIVITY switch to SHARP.

C. Operation for Mull Azimuths.

(1) Make sure the common operating adjustments in subparagraph b above have been accomplished.
(2) Set the INDICATION switch at NULL.
(3) Set the SEARCH-INSTANT. BEAR-ING-SENSE switch at INSTANT. BEARING.
(4) Rotate the receiver GONIOMETER dial until an aural null is obtained. The lines on the receiver cathoderay tube screen will have minimum length at the GONIOMETER dial setting giving an aural null.
(5) Increase the R.F. GAIN control setting as much as necessary to accurately determine the null position on the GONIOMETER dial.
(6) Note the azimuth obtained on both the black and red scales of the GONIOMFTER dial.
(7) Depress the STANDBY-INSTANT. BEARING-SENBE switch to SENSE.
(8) If the signal decrsases when the GONIOMETER dial is rotated clockwise, read the azimuth on the black scale. If the signal zncreases when the GONIOMETER dial is rotated clockwise, read the azimuth on the red scale.
d. Operation for Manual Azimuth Indications.
(1) Make sure the common operating adjustments in subparagraph b above have been accomplished.
(2) Set the INDICATION switch at MAN.
(3) Set the SEARCH-INSTANT. BEARINGSDNSE switch at INSTANT. BEARING.
(4) Rotate the goniometer dial slowly clockwise until the two lines on the receiver cathode-ray tube screen are the same length. Note the goniometer dial reading on both the black and red scales.
(5) Continue to rotate the goniometer dial slowly clockwise past the position for which the lines match. It the left-hand line shortens and the right-hand line lengthens, the black numeral indicates the azimuth. If, on the other hand, the left line lengthens and the right shortens, the red numerals indicate the azimuth (tig. 44).

NUTE: Remember the correct azimuth is obtained when the two lines are matched in length.
e. Operation for Instantaneous Automatic Azimuths.
(1) Make sure the common operating adjustments in subparagraph babove have been accomplished.
(2) Set the INDICATION switch at INsI'.
(3) Set the SEARCH-INSTANT. BEARINGsbist switch at INSTANT. BLAKING.
14) Read the azimuth indication on both ends of the twin-leaf pattern in the automatic bearing indicator (par. 30b).
(5) Depress the SEARCH-INSTANT. BeARING-SENSE switch to SENBE. Read and interpret the sense of the signal (the correct end of the twin-leaf pattern) as outlined in paragraph 31b.

REMEMER THESE CPERATING POHNTS

1. Always tune the main tuning dial for maximum output each time the receiver is tuned to a new signal.

Pigure 44. Matched line indications for asimuth of 270° as the goniometer is rotated clochwise through the null point.
2. The automatic bearing indicator pattern is a good tuning indicator. The receiver is properly tuned when the twin-leaf pattern is narrowest. It may be necessary to reduce the R.F. GAIN control to observe this.
3. Proper setting of the R.F. GAIN control is that which makes the twin-leaf pattern just come together at the center after the signal is properly tuned.
4. Always take azimuths with the RADIO SELECIIVITY switch on SHARP.
5. Check and demagnetize the indicator, paragraph 130, daily or oftener if necessary. Accuzate azimuths are impossible when parts' of the indicator are magnetized.
29. STOPPING PROCEDURE.
a. Turn the following switches lo-
cated on the power indicator panel of the receiver assembly to the OfF position:
(1) OFF-STANDBY-ON
(2) MASTER ON-OFF
(3) MOTOR ON-OFF
(4) BEAM ONLOFF
(5) AMPLIFIER ON-OFF
b. Turn the following switches located on the control-rectifier power unit to the OFF position:
(1) Four switches ON-OFF $0^{\circ}, 180^{\circ}$, $90^{\circ}, 270^{\circ}$.
(2) ON-OFF AC SWITCH.
C. Throw the switch on Junction Box JB-126 to the OFF position.
d. Shut down Power Unit PE-197.
30. OPERATION OF OAN TEST OSCILLATOR as a tareet transmitter.
a. Assemble the whip antenna type CFT-66082 and insert it in the receptacle located on the top of the test oscillator (type CFT-60054A).
b. ILocate the oscillator an a reasonably level spot so that the antenna is vertical.
C. Ground the binding post provided on the front panel to aroid annoving shocks.
d. Turn on the battery switch (BATT. aN-OFF) and allow approximately 1 minute for the tubes to heat up.
e. Select the desired frequency by means of the band switch and tuning control, and lock the tuning by means of the lock knob below the tuning knob.
f. Now adjust the TRIMMER control for maximum antenna current which is indicated when the neon lamp behind the window in the panel glows at maximum brilliance. Be sure the output control on the panel is in the OFF position. This decouples the attenuator circuit loading from the amplifier and insures maximum antenna output. The unit is now ready for direction finder azimuth measurements.

NOTE: Always turn OFF the power when the oscillator is not in use to conserve battery drain. It is also advisable to remove the antenna when moving the oscillator for a new azimuth measurement. After setting up the oscillator at the new location recheck the trimmer adjustment for maximum antenna current. This does not change the oscillator tuning, which has been locked, but merely compensates for any possible change in effective antenna capacity due to changing ground conditions.

31. AUTOMATIC BEARIMg INDICATOR PATTERN interpretation.

a. General. After the operating adjustments outlined in paragraph 28e
above have been made, radio azimuths may be obtained as rapidly as the stations are tuned in, and readings taken of the resulting indicator patterns. The azimuth pattern is obtained when the SEARCH-INSTANT. BEAFING-SENSE switch is on INSTANT. BEARING. The correct end of this pattern to read is shown by the position of the sense pattern, which is obtained by shifting the SEARCH-INSTANT. BEARING-SENSE switch to SENSE.
b. Example of Azimuth Determination.

Figure 45 shows a typical twin-leaf azimuth pattern obtained with the SEARCHINSTANT BEARING-SENSE switch on INSTANT. BEARING. The R.F. GAIN control has been advanced sufficiently to bring the center of the pattern together. This figure alone shows that the transmitter azimuth is either 127° or 307°;

Figure 45. Azimuth pattern with SEARCH-INSTANT BEARING-SENSE switch on INSTANT BEARING. Shows transmitter azimuth is either 127° or 307°. Sense pattern figure 4^{6} shows which end to read.
that is, an uncertainty of 180° exists. Figure 46 shows the pattern obtained when the SEARCH-INSTANT. BEARING-SENSE switch is pressed to SENSE. This pattern is opposite the end of the azimuth pattern which reads 127°, showing that the 127° reading gives the direct azimuth of the transmitter. The reciprocal bearing is then 307°. Figure 47

gure 46. Sense pattern correonding to azimuth pattern of figure when switch is on SENSE. Since is pattern is opposite the 127° I of asimuth pattern, direct trase-
shows four sense patterns corresponding to different settings of the SENSE GAIN control located on the controlrectifier power unit. All four patterns are for a transmitter whose direct azimuth is 307°, or just opposite that of figure 46. As the SINASE GAIN control is increased from a low value to a higher value, and the output of the SENSE antenna approaches or exceeds that of the directional antennas, the sense pattern changes progressively in shape but not position, as shown in figure 47.
c. Typical Azimuth Patterns. Azimuth patterns obtained under different signal and noise conditions are shown in figures 48 to 55 inclusive.

A. SENSE GAIN Low.

B. SENSE GAIN increased.

C. SENSE GAIN further increased.

D. High SENSE GAIN.

De ffect of SENSE GA
Figure 47. Sense patterns showing the effect of SENSE GAIN control settings on the pattern shape.

Figure 48. Strong signal without noise interference. Narrow pattern indicates receiver R.F. GAIN control turned slightly higher than necessary. All other controls are properly adjusted.
d. Azimuth Reliability. Skill increases with experience in the interpretation of the indicator patterns. With the type of azimuth equipment used in Radio Set AN/CRD-3, it is possible to take azimuths on signals of very short duration, or on signals whose phase and amplitude rapidly change at the point of reception. The bearing indicator pattern gives a continuous picture of receiving conditions. A little experience will enable the operator to take reliable azimuths under conditions which have hitherto made readings difficult, if not impossible. It will seldom be impossible to take azimuths unless the noise level is higher than the signal (fig. 54) or two stations are received on the same frequency. In general, the accuracy of azimuths taken under varying conditions differ only in the degree to which they can be read. Steady patterns with sharp ends can be read to a higher degree of accuracy than patterns with rounded and varying ends. Determine whether or not the azimuth is reliable by observing the following:
(1)Are the points of the twinleaf pattern sharpi If not, the sensitivity of the receiver is improperly
adjusted, or the propagation characteristics are varying along the transmission path of the received waves. This sometimes causes variation of the apparent angle of arrival of the waves which broadens the response null and abnormally rounds out the ends of the twin-leaf pattern.

Figure 49. Strong keyed signal without noise interference showing circle pattern when carrier is off. Circle is off center and too small. Adjust POSTTIONING and CIRCLE DIA. controls until circle is centered 1/16 inch inside scale.

Figure 50. A weaker signal than in figures 48 and 49 with a-f modulation at fixed frequency. No no ise interference present. Turn up receiver R.F. GAIN until center of pattern closes. Shifting modulation has no effect on null points.

Figure 51. A somewhat weaker signal than figure 50. Bigher setting of receiver R.F. GAIN control required to close pattern. Noise is amplified as shown by noise pattern. Azimuth readable to satisfactory accuracy.

Figure 52. Bignly modulated signal, weaker than figure 51 as shown by increased noise pattern. The shifting modulation envelope does not shift the null points. Readable accuracy of this pattern less than previous ones.
(2) Are the points of the pattern fixedl A shifting or rotating indicator pattern indicates that the polarization of the received wave is changing.
(3) Does the pattern change in width 1 If it does, this indicates a fading signal and may be accompanied by a slight shifting of the pattern as it changes in width.
(4) If the pattern varies in any

Figure 53. Very weak signal with predpminant noise pattern. Readable azimuth accuracy reduced by constantly shifting noise patterns. This represents the practical limit of azimuth indications.

Figure 54. No signal or one so weak as to be less than noise level. No azimuths may be read under these conditions, although signal may occasionally increase sufficiently to give a momentary pattern like figure 53.
or all of the above-mentioned ways it will generally be observed that these are times, even though they last only a fraction of a second, when the pattern will be steady and have normal well formeci points. Azimuths at these times will be the most reliable, under the circumstances, although they will be less reliable than azimuths read from normal steady patterns free from variations.

Figure 55. Photograph of a strong modulated signal without noise. This is similar to figures 50 and 51. Constantly moving modulation envelope is blurred because of photographic time exposure.

SECTION V

EQUIPMENT PERFOPMANCE CHECK LIST

32. PURPOSE AND USE OF CHECK LIST.

a. General. The equipment performance check list (par. 33) will help the operator determine whether Radio Set AN/CRD-3 is functioning properly. The check list gives the item to be checked, the conditions under which the item is checked, the normal indications and tolerances of correct operation, and the corrective measures the operator can take. Check items 1 to 5 when starting, items 6 to 15 during operation, and items 16 to 19 when stopping (when turning the equipment off). Items 6 to 11 of this list should be checked at least once during a normal operating period or at least four times a day during continuous operation.
b. Action or Condition. For some items, the information given in the action or condition column consists of the settings of various awitches and controls under which the item is
sinta 0-49-s
to be checked. For other items it represents an action that must be taken to check the normal indication given in the normal indication column.
c. Normal Indications. The normal indications listed include the visible and audible signs that the operator will perceive when he checks the items. In the case of meter readings, the allowable tolerances of the readings are given. When a meter reads between the limits specified, operation can be considered satisfactory. A meter reading outside the limits given is a sign of impending trouble. If the indications are not normal, the operator should apply the recommended corrective measures.
d. Corrective Measures. The corrective measures listed are those the operator can make without turning the equipment in for repairs. When reference is made in the table to part five it indicates that the trouble cannot be corrected during operation and that trouble shooting by an experienced repairman is called for. If the set is completely inoperative or if the recommended corrective measures do not yield results, trouble shoating is necessary. However, if the tactical situation requires that communication be maintained and if the set is not completely inoperative, the operator must maintain the set in operation as long as it is possible to do so.
e. Items 1 to 5. Items 1 to 5 should be checked each time the equipment is put into operation.
f. Items 6 to II. Items 6 to 11 show correct patterns on cathode-ray tube screens and correct meter readings when the equipment is properly adjusted prior to operation.

NOTE: All readings and cathoderay tube indications are correct for input voltages of 115 volts. If the input voltage exceeds 115 volts, slight-
ly higher meter readings may be expected. The corrective measures listed in the last column are to be performed if the results for the various tests do not agree reasonably with the chart.
g. Items 12 to 15. These items represent operating characteristics of the direction finder for the three methods of azimuth determination and also include a check on the sense channel operation. The operator must become familiar with the characteristics of the set during normal operation; he must use that knowledge as a basis for recognizing changes in
audible and visible indications such as the twin-leaf pattern on the screen of the 5 -inch cathode-ray tube (in the automatic bearing indicator) and the matched-lines picture on the receiver cathode-ray tube screen when the set is not operating properly. Many illustrations are included throughout this tectnical manual showing various cathode-ray tube screen pictures and the conditions which obtain them.
h. Itens 16 to 19. Items 16 to 19 are checked whenever the set is taken out of operation. Any abnormal indications at this time are probably caused by trouble in the set and should be corrected before the next expected period of operation.

33. EQUIPMEIT PERFOPMWCE CHECX LIST.

Radio Set MN/CRD-3.

33. EQUIPMENT PERFORMANCE CHECK LIST (contd).

Radio Set AN/CRD-3 (contd).

33. EQUIPMENT PERFORMANCE CHECK LIST (contd).

Radio Set AN/CRD-3 (contd).

	Item Mo.	Item	Action or condition	Normal indications	Corrective maseres
	10	Matched-1ises check.	Set INDICATION to MAN. aad tene ia a atroag sigaalo Discoasect sease iaput cable at Juaction Box J-99/CRD-8. Tura ap R.P. GAIN ald tera GONIOMBTBR to maximam. Reconaect sense iaput cable. Set RADIO SBLBCTIVITI at SHARP. Set A. V. C. -M. V. C. -C. V. at M. V.C. Taze in a etroag aigaal. Adjest GONIOMBTBR . liaside receiver until two lines in receiver cathode-ray tube match ia leagrh. Tura GONIOMBTBR off course 15°.	Two vertical lises on receiver cathoderray tebe screea are: a. Optimam inteseity. b. 1/16 iack apart. c. Sharp. d. Of equal leagth. One lise is approximately twice the leagth of the ormer.	See paragraph 111. a. Adjuet BRILL control. b. Adjest LINB SPRD coltrel. c. Mdjest POCUS control. d. If not equal: (1) Adjest balanced modulator coatrol R187. (2) Interchange modclator tebes V108 and V109. (8) See paragraph 111. Adjuet GONI. GAIN costrol. See paragragh 111.

33. EQUIPMENT PEREORMAMCE CMECX LIST (contd).

Redio Set MM/CRO-3 (contd).

	Item He.	Item	Action or ceacteioa	Mestal indicaticeo	Corrective mestres
	11	251. 858.	Ters GOWIORETET dial back BREI two lisee metcl again. Rejest R. F. GAII to give - 1-1/2 incle lise. Tuf ImPICATIOR switel te IIEX.	Ceater of beariag indicater patterz itert cemes together.	Adjest DBPL. SENS ceetrol. See paragraph 18.
BQUIPARMI PBRPORMAMOR	18	Moll asimet falice tice.	Leave receiver thed so atreat steme. Set INDICITIO switcl at mix. Set R. P. GKIK ade findo GAFs at appreximately stc of merimber Ratate GONIOMETER diel.	Aeral mell finieiman sheant: ta Ioudsyruley or leedphroces. Itse cace cathode-ray tabe acreen hat minimum Ienfth	See paragraph 111.
	18	Maseal asimett indicatice	Set INDICATIOA switeh at MAN. ISEARCHINSTANT. BEARING- SBNSP switch still at IN- grym. BRARIMG. Rotate gretameter dial alcmiro	Ltaef allould match at oaly two pasitimes of geaionetes dial. Liaes should sllorteil ad Iengthea either side of these settimgs.	See praragraph III.
	14	Astonatic asimeth indication.	(Receiver atill tuacd to stray signall. Set INDICATTOS switch to INST.	Twia-leaf pattert on screfil at catllade-rex tnde in betciag indicetor.	Reprace cable 12. See paragraph 111.

33. EQUIPMENT PERFORMANCE CHECK LIST (contd).

Radio Set AM/CRD-3 (contd.)

PART THREE

MAINTENANCE INSTRUCTIONS

SECTION VI

PREVENTIVE MAINTENANCE TECHNIQUES

34. MEANING OF PREVENTIVE MAINTENANCE.

Preventive maintenance is a sy̧stematic series of operations performed at regular intervals on equipment, when turned of f, to eliminate major break-downs, unwanted interruptions in service, and to keep equipment operating at top efficiency. To understand what is meant by preventive maintenance, it is necessary to distinguish between preventive maintenance, trouble shooting, and repair. The prime function of preventive maintenance is to prevent break-downs and, therefore, the need for repair. On the other hand, the prime function of trouble shooting and repair is to locate and correct existing defects. The importance of preventive maintenance cannot be overemphasized. A system of radio communication depends on the parformance of every set. It must be ready to go on the air when it is needed, and it must operate efficiently. Therefore, it is vitally important that radio operators and repairman maintain their radio sets properly. See TB SIG 123, Preventive Maintenance Practices for Ground Signal Equipment.

NOTE: The operations in sections VI and VII are first and second echelon (organization operators and repaimen) maintenance. Same operations in section VIII and X are higher echelon maintenance.
35. DESCRIPTION OF PREVENTIVE MAINTEMANCE TECHIIQUES.
a. General. Most of the electrical parts used in Radio Set AN/CRD-3 require routine preventive maintenance.

This preventive maintenance varies. Some parts require a different kind of maintenance than others. Some require more, some less. Definite and specific instructions must be followed. Hit-or-miss techniques cannot be applied. This section of the manual contains these specific instructions to guide personnel assigned to perform the six basic maintenance operations: Feel, Inspect, Tighten, Clean, Adjust, and Lubricate. Throughout this manual the lettering system for the six operations will be as follows:

$$
\begin{aligned}
& F \text { - Feel } \\
& I \text { - Inspect } \\
& T \text { - Tighten } \\
& C \text { - Clean } \\
& A \text { - Adjust } \\
& L \text { - Lubricate }
\end{aligned}
$$

The first two operations show if the other four are needed. Selection of operations is based on a knowledge of field needs. For example, dust encountered on dirt roads during crosscountry travel filters into equipment no matter how much care is taken to prevent it. Rapid changes in weather (such as heavy rain followed by blistering heat), excessive dampnessi, snow, and ice tend to cause corrosion of exposed surfaces and parts. Without frequent inspections and the necessary tightening, cleaning, and lubricating operations, equipment becomes undependable and subject to break-down when it is needed most.
b. Feel. The feel operation is used most often to check rotating machinery,
such as dynasotors, blower motors, and drive motors, also to determine whether electrical connections and bushings are overheated. Feeling will show the need for lubrication or the existence of other defects requiring correction. The maintemance man must becoue familiar with the normal operating temperatures of motors, transformers, and other parts, to recognize signs of overheating.

NOTE: It is important to perform the feel operation as soon as possible after shut-down and always before any other maintenance is dome.
C. Inspect. Inspection is the most important operation in preventive maintenance. A careless obeerver will ovorlook evidences of minor trouble. Although these defects may not at the moment interfere with perfocmasce of the equipment, invaluable tim and effort can be saved if they are corrected before they lead to major and costiy breakdowns. To be able to recognize the signs of a defective set, make every offort to become thoroughly familiar with indiontions of normal functioning. Inspection consists of curefully observing all parts of the equipment, noticing their color, placement, state of cleanliness, etc. Inspect for the following conditionas
(1) Overheating, as indiocted by discoloration, blistering, or bulging of the parts surface of the container; leakage of insulating compounds; and oxidation of matal contact surfaces.
(2) Placement, br abserving that all leads and cabling are in their original positions.
(3) Cleanliness, by cacefolly axamining all receaces in the airs for accumulation of mant, apecially botween connecting termimals and binding posts. Parts, comapctions, and joints should be free of sust, carrosicn, and other foreign matter. In tropical and high-humidity areas, leok for fungus growth and miluen.
(4) Tightness, by testing any connection or mounting which appears to be loces.
d. TIghten, Clean, and MJjust. These operations explain thenselves. Specific procedures to be followed in performing them are given wherever meceseary throughout part three.

> cabrias: Screvs, bolts, and nuts should not be tightened carelceily. Fittings tightened ber and the pressure for which ther are designed will be damaged or broteen.

Whenower a loose ccunectica is tighteaed, it should be moistureproofed and fungiproofed again by applying the varnish with a small brush. See section X for details of moistureproofing asd fragiproofing.
e. Lubricate. Lubrication refers to the application of grease or oil to the bearings of motors or rotating shafte. It may also mean the application of a light oil to door hinges ar other sliding surfaces on the equipmeat. Where the need for lubrication is indicated, refer to section VIII.

36. VACUIN TUNES.

NOTE: DO not work an the tubes immediately after shot-down. Severe burns may result from contact with the envelopes of hot tubes.
a. Inspect (1).
(1) Inspect glass and metal tube envelopes, tube caps, and tube camect or clipe for accumalation of dirt and for corrosion. Tubes with loose plate. caps, grid cape, or envelopes should be replaced if pcesible.
(2) Examine the spring clips that make contact with the grid caps for corrosion and far loss of tensica with resulting looseness. Check the condition of wires soldered to the spring clipu. The wires should be free of froyed insulation or broken stromals.
(3) Inspect the firmness of tubes in their sockets. Make the inspection by pressing the tubes down in the sockets and testing them in that position, not by partially withdrawing the tubes and jiggling them from side to side. Movement of a tube tends to weaken the pins in the base and unnecessarily spread the contacts in the socket. Inspect the tube sockets at the time the tubes are removed.
(4) Be careful when removing a tube from its socket, especially if it is a high-power tube. Never jar a worm tube. Always remove connections to the grid caps and plate caps.
b. Tighten (T). Tighten all loose connections to the tube sockets or to the tubes. If the connections are dirty or corroded, clean them before tightening. When tightening locknuts that hold the sockets to the insulated bushings, do not apply excessive pressure. Too much pressure will crack the bushings.
c. Clean (C).
(1) Clean the tubes, if necessary. Tubes operated at high voltage and with exposed plate and grid connections must be kept free of dirt and dust because of possible leakage between grid and plate terminals. In contrast, tubes operating at low voltages cad not having exposed grid and plate caps do not require frequent cleaning. However, do not permit dirt to accumulate on low-voltage tubes.
(2) Remove dust and dirt from the glass or metal envelopes with a clean, lint-free, dry cloth. If proper care is used, the grid and plate caps may be cleaned with a piece of $\% 0000$ sandpaper by wrapping the paper around the cap and gently rubbing the surface. Excessive pressure is not needed; nor is it necessary to grip the cap tightly. Wipe the cap with a clean dry cloth.
(3) When tube sockets are cleaned and the contacts are accessable, fine
sandpaper may be used to remove corrosion, oxidation, and dirt.
d. Adjust (A). Adjust loose tube conrector clips. Do not flatten tube connector clips during adjustment. Flcttened clips do not make adequate contact with the surface of the tube cap. If the clip is made of thin metal, it can be adjusted by gently compressing it with the fingers. If it is made of heary-gauge metal, suitable pressure can be applied with a pair of longnose pliers.

37. CAPACITORS.

a. Inspect (1).

(1) Inspect the terminals of large fixed capacitors for corrosion and loose connections. Carefully inspect the mountings to discover loose mounting screws, studs, or brackets. Examine the leads for poor insulation, cracks, and evidences of dry rot. Cut away frayed strands on the insulation. If the wire is exposed, wrap it with friction tape. See that the terminals of the capacitors are not cracked or broken.
(2) Thoroughly inspect the case of each large fixed capacitor for leaks, bulges, and discoloration.
(3) Inspect the plates of variable capacitors for dirt, dust, or lint. Examine the movable set of plates for signs of damage or misalignment that would cause them to touch the fixed plates during tuning. Rotate the movable plates, using the panel tuning control, and thus check for proper operation of the capacitor.
b. Tighten (T). Tighten loose terminals, mountings, and connections on the capacitors, when necessary. Do not break the bushing or damage the gasket.

c. Clean (C).

(1) Clean the cases of fixed capacitors, the insulated bushings, and all connections that are dirty or corroded. The capacitor cases and bushings
can usually be cleaned with a dry cloth. However, if the deposit of dirt is hard to remove, moisten the cloth in Solvent, Dry-cleaning.
(2) Clean the plates of variable capacitors with a small brush or pipe cleaner, removing all dust and lint. Dust, if present, may cause arcing.
d. Lubricate (L). Refer to section VIII.

38. RESISTORS.

a. General. Various types of resistors are used in Radio Set AN/CRD 3. The connections to the various resistors are either of the pigtail or solderlug type.
b. Inspect (1). Inspect the coating of the vitreous-enameled resistors for signs of cracks and chipping, especially at the ends. Examine the bodies of all types of resistors for blistering, discoloration, and other indications of overheating. Inspect leads and all other connections for corrosion, dirt, dust, looseness, and broken strands in the connecting wires. Check the security of all mountings. Do not attempt to move resistors with pigtail connections, because there is danger of breaking the connections at the point where they enter the body of the resistor. Such defects cannot be repaired.
c. Tighten (T). Tighten resistor connections and mountings whenever they are found loose. If a resistor is allowed to remain loose, vibration may break the connection or damage the body.

d. Clean (C).

(1) Clean all carbon resistors with a small brush.
(2) The vitreous-enameled resistors must be kept clean to avoid leakage between the terminals. Wipe them with a dry cloth. However, if the dirt deposit is unusually hard to remove, use drycleaning solvent (SD).
(3) Resistors with discolored bodies cannot be cleaned. Discoloration indi-
cates that there has been overloading and overheating at some time prior to the inspection. The discoloration is probably due to circuit trouble which requires analysis and correction. Troubleshooting procecures are described in part five.

39. FUSES.

a. General. Fuses used in Radio Set AN/CRD-3 are easily removed for inspection. See that the fuse ends and holding clips on large fuses are kept clean and tight. If they are not, arcing and burning will occur and make the replacement of the complete holder necessary. Fuses should be thrown away when they blow.
b. Inspect (1). Inspect the fuse caps for evidence of burning, charring, and corrosion; the fuse clips for dirt, loose connections, and loss of tension.
c. Tighten(T) . The tension of the fuse clips may be increased by pressing the sides closer together. If necessary, use a pair of pliers to adjust the tension.
d. Clean (C). Clean fuse ends and fuse clips with $\$ 0000$ sandpaper then wipe them with a clean cloth.

40. BUSHINGS AND IMSLLATORS.

a. Description.

(1) Insulated bushings are used in the high-voltage and r-f circuits. They are constructed of ceramic material with a glazed surface. Because an insulator is no better than its surface, deposits of foreign substances on the surface will reduce the insulation value of the bushing. Therefore, it is very important that all bushings used in the high-voltage circuits be inspected frequently.
(2) Insulated bushings are used as supports for high-voltage tube sockets, and for high-vol tage terminals of capacitors. They are used as mountings for resistors in high-voltage circuits and as supports for panels which mount other
parts. The condition of insulated bushings that are used solely as panel supports is not too critical, but the condition of bushings used as highvoltage insulators is extremely important.

b. Inspect (1).

(1) Inspect the physical condition of the insulated bushings. They should be clean without cracks or chips. A highlyglazed insulator may develop fine-line surface cracks where moisture and dust will accumulate and eventually form a leakage for a high-voltage flashover.
(2) As a rule, the bushings are held in position with nuts screwed onto the threaded canductors. These can be replaced very easily. If replacement is not possible because of a shortage of supplies, clean the defective bushing frequently and thoroughly with drycleaning solvent (SD). Sometimes it is difficult to see dust on a glazed surface. A satisfactory check can be made by sliding a clean finger across the bushing.
C. Tighten (T). The procedure to be used in tightening loose bushings is self-evident. However, one precaution must be observed. Avoid forcing the nuts or screws down too tight. If excessive pressure is exerted on the bushings, damage or breakage is almost certain. If the threads on bushing stud bolts are found stripped so that they cannot be tightened, replace the entire bushing.
d. Clean (C). Insulated bushings are easily cleaned. Never use abrasive materials because the glazed finish will be destroyed, thus permitting moisture to be absorbed. A clean cloth is usually satisfactory. If deposits of grime or dirt on the surface of a bushing are hard to remove, use drycleaning solvent (SD). After the surface has been cleaned with solvent, carefully polish it with a dry cloth. Otherwise, a thin film of the solvent will be left which may impair the effectiveness of the bushing as a high-vol tage insulator.

41. RELAYS.

The relays employed in Radio Set Ar!/CRD-3 are considered normal if the exteriors are free from dirt or dust; the contacts are not burned, pitted, or corroded; the contacts are lined up and correctly spaced; the moving parts travel freely and function in a satisfactory manner; the connections to the relays are tight; the wire insulation is not frayed or torn; the relay assembly is securely mounted; and the field coil shows no signs of overheating.

a. Inspect (1).

(1) Inspect the relay for defects. The contacts may be examined with the aid of a flashlight and mirror.
(2) Check the mechanical action of the relays to make certain that when the moving and stationary contacts cane together they make positive contact and are directly in line with each other.
b. Tighten (T). Tighten all loose connections and mounting screws, but do not apply enough force to damage the screws or to break the parts they hold.
c. Clean (C).
(1) Relay Exterior. Brush the exterior of the relay with a soft brush. If it is very dirty, clean the exterior with a brush dipped in dry-cleaning solvent (SD). If connections are dirty or corroded, remove the leads and clean them. Replace carefully.
(2) Relay Contacts.
(a) When necessary to clean relay contacts, burnish with a clean blade of a burnishing tool (Tool, switchboard, contact burnisher, WECo NO. 26 5C, Sig C stock No. 6R41O65C), if available. Place the blade between the contacts of the relay and press the contacts together with siight pressure and move the blade back and forth as necessary to obtain desired results. When contacts are sufficiently dirty to require further cleaning,
remove remaining dirt with carbon tetrachloride applied with a toothpick and clean with the flat side of a clean dry toothpick or sinilar material. Again burnish using a clean blade of the burnishing tool.
(b) If a burnishing tool is not available, apply carbon tetrachloride with a toothpick as previousir described, and clean with the flat side of a clean dry toothpick or sinilar material. Dry and polish the contacts by drawing a strip of smooth, hard finish paper between the contacts with slight pressure applied to press them together. Soft paper which will disintegrate and leave small particles on the contact surfaces must not be used.
42. SWITCHES.

a. Inspect (1).

(1) Inspect the mechanical action of each switch and, while so doing, look for signs of dirt or corrosion an all exposed elements. In sane cases, it will be necessary to examine the elements of the switch visually; in others, the action of the switch is checked by flipping the control knob or toggle, or pressing the switch button and noting the freedom of movement and amount of spring tension.
(2) Examine all ganged switches to see that they are properly lubricated and that the contacts are clean. Inspection is visual. Do not pry the leaves of the switch apart. The rotary members should make good contact with the stationary members; and as the former slides into the latter, a spreading of the stationary contact leaves should be visible. Switch action should be free. Wiping action of contacts usually remores any dirt at the point of contact.
b. Clean (C). Clean the exterior surfaces of switches with a stiff brush, moistened with dry-cleaning solvent (SD).
c. Lubricate (L). Rofor to section VIII.

48. rmeostats and potewtioneters.

a. Inspoct (1).

(1) Inspect the mehanical condition of all rheostats and potentiometers. The arm should be keyed tightII to the shaft, and the shaft should turn easily in the bushing which supporte it.
(a) Inspect the assembly and mounting screws, setscrew, and nuts.
(3) Examine the insulating body of the rheostat for cust, dirt, cracks, and chipped places.
(4) Examine all motalilc parts for dust, dirt, and corrosion.
b. Tighten (T). Tighten loose assembly or mounting screws.
c. Clean (c).
(1) Clean the exposed contact surfaces of the rheostat and the connections whenever they are dirty or corroded.
(2) Remove grease and dirt fram the rheostat parts with carbon tetrachloride.
(3) Clean the body of the rheostat or potentiometer with a brush or cloth.
44. TERMINAL BLOCKS.
a. Inspect (1).
(1) Inspect terminal blocks for cracks, breakage, dirt, loose connections, and loose mounting screws.
(2) Carefully examine connections for mechanical defects, dirt, and corrosion.
b. Tighten (T). Tighten $1008 e$ screws, lugs, and mounting bolts. When tightening screws, be sure to select a screwdriver of correct size. Do not exert too much pressure. Tighten loose connections.
c. Clean (C). Clean terminal blocks, when they require it, with a dry brush. When riecessary, use a cloth moistened with dry-cleaning solvent (SD). Thoroughly wipe the block with a cloth and then brush it to remove any lint.
45. CONNECTORS, PLUGS; AND RECEPTACLES.

The various components of Radio set AN/CRD-3 are equipped with receptacles, connectors, and plugs, for connecting the components of the set together by means of interconnecting cords.
a. Inspect (1). Inspect the female ends of the connectors for corrossion and collected dust. Inspect the insulating part of the connectors for cracks. Inspect the male ends of the connectors for 1008 e and broken pins.
b. Clean (C). Clean the male and female ends of the connectors with a brush moistened in carbon tetrachloride. Remove corrosion with 0000 sandpaper, then wipe with a clean cloth.

46. CORDS AND CABLES.

The cables in Radio set AN/CRD-3 are the life lines of the equipment. Jondition of the cabling must be close4y observed. Operating equipment in all kinds of weather, subjects cabling to a great deal of punishment.
a. Inspect (1). Inspect the cables for cracked or deteriorated insulation, frayed or cut insulation at the connecting and supporting points, and improper placement which places the cables or connections under strain. Also watch for kinks and improper supports.
b. Tighten (T). Tighten loose cable clamps, coupling rings, and cable connections.
c. Clean (C). Clean connections on cables when they are dirty or corroded. Clean corroded connectors with $\$ 000$ sandpaper. Clean the entire surface of the connector. Make no attempt to remove individual prongs from cable plugs.

47. METERS.

Meters are extremely delicate instruments and must be handled carefully. Ther require very little main tenance. They are precision instrumonts and ordinarily cannot be repaired in the field. Excluding the meters on the panel of Power Unit PE197, there is only one meter contained in Radio set NN/CRD 3. It is located on the front panel of Control-Rectifier Power Unit PP-135/CRD-3 and is used to measure the plate currents of the various phase inverters.
a. Inspect (1). Inspect the leads and connections of the meters. Look for loose, dirty, and corroded connections. Look for cracked or broken cover glasses. Since the movement of a meter is extremely delicate, its accuracy will be seriously affected if the glass is broken and dirt and water filter through.
b. Tighten (T). Tighten all conneotions found loose. Any loose meter wires should be inspected for dirt or corrosion before they are tightened. The tightening of meter connections requires a special technique because careless handling can easily crack the meter case.
C. Clean (C). Meter cases can usual1y be cleaned with a dry cloth. If cleaning is difficult, dampen the cloth with dry-cleaning solvent (8D). Clean dirty connections with a small brush dipped in dry-cleaning solvent (SD), or with a small piece of cloth dippel in the solvent.
d. Adjust (A). Normally, meters in Padio Set AN/CRD-3 should indicate zero when the equipment is turned off. Before deciding that a meter needs readjusting, tap the meter case lightly with the tip of one finger. This will help the needie to overcome the slignt friction which sometimes exists at the bearings and prevents on otherwise normal unit from coming to rest at zero. If adjustment is needed, in-
sert the tip of the thinnest screw driver available in to the slotted screw head located below the meter glass and slowly turn the adjusting screw until the pointer is at zero. Lightly tap the meter case again and view the meter face and pointer full on and not from either side. Avoid turning the screw too far, because the needle may be bent or the hairspring damaged.

48. PILOT LMMPS.

Pilot lamps are used to indicate when power has been applied to a circuit. There is also a panel light on the power indicator panel of Radio Receiver Assembly R-128/CRD-3 to indicate when the RADIO SELECIIVITY switch is in BROAD position.
a. Inspect (1). Inspect the pilotlamp assemblies for loose lamps, loose mounting screws, and loose, dirty, or corroded connections.

b. Tighten (T).

(1) Tighten loose mounting screws and resolder any loose connections. If the connections are dirty or corroded, clean them before soldering.
(2) Screw loose lamps tightly into their sockets.

49. JACKS AND PLUGS.

Jacks require very little attention, and then only at infrequent intervals. Occasionally it will be necessary to tighten the mounting nut, clean the contacts, or increase the spring tension. Remove dirt with a brush and carbon tetrachloride; remove corrosion with a piece of crocus cloth followed by a clean cloth. Increase spring tension, when necessary. Try the action of the jack after each adjustment. B_{e} sure to keep all soldered connections intact. To clean dirty or corroded telephone-type plugs, use paste metal polish (Signal Corps stock No. 6G1516). After cleaning, remove all traces of polish remain-
ing with carbon tetrachloride. Finish off with a clean dry cloth.

50. MOUNTING TABLE MT-347/CRD-3.

The Radio Set AN/CRD-3 operating components are shock-mounted on this compact equipment table.
a. Inspect (1). Inspect the tightness of the bolts that hold the four flanged feet of the table to the floor. Inspect the legs, truss, apron, and shelf for dirt, dust, scratches, rust, or chipped paint.
b. Tighten (T). Tighten the bolts that hold the four flanged feet to the floor.
C. Clean (C). Wipe the legs, truss, bearing indicator hinged support, apron and shelf with a clean dry cloth. Repaint any surface that is found scratched, rusted, or chipped.
d. Lubricate (L). Refer to section VIII.

51. REEL UNIT RL-49.

a. Inspect (I). Inspect the following parts of the reel unit for dirt, dust, and corrosion.
(1) Reel shaft bearings.
(2) Reel shaft clamp lock hinges and springs.
(3) Frame hinges and hinge bolts.
(4) Crank locking pins and springs.
(5) Reel shaft brake.
(6) Frame brace springs and hinges.
b. Clean (C). With a dry cloth. clean all the parts of the reel unit mentianed in subparagraph a above. Clean brake seat on reel shaft and flush out brake housing.
C. Lubricate (L). Refer to section VIII.

52. CABINETS, CHASSIS, AND MOUNTINGS.

Some of the cabinets which house the
various components of Radio Set AN/ CRD- 3 are constructed of sheet steel, coated with a baked gray wrinkle enamel and some are constructed of sheet aluminum also covered with a baked gray wrinkle enamel.
a. Inspect (1). Inspect the outside and inside of each cabinet thoroughly, paying strict attention to every detail. Check the ventilator mountings, the panel screws, and the zero setting of the meter in Control-Rectifier Power Unit PP-135/CRD-3. Examine the pilot-lamp covers for cracks and breaks. Inspect the panels for loose knobs, switches, and jacks.
b. Tighten (T). Tighten all loose mounting bolts, panel screws, plugs, and control knobs.
C. Clean (C). Clean each cabinet, outside and in, with a clean dry cloth. Use dry compressed air to blow out all accumulated dirt and dust. Repaint any surface that is found scratched, rusted, or chipped.
53. HEADSET AND LOUDSPEAKER.

These auxiliary items of equipment are essential to the operation of the radio set. The operator must therefore give them the same care as the radio itself.
a. Inspect (1). Inspect all external surfaces for dirt and corrosion. See that all cable connections are tight and that plugs and jacks fit together properly.
b. Clean (C). Clean all items of the equipment in accordance with the instructions outlined previously for relays, cords, jacks, cabinets, etc.
C. Lubricate (L). Refer to section VIII.

54. DRIVING MOTOR.

The driving motor for the indicator and goniometer is mounted coaxially with the deflection coil assembly on the rear of the main indicator cast-
ing. The only maintenance required on the motor is to tighten occasionally any of the mounting bolts which may have loosened because of vibration. See section VIII concerning lubrication of this unit.

55. COUPLIMG SHAFTS AND CONTROL KMOBS.

The control of various capacitors, switches, and resistors, found throughout the set is effected through coupling shafts that connect these items to control knobs on the front panels. It is important that these shafts and control knobs be kept tight at all times. Use the proper Allen head wrench and screwdriver to tighten these items whenever they are found loose. In Bearing Indicator ID-121/CRD-3, a flexible coupling is provided between the driving motor and the axle-and-worm coupling on the deflection coil assembly to compensate for any slight misalignment of these two components. This flexible coupling is a leather pad which is bolted to the motor shaft and the axle-and-worm coupling on the deflection coil assembly at four diametrically opposite points. If this coupling should break, replace it with one of the spare couplings provided with the set according to the instructions in subparagraph 117 b .

56. GEARS.

a. Inspect (1). Inspect the teeth of the gears contained in the band change, and tuning control gear housing of Radio Receiver R-128/CRD-3 for dirt and corrosion. Check the antibacklash gears for operation by varying the panel tuning control.
b. Clean (C). If the gears are dirty, clean them with a pipe cleaner or small brush dipped in dry-cleaning solvent (SD).
c. Lubricate (L). Refer to section VIII.

[^1]

Figure 56. Typical indicator patterns due to poor orush and slip ring contact.

Since power transformers, filter chokes, and audio transformers used in Radio Set AN/CRD 3 are of similar potted construction, preventive maintenance for them is similar.
a. Feel (F). As soon as possible after shut-down, feel all filter chokes for abnormal heating which may indicate an overloaded condition, or imminent failure due to moisture absorption or other causes. Likewise feel audio trans formers T 201 and T 202 for abnormal heating. Power t rans formers normally operate at a warm temperature. Feel for abnormal heating, but use care to avoid burns.
b. Inspect (1). Inspect all power transformers, filter chokes, and audio transformers T 201 and T 202 , for signs of blistering, bulging, or leakage of tar or insulating compounds. Inspect for external signs of electrolytic action or corrosion.
C. Tighten (T). Tighten all mounting bolts or screws, but not to the point that threads are destroyed. The secur ing of such heavy parts as transformers and chokes to the chassis is very important in preventive maintenance. Should a heavy filter choke or transformer break loose from its mounting in vehicular use or in transit, it
may smash tubes, variable capaci tors, coils, and resistors, and at the same time sever a large number of connections.
d. Clean (C). Clean power transformers, filter chokes, and audio transformers with a dry cloth. Be sure that no dirt, lint, threads, or foreign material is present between terminals. Dirt, lint, and thread absorb moisture whish may provide a leakage path for high voltages between these terminals. Be sure that none are present.

58. SLIP RINGS AND BRUSHES.

a. General. The sjip rings and brushes are part of the deflection coil as sembly contained in Bearing Indicator ID-124/ CRD-3. The deflection coil assembly contains a front and rear bearing, a graduated ring, three slip rings and brushes, and the deflection coils (fig. 127). This assembly is driven by a motor and rotates the magnetic defleo tion coils about the neck of the cathoderay tube to produce the bearing pattem. The slip rings and brushes connect the rotating deflection coils to the stationary control box. The only maintenance required of the bearings is lubrication. Instructions for this are contained in section VIII. There is no maintenance required of the deflection coils. When found defective, replace
rne coil according to instructions of subparagraph 117 c . Complete and proper maintenance instructions for the slip rings and brushes are contained in the following subparagraphs.

> CAUTION: WHEN THE COVER OF BEARING INDICATOR ID-121/CRD-3 IS OPENED, CIRCUITS CARRYING VOLTAGES DANGEROUS TO HUMAN LIFE ARE EXPOSED. NEVER OPEN THIS COVER, BEFORE TURNING THE AMPLIFIER OR MASTER SWITCH OFF, EXCEPT AS SPECIFICALLY DIRECTED.

b. Inspect (I).

(1) Inspect for excessively worn brushes, sticking brushes, or brushes whose pigtails are corroded, have broken strands, or seem brittle. The pigtails should be long and flexible enough so as not to restrict the movement of the brish in the holder.
(2) Inspect for dirt under the rotating mount.
(3) Inspect the slip rings for pitting or scoring, dust, dirt, and oil. Never touch the slip rings with the bare fingers. Also check them for wear. The appearance of a light brown oxide film on the slip rings is beneficial and does not require polishing. However, make sure that any film present is the oxide film and not a combination of etching and tarnishing. The oxide film is somewhat shiny whereas etching and tarnishing has a dull appearance.
(4) With the MASTER and AMPLIFIER switches at the OFF position, turn the MOTOR ewitch ON and observe the brush springs pressure arm. Any perceptible up and down motion or vibration of the spring pressure arm indicates eccentricity of the rings, which must then be machined on a lathe and polished (par. 117).
(5) See that the spring pressure arm is not bent and rides freely within the brush-holder slot without tcuching the sides.
(5) Check the spring tension with a suitable gauge graduated to $1 / 2$ ounce, by observing the gauge reading when the pressure arm is just lifted from the brush. For best operation the tension should be from 2 to 4 ounces, preferably 2-1/2 ounces.
(7) Check brushes to determine whether they are seated properly against the slip rings. Bad bedding of brushes is one of the greatest causes of flat spots and excessive slip ring and brush wear.

NOTE: A good criterion of when maintenance is required on the slip rings and brushes is the pressure of a jagged or broken circle pattern on the bearing indicator cathode-ray tube screen.
C. Tighten (T). To tighten the slip rings, proceed as follows.
(1) Turn the MASTER and AMPLIFIER switches OFF.
(2) Loosen the two setscrews in the slip ring retainer (fig. 27).
(3) Tighten the slip ring retainer by turning it counterclockwise as viewed from the front of the indicator.
(4) Tighten slip ring retainer setscrews.
(5) Check the brush springs pressure arm as in subparagraph a(4) above.

d. Clean (C).

(1) To clean the slip rings and brushes, proceed as follows:
(a) Turn the MASTER and AMPLIFIER switches OFF.
(b) Remove the screws from the bakelite brush holders and allow the assemblies to hang over the side of the indicator.
(c) Saturate a pad of cheese cloth approximately 4 by 10 inches in carbon tetrachloride and pass it

Figure 57. Deflection coil assembly, cleaning slip rings.
under the rotating unit by slowly turning the unit by hand.
(d) Pull the cheese cloth back and forth and sideways until all dirt and oil are removed from under the rotating mount.
(e) Remove the pad and clean the slip rings, with the motor running but with the AMPLIFIER switch OFF, by holding a small cheese cloth pad saturated with carbon tetrachloride firmly against the rotating rings.
(f) Turn off the motor, clean the brushes and insides of brush holders with carbon tetrachloride, and re-mount the brush assemblies in operating positions.
(g) Replace excessively worn brushes, sticking brushes, or brushes whose pigtails are corroded, have broken strands, or seem brittle.
(2) As mentioned under the inspection operation above, the appearance
of a light brown oxide film on the slip rings is beneficial and does not require polishing. Before polishing refer to paragraph 58b. If polishing is required, proceed as follows:
(a) Turn the MASTER and AMPLIFIER switches OFF.
(b) Lift the brushes from the slip rings and hold them in position by allowing the spring pressure arm to press against the side of the brushes.
(c) Wrap a piece of crocus cloth, approximately 2 by 1 by $1 / 2$ inches, around a bakelite block 2 by $3 / 4$ by $1 / 8$ inches or some other stiff, smooth surfaced material.
(d) With the indicator running, but with the AMPLIFIER switch OFF, press the block and crocus cloth firmly against the slip rings until the pitting or scoring has been removed, and the slip rings have been restored to their original mirror finish.
(e) Before stopping the indicator,

Figure 58. Deflection coil assembly, cleaning rotating mount.

Figure 59. Deflection coil assembly, Dolishing the slip rings.
clean the slip rings with a piece of cheese cloth saturated in carbon tetrachloride.
(f) Replace the brushes in their ruming positions.

> CUTIGN: Use crocus cloth only for polishing the slip rings. Use carbon tetrachloride only for cleaning. Never touch the slip rings with the bare fingers.
-. Adjust (A). The correct brush pressure for maximum performance is 2-1/2 ounces. This can best be checked by a spring tension gauge. To adjust the spring arm to the required pressure, wind or unwind the coiled portion. Never bend the spring arm.

59. GONIOMETER NAVY TYPE CFT-47372.

Gonianeter Navy trpe CFT-47372 is essentially a precision rotating transformer. It has been so designed and constructed that servicing of the transformer elements, stator, rotor, and coupling coils is both unnecessary and impossible under field conditions. Therefore, never attempt any maintenance beyond the instructions contained in the technical manual. If trouble develops in the transformer elements, replace the goniameter with a new one; any attempt at repair will probably result in the introduction of unbalance into the goniometer and cause bearing errors in the operation of the direction finder. See section VIII for lubrication information.
60. ANTENMA ASSEMBLY AS-204/CRD-3.
a. Inspect (1).
(1) Inspect the tautness of the antenna guys.
(2) Check the tightness of the wingnuts on the phase inverters and ground-strap assemblies of the counterpoise mats. Inspect these points for evidence of corrosion.
(3) Inspect the base insulator for cracks, dirt, and corrosion.
(4) See that the cover plates are tight on Junction Bores JB-91-A.
(5) Check the antenna cords to see that there are no sharp bends.
(6) Check the alignment of the directional antennas as described in spection II, paragraph 12.
(7) Check the vertical alignment of the sense antenna as described in section II, paragraph 13.
(8) Inspect Mounting Collar MT-334/ CRD-3 at the base of each monopole and make sure it is securely fastened to the mast.
(9) Inspect the phase inverter plug connection to the anterna jack on the box of the mounting collar. The banana plug should be inserted as far as it can go. Make sure the bottom por$t i o n$ of the phase inverter docs not make contact with the antenna.
b. Tighten (T).
(1) Tighten the antenna guys as described in section II.
(2) Tighten the wingnuts on the phase inverters and ground strap assemblies of the counter poise mats.
(3) Tighten the cover plates on Junction Boxes JB-91-A.
(4) Tighten the bolts that hold the mounting collar to the mast base.
c. Clean (C).
(1) If corrosion is found on the wingnuts of the phase inverters and ground strap assemblies, clean the surfaces with a file or fine sandpaper and apply a protective coat ing of Petro latum.
(2) In order to clean the mast sections, the antenna system will of course have to be dismantled. The intervals between which such cleaning is required depends largely upon service conditions and whether faults have developed. For example, cleaning is required at more frequent intervals
when the equipment is used in areas subject to dust or sand storms than in areas free from these conditions. The mast sections should be cleaned to be sure $s o$ corrosion or dirt exists at the ands which fit into one another. Mast sections Ms- 216 should not be sanded down and repainted. sanding will cut the coating of copper over the steel shaft and increase r-f resistance by forcing radio frequency to travel over the steel. These rods are painted with phenolic by the monufacturer.
(.3) Clean the base insulator following the same procedure described in paragraph 40.
d. Lubricate (L). Refer to section VIII.

SECTION VII

itemized preventive maintemance

6I. IMTRODUCTION.

Far ease and efficiency of performance, preventite maintenance on Radio Set AN/CRD-3 will be broken down into operations that can be performed at different time intervals. In this section the preventive maintenance work to be performed on the radio set at the specific time intervals is broken down into units of work called items. The general techniques involved and the application of the FITCAL operations in performing preventive maintenance on individual parts are discussed in section VI. These general instructions are not repeated in this section. When performing preventive maintenance, refer to section VI if more information is required for the following items. Perform all work with the power removed from the equipment. After preventive maintenance has been performed an a given day, put the equipment into operation and check it for satisfactory performance. (See paragraph 33, Equipment Performance Check List.)

62. PREYEMTIVE MAIMTEMAMCE TOOLS AND MATERIALS.

The following preventive maintenance tools and materials will be needed: Commor laed roole.
cleen cloth.
10000 sadedpaper.
Grocus eloth.
Contact berafoliag tool.
Paste metal polifal lsigas Corpe atock Mo. GG1616).

Dry-cleaniag eolvant (SD).
Carboz retrachloride.
Spriag reanion gange lgradrated to $1 / 8$ ouncel.

Petrolatim.

MOTE: Gasoline will not be used as a cleaning fluid for any purpose. Dry-cleaning solvent (SD) is available as a cleaning fluid through established supply charnels. Oil, Fuel, Diesel (DN) may be used for cleaning purpases when dry-cleaning solvent is not available. However, dry-cleaning solvent or diesel fuel oil should not be used on electrical contact points of relays or other eleo tronic equipment, contact surfaces of plugs, jacks, or sockets, or on the commutators of motors, generators or dynamotors. These items should be cleaned, when necessary, only wi th carbontetrachloride.

63. ITEM I, MODULATOR SECTION OF RADIO RECEIVER ASSEMBLY R-128/CRD-3.

PRELIMINARY STEPS. Remove nuts on upper shock mount of automatic bearing indicator; renove the pins on lower supporting rod and lower indicator on chain. Renove all interconnecting cables from the modulator unit. Loosen captive screws on the front panel of the unit and remove the unit from the cabinet. Remove the bottom plate.

OPERATICNS.

```
        IC Coasectors and receptacles.
        ITCA Tuben asd socketa.
        ITC Capacitora.
        ITC Resistore.
        ITC Bushinge and iasulators.
        ICL 8witchen.
        ITC RHoontats and potentiometerf.
        ITC Termiael blocke.
        ITL Coupliag shafte and control
        kaoba.
ICL Gears.
64. ITEM 2, POWER IMDICATOR SECTION
OF RADIO RECEIVER ASSEMBLY R-I28/CRD-3.
```

PRELDMNARY STEPS. Remove all interconnecting cables from the power indicator section of the receiver assembly. Loosen the captive screws on the front panel of the unit and remove the unit from the cabinet. Remove the bottom plate.

IC	Consectors and receptacles.
ITC	Cabinet.
ITCA	Tabes and sockets.
ITC	Capacitora.
ITC	Resietors.
ITC	Fuses.
ITC	Bughags and insulators.
IC	8witches.
ITC	Rheostats and potentiometers.
ITC	Termial blocks.
IT	Pilot lamps.
ITC	Jacks and plogs.
ICL	Headset and loudspeaker.
IT	Coupling shafts and costrolknobs.

FITC Power tranelormera and filter chotes.
65. ITEN 3, JUNCTION BOX J-99/CRD-8.

FRELDIINARY STEPS. Remove all interconnecting cables to the junction box. Loosen the six screws on the front panel plate and remove the plate.

OPERATIONS.
IC Consectore and recepracien.
ITC Capacizor.
ITC Resietors.
ITC Fuses.

ITC Beshiaga and inenlatore.
ICL Switches.
ITCL Relaye.
ITC Cabiser, chaseis, asd mountige.

IT Coupling shafte and control kaob.

66. ITEM 4, DEFLECTION COIL ASSEMBLY OF BEARING IMDICATOR ID-I2I/CRD-3.

PRELIMINARY STEPS. Remove the nuts on the upper shock mount of the bearing indicator; remove the pins on the lower supporting rod and lower indicator on the chain. Loosen the cover locking bolt and raise the hinged cover. Pemore the under bottom plate by loosening the screws that hold it to the bottom of the indicator.

OPERATIONS .
IT Driviag motor.
ITC Capacitor.
ITCA SIfp rings and bruahes.
ITC Priactpal housiag lalumiaum castiagl.

L Beariag hoveings.

REMARKS. Bearing Indicator ID-121/ CRD-3 is a delicate piece of electri-
cal measuring equipment. It has been designed to give long and continuous service with the minimum of maintenance care. Never take the equipment apart just to $8 e e$ how it works as damage may result from the disassembly or assembly procedure. Excepting the three receptacles J851, J852, and J853, do not attempt any maintenance on Goniometer Navy type CFT-47372 as any attempt at maintenance will probably result in introduction of unbalance into the goniometer and cause bearing errors in the operation of the direction finder.
67. ITEM 5, OPTICAL HOUSING OF BEARING INDICATOR ID-121/CRD-3.

PRELIMINARY STEPS. Loosen hand screw and swing back the optical housing.

OPERATIONS.

IT	Pilot lampe.
ITC	Rheostat.
ITCA	Tube and acket.
ICL	Alidade opical assembly.

68. ITEM 6, CONTROL BOX.

PRELIMINARY STEPS. Remove the control box from the automatic bearing indicator by loosening the knurled nut under the box. Remove the cover plate.

OPERATIONS.
IC Conectors and receptacles.
ITC Capacitor.
ITC Rheostats and potentiometers.
ITC Termiat blocks.
ITC Resiators.
ITC Cabiaet.

69. ITEM 7. AMPLIFIER-RECTIFIER POWER

 UNIT PP-I5I/CRD-3.PRELIMINARY STEPS. Disconnect the cables at the rear. Remove the 2 nuts on the upper bearing indicator shock mount, and the pins on the lower sup-
porting rod. Lower the indicator on its chain. Unhook the chain and carefully lower the indicator to the floor. Release the bar under the shelf by pulling it forward, and lower the shelf on its bracket. Loosen the captive screws around the panel on the ampli-fier-rectifier power unit and remove the unit from its cabinet.

OPERATIONS.

IC	Consectors and recepteclos.
ITCA	Trbes and sockets.
ITC	Capacitora.
ITC	Resierors.
ITC	Buahage and iasulators.
ITC	Rheostats and potentiometers.
I TC	Terminal blocke.
IT	Coupliag ahafts and control kaobs.
FITC	Power transformera and lilter chokes.
ITC	Puses.
ITC	Cabinet.
ITC	Relay.

70. ITEM 8, CONTROL-RECTIFIER POWER UNIT PP-135/CRD-3.

PRELIMINARY STEPS. Disconnect the cables at the rear. Loosen the front panel screws and remove the unit from its cabinet.

OPERATIONS.
IC Conectors and recepiacles.
ITCA Tubes and sockets.
ITC Resistors.
ITC Capacitors.
ITC Rbeostats and potentiometers.
ITC Bushings and insulators.
FITC Power trassiormer and
Iilter chotes.

ITC Cabinet

ITC Puse.

IT Pilot lamp.
IT Conpling shaft and control knobs.

IC Switches.
71. ITEM 9, JUNCTION BOX JB-126.

PRELIMINARY STEPS. Make certain that power coming into this junction box has been shut off before attempting any maintenance on it. This is accomplished by stopping Power Unit PE-497 or disconnecting the input power cable to the junction box at either the $115-$ volt or 230 -volt input receptacles.

OPERATIONS.

```
IC Coasectors and receptacles.
FITC Antotrameformer.
ITC Cabinet.
IC Switch.
```

72. ITEM 10, ANTENNA ASSEMBLY AS-204/ CRD-3.

PRELIMINARY STEPS. Disconnect the power cables to the phase inverters on all five monopoles. If preventive maintenance is to be performed on the mast sections, the antenna system will have to be dismantled. All other maintenance can be performed accessibly at the base of the monopoles.

OPERATIONS.

REMARKS. The itemized preventive maintenance for the phase inverters
listed above (ITC) refers only to the external parts of these units. Maintenance of the standard parts (resistors, capacitors, etc.) inside the phase inverters has been covered in previous paragraphs above.
73. ITEN II, MOUNTINB TABLE MT-347/CRD-3.

OPERATIONS .

```
ITC Monating leet.
IC Legs and truse.
ICL Beariag ladicator hiaged
    support.
IC Apron and shell.
```

74. ITEM 12, REEL UNIT RL-49.

PRELIMINARY STEPS. Remove brake unit.

OPERATIONS .
ICL Reel shaft bearises.
ICL Reol shaft clamp lock biagee and apriage.

ICL Prame biages and hiage bolts.

ICL Craak lockiaf pias and spriage.

ICL Reel shaft brake.
ICL Prame brace spriags and hinges.
75. Item 13, interconnecting cables.

OPERATIONS.
IT Cable clampe.
IT Congling rings.
I Cables proper.
ICL Cable consectors.

REMARKS. Remember the interconnecting cables in Radio Set AN/CRD-3 are the life lines of the equipment. Therefore, observe the condition of the cabling closely, especially those cables

Which are outside the shelter housing and exposed to all kinds of weather.

76. PREVENTIVE MIINTEIMCE CHECK LIST.

The following check ifst is a sunmary of the preventive maintenance operations to be performed on Radio Set AN/CRD-3. The time intervals shown on the check list may be reduced at any time by the local commander. For best performance of the equipment,
perform operations at least as froquentiy as called for in the check list. The echelon column indicates Which operations are first echelon maintenance and which operations are second echelon maintenance. Operations are indicated by theletters of the word FITOAJ. For example, if the letters ITCA appear in the "Operations" column, the item to be treated mast be inspected (I), tightened (T), cleaned (C), and adjusted (A).

			Men performed							
Item Ho.	Operations	Item		$\begin{gathered} 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\underset{i}{\underset{0}{1}}$	$\begin{aligned} & \text { m } \\ & \vdots 8 \end{aligned}$			宅	
1	ITCAL	```Modelator section of Ladio Receiver Assembly R-128/CRD-8.```					\mathbf{X}			2 d
2	I TCAL	Power indicator section of Radio Receiver lssembly R-128/CRD-8.		-			\mathbf{X}			20
8	ITCL	Jasctioi Boz J-99/CRD-8.						\mathbf{X}		2d
4	L	Deflection coil assembly of Beariag Indicator ID-121/CRD-8.				\mathbf{x}				2d
4	ITCA	```Deflection coil sesembly O2 Beariag Indicator ID-121/CRD-8.```					X			2 d
5	ITCA	Optical housiag of Beariag Iadicator ID-121/CRD-8.					\mathbf{X}			2 d
6	ITC	Contsol box.					\mathbf{x}			2 d

MOTE: $\overline{\text { I }}$ dicates whea operations are to be performed.

Peel	Inspect	Tighter	Cleas	Adjust	Lubricete

			When performed							
Item No.	Operations	Item				-	$\begin{aligned} & \text { a } \\ & \text { an } \\ & \text { a } \\ & \text { 물 } \end{aligned}$	云	$\begin{aligned} & \underset{\sim}{c} \\ & \underset{\sim}{0} \end{aligned}$	a
7	PITCA	Amplifier-Rectifier Power Unit PP-151/CRD-8.					\mathbf{x}			2d
8	PITCA	Control-Rectifier Power Unit PP-185/CRD-8.					\mathbf{X}			2 d
9	PITC	Junction Box JB-126.			\mathbf{x}					$18 t$
10	I TC	$\begin{aligned} & \text { Antenas Assembly AS-204/ } \\ & \text { CRD-8. } \end{aligned}$			I					$18 t$
11	I TC	```Monnting Table MT-847/ CRD-8.```			$\mathbf{~}$					1st
11	L	$\begin{aligned} & \text { Mounting Table MT-847/ } \\ & \text { CRD-8. } \end{aligned}$						$\mathbf{7}$		182
12	I CL	Reel Onit RL-49.					\mathbf{x}			1st
18	ICT	Interconnectiag cables.			-X					188
18	L	Interconnectiag cables (connector threads).						\mathbf{X}		18 t

NOTB: X indicates whea operatioas are to be performed.

F	I	T	C	A	L
Peel	Inspect	Tighten	Clean	Adjust	Lubricate

SECTION VIII

Lubrication

77. APPROVED LUBRICANTS FOR RADIO SET AN/CRD-3.

The following table lists the lubricating materials necessary in servicing this equipment:

```
8ymbols
                    Siandard momeaclature
    OB Oil, Bagine, SAB 10
    PS Oil, Lubricatiag, Preservative,
                Special
    M0 uil, Lubricating, for Aircraft
        instrumeats and Machise Guns
    GL Grease, Lubricatiag, Special
```

78. bearing indicator $10-121 / C R D-3$.
a. Once each week, apply 1 or 2 drops of lubricating oil for aircraft instrum ments and machine guns (MC) in the snap oiler of the tube support housing rear bearing.
b. Once each week, remove the knurled screw plug and apply 1 or 2 drops of lubricating oil for aircraft instruments and machine guns (MO) to the tube support housing fromt bearing.
b. Tuning Control Shaft Bearinas. These bearings to be lubricated by maintenance personnel at times of disassembly. The lubricant to be used is special preservative lubricating oil (PS).

82. OAN TEST OSCILLATOR EQUIPMENT.

This unit is used as test equipment when the set is placed in operation, but the unit is rarely utilized after the set is assembled. The test oscillator is fully inclosed and dustproof. Therefore this component will not require any relubrication service in the field.

83. GON IONETER NAVY NO. CFT-47372.

The goniometers used in Radio Receiver Assembly R-128/CRD-3 and Bearing Indicator ID-121/CRD-3 are identical and their rotors are equipped with two Fafair ball bearings No. 2O1-DD and No. 36-DD Double Shield which are prolubricated and do not require relubrication.

84. BEARING INDICATOR DRIVE MOTOR.

The drive motor (Baldor Electric Company type YC31) is equipped with SKF No. 62O2-RS ball bearings which are of the sealed type, prelubricated for life.

85. REEL UNIT RL-49-A.

a. Once each month, after proper cleaning, lubricate each reel shaft bearing with special lubricating grease (GL).
b. Once each month, after proper cleaning, lubricate the following with engine oil SAE 10 (OE):
(1) Reel shaft clamp lock hinges and springs.
(2) Frame hinges and hinge bolts.
(3) Crank locking pins and springs.
(4) Frame brace springs and hinges.
C. Remove the brake, clean the brake
C. The alidade notched sleeve ring is equipped with three ND-3R-3 ball bearings. Every three months, after removing and cleaning the ring and bearings as described in paragraph 58, relubricate by kneading special lubricating grease (GL) into the bearings.

79. MOUNTING TABLE MT-347/CRD-3.

The bearings on the bearing indicator hinged support trunion are coated With grease at the time of assembly. Thereafter, every three months, apply 4 or 5 drops of engine oil, SAE 10 (OE) to soften the grease.

80. JUNCTION BOX J-99/CRD-3.

Every three months, after cleaning Junction Box J-99/CRD-3 as described in paragraph 52, relubricate as follows:
a. Solenoid Actuating Plungers. After properly cleaning, coat lightly with special lubricating grease (GU).
b. Band Switch Shaft Bearings. Apply 2 or 3 drops of special preservative lubricating, oil (PS) to each bearing sparingly.
C. Solenoid Limit Control Switch Plungers. After properly cleaning, apply special lubricating grease (GL) sparingly to the plungers and the tip of the shaft switch arms.
d. Positioning Cam and Rollers. Apply 2 or 3 drops of special preservative lubricating oil (PS) to each roller and pin.
e. Connecting Yokes and Link Pins. Apply 1 or 2 drops of special preservative lubricating oil (PS) to each yoke and link pin.

81. RADIO RECEIVER ASSEMBLY R-128/CRD-3.

a. Band Change and Tuning Control Gear Housing. This unit is to be lubricated by maintenance personnel at times of disassembly. The lubricant to be used is special lubricating grease (GL).
seat on the reel shaft, and flush out the brake housing. Coat the brake seat with engine oil SAE 10 (OE). Lubricate the brake by applying engine oil SAE 10 ($O E$) sparingly in the openings at the ends between the hub and the housing.

86. POWER UNIT PE-197.

For lubrication, see War Department Zubrication Order No. 3014 contained in TM 11-940.

87. CABLE CONNECTORS.

Every three months, after proper cleaning, lubricate the cable connector threads sparingly with special lubricating grease (GL), to prevent rust and corrosion.

88. TELEPHONE EE-8-B.

Lubrication of this unit is covered in TM 11-333.

SECTION IX

MOISTUREPROOFING AND FUNGIPROOF ING

89. GENERAL.

a. Excessive failure of parts and loss of operating efficiency are usually caused, not by inferior parts or equipment, but by the accumulated effects of moisture in high-humidity areas. Rapid temperature changes coupled with conditions of fog, rain, and dew or high humidity promote such failures.
b. The effects of moisture (and fungus growth) on resistors, capacitors, coils chokes, transformer windings, terminal boards, and insulating strips can be recognized in the form of corrosion, low insulation resistance, flosh-overs, and crosstalk.

90. Treatment to reduce failures.

a. To reduce the above failures, a moistureproofing and fungiproofing treatment has been devised which, if properly applied, provides a reasonable
degree of protection. The treatment consists of applying a film of moisture and fungi-resistant varnish to all suscoptable parts of the equipaent. This film provides a nonwetting surface which forms a moisture barrier. Fungus growth is prevented by a fungicide in the varnish. Equipments which have been so treated are marked MFP and dated. Equipments not so marked should be examined and if it is obvious that the treatment has not been applied, the equipment should be returned at the first opportunity to third or higher echel on maintenance units for treatment.
b. Pe-treatment may be required after a period of use. The need for this retreatment will be indicated by excessive failures or the effects outlined above (par. 89b).

91. MOISTUREPROOFIMG AMD FUMGI PROOFIMG PROCEDURE.

For a detailed description of the vamish-spray method of moistureproofing and fungiproofing, refer to TB SIG 13. Moistureproofing and Fungiproofing Signal Corps Equipment. TB SIG 13 with Changes thereto, together with the following information, gives the necessary procedure for treating the equipment. Extreme care must be exercised in moistureproofing and fungiproofing Phase Inverters MC-411-A and MC-413-A, Goniometer Navy No. CFT-47372, and Bearing Indicator ID-124/CRD-3. Processing of these components should not be attempted by inexperienced personnel.
a. Teleohone EE-8-B. Refer to TB-333-2, Moistureproofing and Fungiproof ing of Telephone EE-8, EE-8-A, and EE-8-B.

b. Phase Inverter MC-4II-A.

(1) Mask the banana plug on the inside top of the phase inverter case. Apply approximately 1 inch masking tape completely around the machined edge at the bottom of the phase inverter
case. Spray the inside of the phase inverter case.
(2) Carefully apply a brush coat of lacquer to the wires, the bakelite disk and strip, the fixed capacitors, and the relay coil.
(3) Avoid getting lacquer on the tube socket pins, the contacts on Relay K3OL, banana plugs, and sockets.
c. Phase Inverter MC-413-A. Refer to subparagraph babove.

d. Bearing Indicator 1D-121/CRD-3.

(1) Mask the 14 banana plugs, the knurled thumbscrew, and Control R5O9.
(a) Apply a brush coat of lacquer to wires within the metal shield and bakelite tubing inclosing the neck of the cathode ray tube and socket. While applying the lacquer, hold this part in a horizontal position so that the lacquer will not drip on the socket. Place in the oren for baking with open end down.
(3) Looking at the front end of the indicator, apply a light brush coat of lacquer to the white tape around the four deflection coils mounted on the inside of the rotating mechanism, and to the wires connecting these coils. Do not brush the rear of the deflection coils mounted on the inside of the rotating mechanism, and to the wires connecting these coils. Do not brush the rear of the deflection coils containing the coil terminals. Apply a brush coat of lacquer to all wires and the two papercased electrolytic capacitors in the cavity covered by the bottom cover plate of the indicator. Spray the inside of the indicator contral box.
e. Gonlometer Mavy Mo. CFT-47372.
(1) Do not permit any lacquer to contact the ball-bearing races at the ends of the rotor, or the bearing surfaces at the inner rear of the goniometer case.
(2) Apply one coat of lacquer to the goniometer rotor. With the goniometer in a horizontal position and the open end toward the operator, apply a thin coat of lacquer to the circular goniameter stator coil and to the wires connected with it. Apply a brush coat of lacquer to the inside surfaces of the side cover plates.
f. Amplifier-Rectifier Power Unit PP-151/CRD-3. Mask the bottam of each of the four tube sockets, mask relay K4OA, controls R4O1 and R403, and the three fuses and contacts. Mask underside of lips of chassis. Spray with lacquer, then apply an additional brush coat of lacquer to all exposed wires.
g. Power Indicator Sectlon, Part of Radlo Recelver Assembly R-128/CRD-3.
(1) Top of Chassis. Apply a brush coat of lacquer to the hook-upwire and cabling, and fixed capacitors and resistors. Remove the shields from the i-f coils and the shield over the terminal strip. Carefully apply a brush coat of lacquer to the coils and the components mounted on the terminal strip. Avoid getting lacquer on the switches and potentioneters, the trimmer adjustments on the i-f coils, and the loudspeaker.
(2) Bottom of Chassis. Apply a brush coat of lacquer to the hook-up wire and cabling, and other fixed camponents requiring treatment. Avoid getting lacquer on the sixteen tube sockets, the phone jack, the b-f-o variable capacitor, the switches and potentiometers, and the loudspeaker.

h. Modulator Sectlon, Part of Radio Recelver Assembly R-128/CRD-3.

(1) Top of Chassis.
(a) Remove the goniometer and treat it according to directions in subparagraph e above.
(b) Remove the shields from TiO, T1O2, T103, T1O4, and T1O5, LA11, 1412
and L113. Carefully apply a brush coat to the coils. Do not let any lacquer touch the variable capacitors. (Mask variables, if necessary).
(c) Apply a brush coat of lacquer to the leads and cabling associated with the controls on the front panel. Do not let any lacquer touch rheostat R139.
(2) Bottom of Chassis. Carefully apply a brush coat to the fixed components requiring the lacquer treatment. hvoid dripping lacquer on the contacts of the five rotary ceramic band switches, the rotary indication switch, and the key sense switch, the three potentiometers, and the antenna relay.
i. Control-rectifier Power Unit PP-135/CRD-3. Carefully apply a brush coat of lacquer to the hook-up wire and circuit components requiring treatment. Avoid dripping lacquer on moving or variable parts, especially the six toggle switches, the rotary switches, and the sockets.
j. Junction Box J-89/CRD-3. Mask relays K451 and K452; solenoids K453 and K454 (the rotor switch may be rotated manually to aid in this operation); mask plungers of microswitches 5454 and S455; and all moving parts of the gang switch and contacts of S451, S452, and S453. Spray and add brush coat to exposed wiring.
k. Junction Box JB-126. No masking is required. Do not bake at temperatures higher than $140^{\circ} \mathrm{F}$.

1. Junction Box JB-91. Plug the pin jacks in the receptacles. Mask the threads on the receptacles. Spray.
m. Mast Base AB-57/CRD-3. Apply a brush coat of lacquer to all exposed portions of the phenolic sleeve.

n. Model OAN Test Oscillator.

(1) Top of Chassis. Remove the shield over the output control switch assembly and carefully appiy a brush coat to the resistors, wires, and bake-
lite strips. Avoid dripping lacquer on the switch contacts. Apply a brush coat to the bakelite strip mounting V603, to the other bakelite strip, and to all exposed wiring.
(2) Bottom of Chassis. Remove the large shield over the oscillator and amplifier coils. Carefully apply a brush coat to the six coils, wiring, fixed resistors and capacitors, and the bakelite mounting strips. Avoid dripping lacquer on the coil adjustments, contacts on the band switch, the variable capacitors, and the bottom of the tube sockets. Remove the shield from the a-c filter unit. (Two screws on top of the chassis and on a-c toggle switch mounting on the frant panel releases the unit.) Apply a brush coat to the four coils, wiring, and the bakelite mounting strip. Apply tie brush coat to the battery cabling inside the main mounting case.

92. MOISTUREPROOFING AND FUNGIPROOFING AFTER REPAIRS.

If, during repair, the coating of protective varnish has been punctured or broken, and if complete treatment is not needed to reseal the equipment, apply a brush coat to the affected part. Be sure the break is completely sealed.

PART FOUR

AUXILIARY EQUIPMENT

"not USED"

Part five

REPAIR IMSTRUCTIONS

NOTE: Failure or unsatisfactory performance of equipment used by Army Ground Forces and Army Services Forces will be reported on W.D., A.G.O. Form No. 468 (Unsatis factory Equipment Report); by Army Air Forces, on Army Air Forces Form No. 54 (Unsatisfactory Report). If ei ther form is not available, prepare the data according to the sample form reproduced in figure 124.

SECTION X

THEORY OF EQUIPMENT

83. FUNDAMENTAL PRINCIPLES.

a. General. A radio direction finding system consists essentially of a directional antenna system, a sensitive radio receiver, and a suitable indicating device (fig. 60). The actual delermination of the direction of arrival of the radio signal is accomplished by the antenna system. The radio receiver detects and amplifies the antenna voltages, and the indicator interprets the results for the human senses. The principle involved in determining the location of the radio transmitter is to find the direction of arrival of the re-

Figure 60. Elementary direction finder.
ceived wave. Experience shows that this corresponds to the direction in which the signal source lies. Factors which might tend to alter this relationship are minimized by proper design of the receiving antenna system.
b. Monopole Antenna. The simplest form of antenna is a single vertical wire or monopole. When used as a receiving antenna it responds equally well to signals from any direction in the horizontal plane. Thus, if we move a small transmitter about the antenna we find that at equal transmitter distances identical responses are obtained. In other words, the monopole has no directional properties in the horizontal plane. A polar diagram of reception for a monopole showing responses plotted against angle of arrival of waves is shown in figure 61.

c. U-Adcock Antenna.

(1) To determine the direction of arrival of the received radio wave, it is necessary to use a receiving antenna system with directional properties. This means that the response of the antenna system must depend upon its orientation with respect to the direction of arrival of the radio wave.
(2) The U-Adcock an tenna array complies with this requirement. It consists of two vertical monopole antennas spaced some distance apart and connected together in phase opposition. The output of this array, thus depends upon the phase difference between the voltages induced in the component antennas. The component monopoles are separated same distance from one another so an incoming radio wave will arrive at each monopole at a different time, depending upon the direction of arrival.

Since the phase difference of the voltages induced in the two component monopoles depends upon the difference in time of arrival of the wave, the output of the array will also depend upon the direction of travel.
(3) A polar diagram of reception showing response plotted against the angle of arrival of waves for a U-Adcock antenna system is shown in figure 62. When the transmitter is in the N or S direction, in the system illustrated, the output at the antenna terminals is maximum. If the transmitter is moved to the E or W direction the output at the antenna terminals will be zero or null. At intermediate directions the voltage across the U-Adcock is proportional to the cosine of the angle (θ in fig. 62) betweer the plane of the U-Adcock antenna system and the direction of arrival of the radio wave. The phase of the output voltage from terminals 0 O (fig. 62) for all transmitter locations north of the E-W line perpendicular to the array, is just the reverse of the phase of the output voltage corresponding to transmitter locations south of the E-W line. In other words, the output voltage changes phase by 180° as the angle of arrival of the wave passes through the angles of antenna zero of null response. This is because waves arriving from the north of the $E-W$, or null line, arrive at the north component antenna first, while those from the south of the null line arrive at the south antenna first.
(4) Since the response of the U Adcock antenna depends upon the direction of arrival of the wave with respect to the plane of the array, the antenna may be used to determine the azimuth of a transmitter, from a given point of observation, by rotating it to a null or zero response position. A pointer set perpendicular to the array and located at its center will point along the line of arrival of the radio waves. Observe, however, that for a U-Adcock antenna there are two null positions 180° apart. Either null gives the line of arrival of the wave but
does not distinguish between two possible directions along the jine, leaving a 180° ambiguity in the azimuth of the transmitter. This ambiguity may be eliminated by taking advantage of the phase reversal property at the nulls of a U-Adcock antenna and combining its output with the properly phased output of a single monopole antenna. The relationship between the response diagram of the combined antennas and that of the U-Adcock along shows which UAdcock null corresponds to the transmitter azimuth. A monopole used for this purpose is called a sense antenna.

d. Combined Characteristics of U-Adcock

 and Monopole Antennas.(1) Figure 63 shows four cardioid (heart-shaped) type polar responee diagrams corresponding to the combined outputs of a U-Adcock antenna and a single monopole or sense antenna. The dotted figure eight and circle diagrams represent the individual U-Adcock and monopole response characteristics repectively. In order to indicate the phase

Figure 61. Monopole antenna polar response diagram.
reversal of the output from the U Adcock antenna at the nulls, one lobe of its diagram is marked + and the other -. The monopole diagram is marked t, since the phase of its output voltage is independent of the angle of arrival of the wave and can be made equal to the phase of the U-Adcock output. over one lobe of the figure eight diagrom.

Figure 62. U-Adcock antenna polar response diagram.
(2) The combined response diagrams shown by the solid curve are formed by adding the two dotted diagrams algebraically. The differences in the diagrams of figure 63 are due to differences in the relative amplitudes of the

Figure 53. Combined U-Adcock and monopole antenna polar response diagram.
monopole and maximum U-Adcock responses. Figure 63 c shows the relationship most ideal for sense determination (monopole output equals maximum U-Adcock output). Observe that on one side of the U-Adcock nulls the combined response is greater than on the other side. The orientation of the cardioid diagram with respect to a U-Adcock null, clockwise or counterclockwise, determines which null to read for the direct transmitted azimuth. The other null indicates the reciprocal transmitter azimuth.
e. Crossed U-Adcock Antenna and Goniometer.
(1) Rotating a U-Adcock antenna is frequently impractical, because of the physical size of the array. The same effects may be obtained by using two identical Adcock arrays, set at right angles to one another, in conjunction with a goniometer or rotating transformer. The component antennas of the U-Adcock are located at diagonaljy opposite corners of a square. The goniometer (par. 97) consists essentially of two stator windings, set at right to one another, and a rotor winding. The rotor is connected to the receiver and indicator, and stators NO. 1 and 2 are connected to the corresponding U Adcock antennas (fig. 64).
(2) If a transmitter is in position N or S (fig. 64) the output of U-Adcock antenna No. 1 will be maximum while that from No. 2 will be zero. Current will then flow in goniometer stator No. 1 only. If rotor R is turned at right angles to stator No. 1 no voltage will be induced in it. If the transmitter were moved to position E or W the output of Adcock No. 2 will be maxi mum and that from No. 1 will be zero. Current will then flow only in goniometer stator No. 2. To obtain a goniometer null it will be necessary to turn therotor 90°, or perpendicular to stator No. 2. With the transmitter at A or $A^{\prime}, 45^{\circ}$ between the $N-E$ and S-W positions, the outputs of the two U-Adcock antennas are equal and so are the resulting stator currents.

Figure 64. Block diagram of automatic bearing indicator system.

When the rotor is turned half way between the two stator windings (45 ${ }^{\circ}$ between the two previous positions) the voltages induced in the rotor will cancel each other, and the goniometer output will be zero or null. Maxima will always occur at rotor positions 90° from the nulls.
(3). Observe that the angular posit ion of the goniometer rotor for the nulls changes by the same amount as the angle of arrival of the radio waves. A pointer fastened to the goniameter rotor, or an indicator pattern (fig. 64) whose orientation is controlled by the rotor position, will always show the line of arrival of the incoming radio waves, once it has been properly aligned for some known angle of arrival.
(4) The response characteristics of a pair of crossed U-Adcocks and a goniameter, with respect to the gonimeter rotor position, are identical to those of a single rotating U-Adcock antenna. The only difference is in the size of the rotating units, a small rotating goniometer rotor as compared with the
complete antenna. The method of sense determination is the same.
(5) The rest of the direction finding equipment is used primarily to translate the response characteristics of the directional and non-directional antennas into simple indications relative to an azimuth scale. Radio Set AN/CRD- 3 provides the following three types of azimuth indication: Aural or visual null indication; visual matchedline indication; and automatic azimuth indication. The same antenna system, consisting of a pair of crossed UAdcocks and goniometer and avertical monopole for sense, is used with all three indicator systems.

f. Aural Mull Indication.

(1) The receiver is first tuned to the desired signal using only the goniometer input. The loudspeaker or a telephone headset is used to locate the goniameter nulls as the goniometer dial is turned. The 180° azimuth ambiguity, due to the two nulls, is eliminated by applying the sense antenna voltage
to the receiver sense channel. The phase of the directional input is shifted 90°, and the voltages in the directional and sense input channels are combined. This results in an increase of receiver response from the null by an amount corresponding to the added sense input. If the goniometer dial is rotated from its former null position, the voltage in the directional channel will either add or subtract from the sense channel voltage to further increase or decrease the receiver response (fig. 63). The pclarities of the sense antenna and goniometer connections are arranged so that a clockwise goniometer rotation from the null corresponding to the direct transmitter azimuth will decrease the receiver response. A counterclockwise rotation from the goniometer null will then increase the goniometer response.
(2) Two 360° scales, displaced 180° from each other on the goniometer dial, are provided to facilitate the azimuth determination. The direct transmitter bearing corresponds to the null reading on the black scale, if the receiver response decreases with clockwise rotation of the gonionetar after sense has been added. But if the response increases with clockwise rotation the azimuth null is read on the red scale.
(3) A visual aid to azimuth indication is provided by a single jine pattern on the 2-inch cathode-ray tube. The length of the line is proportional to the receiver response. At a null, the line shrinks to a spot. When sense is added, the spot becomes a line. If the line decreases or increases in length with clockwise goniometer rotation, the azimuth is read on the black or red scales respectively.

g. Visual Matched-Line Indication.

(1) General. In this method the goniometer and sense antenna outputs are fed to the receiver at all times. Two parallel lines appear on the cathoderay tube, and their relative lengths for a given signal depend on the goniometer setting. Nulls are determined by
turning the goniometer dial until the two lines are of equal length. The azimuth reading is taken from the black or red scale, depending upon whether the right-hand line increases or decreases relative to the left-hand line as the goniometer is rotated clockwise.
(2) Basic Principles of the MatchedLine System.
(a) Amplitude Modulation. If the amplitude of an r-f vol tage is varied periodically at an audio frequency rate, it is said to be amplitude modulated. The r-f voltage is referred to as the carrier, the a-f voltage as the modulating voltage, and the resulting combination as the modulated voltage. A curve drawn through the amplitude peaks of the modulated voltage is known as the modulation envelope, and has the same shape as the modulating voltage. Figures $65 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{illustrate}$ respectively the unmodulated r-f vol tage or carrier, the a-f modulating voltage, the modulated voltage, and the modulation envelope drawn through the amplitude peaks. C in figure $65 A$ is the unmodulated r-f amplitude which is the same as the average amplitude of the modulated voltage (fig. 65C). A and B of figure 65 C are respectively the maximum and minimum amplitudes. The percentage modulation of a modulated voltage is defined as 100 times the ratio of the difference in average and minimum envelope amplitudes to the average envelope amplitude, or percent modulation $=C-B \times 100$. Analysis of C
a modulated voltage shows that it has three frequency components. One is the carrier, and the other two are the side frequencies or modulation products. The side frequencies are the sum and difference frequencies of the carrier and the modulating voltages. The carrier may also be modulated by combining it with the proper side frequencies.
(b) Balanced Modulator. The balanced modulator provides a simple means for generating the side frequencies and at the same time suppressing the r-f

A. UNMODULATED RADIO-FREQUENCY VOLTAGE OR CARRIER

C. MODULATED RADIO-FREQUENCY VOLTAGE

B. AUDIO-FREQUENCY MODULATING VOLTAGE

D. MODULATION ENVELOPE CURVE DRAWN THROUGH AMPLITUDE PEAKS OF MODULATED VOLTAGE

Figure 65. Amplitude modulation.
carrier voltage. In one type, an r-f input is introduced in push-pull to the grids of two pentodes, while the a-f modulating voltage is applied to the screens which are connected in push-pull. If the plates are connected in parallel, the r-f carrier voltages on the plates will be combined out of phase and will be balanced out. This leaves only the a-f component and the two side frequencies. The parallel connected plates are then connected to a tuned output circuit which filters out the a-f voltage, leaving only the side frequencies in the output. If the modulating voltage is held constant the amplitudes of the side frequencies will depend only upon the r-f input voltage, varying from zero to maximum as the r-f input is varied in a similar manner. When the side frequencies are combined with another carrier of the same frequency and phase as the original carrier, a modulated voltage like that shown in figure 65c will be obtained. Shifting the phase of the r-f carrier to the balanced modulator by 180° relative to the new carrier reverses the phase of the side frequencies, thus reversing the phase of the modulation envel ope on the new carrier. The percentage
modulation of the new carrier will depend in either case upon the amplitude of the original r-f carrier applied to the balanced modulator.
(c) Trapezoid Modulation Pattern. Characteristic patterns are formed on a cathode-ray tube if the modulated r-f voltage is applied to the vertical plates while the modulating voltage is applied to the horizontal plates. Figure 66A shows the resulting trapezoid pattern whose sides are proportional to the maximum and minimum amplitudes, A and B, of the modulation envelope. If the modulation is remored (O percent modulation) without altering the magnitude of the modulating voltage applied to the horizontal plates, the rectangular pattern of figure 66 B will be obtained. Its sides are proportional to the unmodulated carrier amplitude C. If the carrier is again modulated, but with the phase of its modulation envelope reversed (shifted 180°), the pattern shown in f igure 66 C will be obtained. This pattern is the reverse of the one shown in figure 66A. If the modulation of an r-f voltage is gradually reduced from 100 percent to O percent and back to 100 percent, but with the

a MODNLATIO ENYZOORE ITE PAEISE WITH MODULATME NoHIMGE

a mpouration memoved FINOW R-F CMORIER

Cmodention Ewnaire OUT OF PHINSE WVIW MUCDEATING WOUTHEE

Figure 55. Trepezoid cathade-mey tube patterns with modullated r-f voltage on verticel plates. anf mochaneting are Aerizantal plates.

Plase of the modniction envelope rewersed, the series of patterme shown is figures 67A and -C will to obtained. Orer-modalation will distort the mantuIation envelappe as bltown in figures 68-A and -D and produce distorted patterns live those of figures 68-C and -D. Observe that these series of patterns provide c means for detectime nulls and phase reversals of an r-f voltage by modulating en equiwal ent fixedi uoltage with its sinte frequencies.
(7) Application of the Truthearid Petterm te Matched-Lince Azimath Indicotion.
(a) Figure 69 shows a biock dia-

Figure 58. Quermodulated voltage and corresponding trapezaid patterns. grom of the principle circurit components for matched-Iine azimeth imdication.

a. 100\% MOUULATION

B. 50% mopulisatian

c. MODULATION

D. 50\% MODULATTION W!TH PHASE REVERSML GF MODULATION: ENVELOPE

E. 100% mocrulatian with PHASE REVERSALL GF MODULATIGON EMNEEAOPE

TL 10063-3
Figure 67. Series of trapezaid cathode-ray tube patterns carresponding to a change fram 100% modulation envelotos.

The goniometer output is cmplified by an r-f amplifier in the direction channel of the receiver, shifted in phase 90°, and applied to the balanced modulator. The a-f modulating vol tage is simultaneously applied to the modulator and to the horizontal plates of the cathode-ray tube. The sense antenna outpat is amplified by the r-f amplifier in the receiver sense channel and fed to the mixer r-f
the goniometer is rotated one way from a nulj the ricdulotor indut will increase and be in phase with the sense voltage. The side frecuency amplitudes will increase, thereby increasing the modulation on the sense carrier to give a trapezoid pattern. A similar effect will result as the goniometer is rotated in the other direction from the null, or in the same direction

Figure 5g. Block diagram of matched line azimuth indicator system.
amplifier where it is combined with the side frequencies from the goniometer voltage. The modulated output of the mixer r-f amplifier is then applied to the vertical plates of the cathode-ray tube where it forms the trapezoid pattern as outlined in sub paragraph g(2)c above.
(b) As the goniometer is rotated, the input to the balanced modulator varies according to the figure of eight goniometer response. At the nulls the modulator input is zero so that the amplified sense voltage applied to the cathode-ray tube plates is unmodulated. Therefore, at the goniometer nulls the tube pattorn is rectoningar. As
from the opoosite null, except that the phase of the modulator input will shitt by 180°. This will produce a tropezoid pattern whose long and short sides are reversed (subpar. g(2)c above). The direct transmitter azimuth or the absolute direction of the received signal is then definitely related to the way in which the sides of the trapezoid pattern change, with goniometer rotation, from the rectangular nuls pattern.
(c) In practice the center oortion of the trapezoid pattern is suppressed by a blanking circuit so that only the vertical lines corresponding to the sides of the pattern remain.

Figure 70. Evolution from trapesoid to matched line series of cathoderay tube patterns.

These are brought close together in order to facilitate matching them in height, by reducing the amplitude of the modulating voltage applied to the horizontal plates. Since only the upper or lower halvee of the lines are necessary, greater sensitivity for a given cathode-ray tube size is obtained by eliminating half the pattern and amplifying the other half to the full size of the screen. Figure 70 shows a series of patterns from O percent modulation to over-modulation, including the evolution from the trapezoid to matched-line series.

(4) Typical Matched-line Indicator

 Patterns.(a) The goniometer dial has two 360° scales displaced 180° with respect to each other. The outer scale is biack and the inner one is red. All connections are phased so that the direct transmitter azimuth is determined without ambiguity by reading the black scale if clockwise rotation of the dial from the null causes the right-hand line to lengthen. If the right-hand line shortens with clockwise rotation, the red scale reading gives the azimuth. In either case,
the azimuths are given by the proper scale reading for which the two lines are exactly equal in length.
(b) Figure 71 shows a sequence of patterns corresponding to 360° of rotation of the goniometer dial in a clockwise direction. As the dial is rotated through the first null (fig. 71-D and -E) the left line lengthens and the right line shortens. The red or inner scale shows the azimuth to be 270°. As the dial is rotated still further and passes through the second null (fig. 71-J and $-K$, the left line shortens and the right Iinelengthens. The black or outer scale now shows the azimuth which is the same as before, nameIv 270°.

h. Automatic Azimuth Indications.

(I) General. In this method two types of patterns are automatically produced on a cathode-ray tube screen surrounded by a 360° azimuth scale. When the SEARCH-INSTANT. BEARING-SENSE switch is on INSTANT. BEARING, a twin-leaf type azimuth pattern is formed whose orientation depends upon the line of arrival of the received signal. The tips of the pattern are 480° apart on the azimuth scale, giving rise to a 180° uncertainty in the azimuth. When the sense antenna roltage is cdded by pressing the switch to SENSE, the azimuth pattern disappears and a sense pattern is formed. The sense pattern is off center on the screen opposite the azimuth scale reading for one tip of the azimuth pattern. Circuit connections are so arranged that the azimuth scale reading of the azimuth pattern tip opposite the succeeding sense pattern gives the absolute direction or direct azimuth of the transmitter.
(2) Receiving and Indicating Equipment.
(a) Figure 64 shows a block diagram c: the principle circuit components for automatic azimuth indication. The equipment operates essentially as

TL 19037-s
Figure 71. Ractierm uariation for 350° rotation of goniometer digl for 370° bearing.
an automatic curve tracer, continually plotting the response characteristics for a given received signal. It is designed to plot the figure of eight and cardioid polar diagrams with respect to a zero reference circle, rather than from the zero reference point, used in the diagrams of figures 62 and 63. The resulting curves or patterns appearing on the cathoderay indicator screen (figs. 72 and 74) are reciprocals of the curves in figures 62 and 63. That is the nulls of figures 62 and 63 look like maximums in figures 72 and 74 and vice versa.
(b) Referring to figure 64, the goniometer output is amplified by an r-f amplifier in the directional channel of the receiver, shifted in phase 90°, and applied to the mixer amplifier. The sense anterna output is amplified in the receiver sense channel and combined with the amplified goniomoter response in the mixer amplifier, when required for sense. The output of the mixer amplifier is rectified and applied to the grid of a d-c amplifier. The plate current from the d-c amplifier flows through a pair of deflection coils which are mounted so the resulting magnetic field is always perpendicular to the axis of the cath-ode-ray tube. The magnitude of the d-c amplifier plate current through the deflection coils is adjusted, by proper bias ct zero signal, so that the resulting magnetic field through the cathode-ray tube deflects the spot to the edge of the screen. As the deflection coils are rotated about the axis of the tube the spot follows around the edge of the screen to form the zero signal or circular trace (fig. 72).
(c) The rectified receiver output is properly polarized so as to bics the d-c amplifier toward cutoff and reduce the deflection coil current. This reduces the deflecting magnetic field and allows the cathoderay tube spot to move back toward the center of the screen. Therefore, any signal, whether from the goniometer

Figure 72. Indicator asimuth pattern corresponding to the figure eight crossed U-Adcock and goniometer response characteristics.
or sense channels, will deflect the cathode-ray tube spot toward the center of the screen by an amount proportianal to the magnitude of the signal. The indicator patterns are then produced by driving the goniometer rotor and deflection coils by a common motor.

(3) Azimuth Pattern.

(a) The azimuth pattern is obtained by setting the SEARCH-INSTANT. BEARING-SENSE switch to INSTANT. BEARING. This connects the bearing deflection coils to the d-c amplifier output and disconnects the sense channel output from the mixer amplifier. The goniometer response, and hence the deflecting field of the deflection coils, varies with rotation as snown by the dotted figure of eight curve in figure 72. At the goniometer nulls, 0° and 180° in this figure, the receiver output is zero and the cathode-ray tube spot is at the edge of the screen. As the goniameter rotor and the deflection coils are turned from the nulls, the receiver output and bias on the d-c amplifier increases. This reduces the deflecting field and causes the cathode-ray tube spot to move toward the center of the screen as it rotates. For example in figure 72 , at 20° of

Figure 73. Indicator pattern corresponding to cardioid response diagram, as $i t$ would be traced by the bearing deflection coils.
rotation the goniometer response is R and the cathode-ray spot is deflected R^{\prime} from the edge of the screen toward the center.
(b) The ends of the azimuth pattern, therefore, correspond to the goniometer nulls, while the center points correspond to the maximums. With keyed signals the azimuth and zero signal or circular pattern are traced alternately.

(4) Sense Pattern.

(a) The sense pattern is obtained by combining the sense and directional channel outputs in the mixer amplifier (fig. 64). The receiver response then varies as shown by the dotted curve in figure 73. The solid curve is the corresponding indicator pattern which would be traced if the d-c amplifier were still connected to the bearing deflection coils. However, this orientation of the pattern is not practical for sense determination. Figure 74 shows the actual sense pattern which is obtained by rotating the pattern of figure 73 by 90°. This is done automatically when switching to SENSE by switching the d-c amplifier output to the sense deflection coils, which are advanced 90° from the bearing deflection coils (fig. 64).

Figure 74. Sense pattern figure 73 rotated 90°) traced by sense deflection coils which are advanced 90° from the bearing deflection coils.
(b) Observe thot the sense pattern (fig. 74) is off center on the screen but is symmetrical with respect to the axis of the azimuth pattern of figure 72. All connections are phased so that the sense pattern lies opposite the end of the azimuth pattern which corresponds to the direct transmitter azimuth. This =elationship between the azinuth and sense patterns is easy to remember because it is similar to the corresponding relationship between the head and tail of an arrow. That is, the head of the arrow points to the direct transmitter azimuth and the tail to the reciprocal azimuth, or the caimuth of the receiving station with respect to the transmitter
(c) Figure 75 shows the succession of azimuth and sense patterns, for a 0° direct transmitter azimuth, as the SEARCH-INSTANT. BEARING-SENSE switch is alternately switched from INSTANT. BEARING to SENSE. The sense pattern is shown dotted in figure 75 to emphasize that the two patterns cre not obtained simultaneously on the indicator screen.

Figure 75. Composite view of the asimuth and sense patterns of figures 72 and 74 show their arrow-head and tail relationship gives the direct transmitter bearing.

94. RADIO SET AN/CROD-8.

Figure 2 shows a block diagram of the major operating components of this direction finding system, whose overall functional principles were described in paragraph 93 . Functional descriptions of the components are treated in the following paragraphs.

85. MTEMA CBRAY.

a. General. The antenna array consists of a stationary crossed U-Adcock system whose component antennas are located at the corners of a square, 180 feet on the diagonal; and a centrally located sense antenna. The Counterpoise MX-318/CRD-3 ground mat system, Phase Inverters MC-411-A and MC-413-A, h-f Cords CD-8 29 and CD-1020, Power Cords CX-402/CRD-3; and Junction Boxes JB-91-A must also be considered functionally as a part of the antenna array, whose characteristics determine the direction of arrival of the radio waves.
b. Antenne Assembly AS-204/CRD-3. Antenna Assembly AS-204/CRD-3 consists of a nine-section mast approximately

64 feet high. The mast is supported on a swivel type steel base, and a guy rope and chain assembly toge ther with a stake type ground anchor forms an effective hold-down aystem for each mast.
c. Counterpoise Mex-318/CRD-3. Counterpoise MX-318/CRD-3 consists of a 32-foot square meshwork of copper braid conductors connected at right angles to each other and fastened together with dot fasteners. One counterpoise asscmbly is placed under each antenna monopole to insure a uniform electrical ground return. The counterpoise system reduces ground losses characteristic of poor and variable soil conductivities of a natural ground.
d. Phase Inverters MC-4II-A and MC- 413 - A. Phase inverter type coupling units are used between the component antennas and h-f transmission lines. This type of coupling unit insures uniform energy transfer over the frequency range of the equipment

Figure 76. Functional diagram of Phase Inverter MC-411-A less spare tube. Phase Inverter MC-413-A consists of two single inverter circuits with inputs in parallel.
since it is aperiodic in operation. It also provides optimum impedance matching, independent of frequency, between the unbalanced antenna outputs and the balanced h-f transmission lines. Figure 76 shows a simplified functional diagram of the circuit of

Phase Inverter mC-411-A used for the componeat antennas of the 0 -Atcock array. Phase Inverter MC-413-A is essentially two inverter circuits of the type shown in figure 76 with inputs connected in parallel. The two MC-413-A phase inverter outputs are identical but independent. Only one of these outputs is used in Radio Set AN/CRD-3. The unused receptacle is covered with a metal cap. The inverter tune control grid No. 1 of figure 76 is connected through a $0.01-\mathrm{mf}$ capacitor to the antenna through the mounting collar and the antenna output vol tage is devel oped across the 25,000 ohm grid resistor. The output of the inverter tube is divided between the plate and cathode circuits, using carefully matched components to insure a balanced output to the transmission line. A 10-mmf silver mica capacitor is shunted across the $94-\mathrm{ohm}$ tap of the
cathode resistor to compensate for uaequal phase shifts through the inverter tube because of interelectrode capacities. The complete circuit diagrams for Phase Inverters mo-411-A and mo-413-A are shown in figures 77 and 78 respectively. Phase Inverter MC-411-A has two loktal type JAN-7V7 hi-mu peatodes connected in parallel except for the filaments: one for use and one for spare. The tubes require 250-volt d-c plate woltage and 6.3-wolt a-c filament vortage. The relay in the plate circuit of MC-411-A grounds the antenna when the plate voltage is turned off. Since Phase Inverter MC-413-A is equivalent to two single inverters, it has two pairs of tubes, with each pair connected in parallel. As before one tube of each pair is a spare. Dismantled views of Phase Inverters MC-411-A and MC-413-A are shown in figures 5 and 6 respectively. The No. 1 and 2 fila-

CIRCUIT OIAGRAM FOR PHASE MVERTER MC-AII-A
thileen-a
Figure 77. Circuit diagram of Phase Inverter MC-411-A.

Figure 78. Circuit diagram of Phase Inverter MC-413-A.
ments of all phase inverters are connected in parallel to separate lines, either one of which may be switched to the filament supply by the filament 8 witch on the panel of Control-Rectifier Power Unit PP-135/CRD-3. In the event of tube failure in any of the phase inverters, operation may be immediately resumed by switching the filament supply to the spare tubes.
e. High-frequency Transmission Cords CD-829 and CD-1020. These cords are of the shielded twin coaxial type. Cords CD-829 are approximately 92 feet long after adjustment to identical electrical lengths (same over-all phase shift and attenuation characteristics). Cords CD-1020 are approximately 40 feet long, and are also adjusted to identical electrical lengths. This insures the proper functioning of the direction finding equipment which depends upon unaltered, relative phase relationships of the component anterna voltages over the transmission line network. The output of Cord CD-829, connected to the north antenna, is combined in phase opposition by means of Junction Box JB-91-A to the output of Cord CD-829, which is connected to the south antenna. Cords CD-829, which connect to the east and west antennas, are connected in the same manner. Cords CD-1020 connect the out puts of Junction Boxes JB-91-A and sense Phase Inverter MC-413-A to Junction Box J-99/CRD-3, which in turn connects to the goniometers and receiver sense channel respectively. The necessary phase shift to compensate for the difference in r-f cable length between the directional and sense ant enna cables is obtained by means of a O.0039-mf capacitor, which is connected across the sense input terminals in Junction Box J-99/CRD-3.

$96 . J U N C T I O N$ BOX J-99/CRD-3.

The r-f cables from the antenna system and from the receiver and indicator goniometers connect to Junction Box J-99/CRD-3. An electrically operated
rotary switeh inside the junction box switches antenna and goniometer circuits for the several modes of operat ion of Radio Set AN/CRD-3. Shields separate the junction box into five individual compartiments: one for each directional circuit, one for the goniometer output circuits, one for the sense circuit, and one for the switch operating circuit and its components. A knob on the end of a switch shaft extension on one side of the junction box permits manual operation of the switch, if required. A 10,000 -ohm resistor is conneeted to ground from the color-coded terminals for each leg of the antenna r-f transmission lines. These resistors (R451, R452, R453, R454, R455, and R456) act as leaks for static charges collected by the directional and sense antennas. Three 120-ohm resistors (R457, R458, and R459), one across each of the dual lines, reduce peaks and assure a more uniform output from the lines over the frequency range of the equipment. The individual set of three resistors for each junction box are selected within very close tolerances to provide uniform impedance and voltage characteristics among the lines. A dummy-goniometer circuit consisting of an r-f transformer (L45i) and a resistor (R46O) in the sense antenna circuit simulates the electrical constants of the goniometer, in that it reflects the same impedance to the receiver sense channel as the goniometer does to the receiver directional channel. Capacitor C451 provides the proper sense antenna output voltage phase shift. Figure 80 shows the switching circuits. Sections S451 and 3452 of the rotor switch connect the E-W and N-S inputs to the receiver or indicator goniometer and section 3453 connects the output of the goniometer, used to the receiver directional input channel. The rotor switch is operated electrically by solenoids K453 and K454. These solenoids operated by alternating current connect to the power lines through receptacle J46C.

Figure 79. Schematic diagram of Junction Box J-99/CRD-3.

Figure 80. Switching circuit of Junction Box J-99/CRD-3.

Remote operation from the INDICATICN switch in the receiver is accomplished by means of relays $K 451$ and K452. Microswitches S454 and S455 disconnect the relays after each operation is completed. The a-c input to the junction box is suitably fused.

97. GONIOMETER CFT-47372.

Goniometer CFT- 47372 has been described mechanically in paragraph 5 C and its functional operation has been outlined in paragraph 92e. A schematic is shown in figure 81 . Referring to this diagram the directional or crossed U-Adcock inputs are introduced at receptacles $\mathrm{J}-851$ and $\mathrm{J}-852$. They are connected to two mutually perpendicular stator windings No. 1 and No. 2 respectively. A rotor winding coupled to the two stator windings is connected to a second rotor winding or rotor primary of the output transformer. The secondary of this transformer is connected to output receptacle J 853. The coupling between the rotor primary and secondary windings is inde-

in mese-s
Figure 81. Circuit diagram of Goniometer Navy No. CFT-47372.
pendent of rotor position. Since stator No. 1 is perpendicular to stator No. 2 , the voltage it induces in the rotor winding is in phase, or 180° out of phase, with the induced voltage from stator No. 2 depending on the rotor position. The goniometer output will then alternate between zero and maxi-
mum for every 90° turn of the rotor. The zero positions relative to a fixed scale depend upon the relative magnitude and phase of the stator currents, which in turn depend upon the direct ion of arrival of the radio wave (par. 930). Each stator winding is center tapped and a 51-ohm resistor connects from fach stator tap to ground to provide a balanced condition so that caracitive coupling to the rotor is neutralized.

98. RAD 10 RECEIVER ASSEMBLY R-128/CRD-3.

a. General. The function of the receiver is to amplify and rectify the characteristic goniometer and antenna response for the indicator control circuits. It also has the conventional beat-frequency oscillator and audio circuit with loudspeaker and phone outputs. The receiver can be used independently for monitoring and has com-
plete facilities for the matched-line and null azimuth indications. It receives and gives bearings for continuous-wave ($c-w$), interrupted-continuous-wave (i-c-w), or modulated-continuous-wave ($m-0-w$) signals and has autonatic volume control for fading signals. The principal sections of the receiver in their functional relationship are shown in the block diagram of figure 82 . The progress of the input signal and the high frequency and b-f-o vol tages is indicated by arrows. The complete circuit diagram is shown in figures 157 and 158.
b. R-f Circuits. The radio receiver has two r-f channels: one for the directional voltage from the goniometer, the other for the sense voltage (fig. 83).
(1) Goniometer Amplifier Input. The goniometer output is fed to a tuned r-f transformer (T_{101}) through a balanced primary winding. This voltage is ampli-

Figure 82. Block diagram of Radio Receiver Assembly R-128/CRD.
fied by goniometer channel amplifier Tube JAN-6AC7 (VAC6) which has a load (C131, L113, R114) that is capacitive at the operating frequencies and shifts the phase of the directional signal into proper relationship with respect to the sense vol tage. The directional vol tage is then impressed upon the grid of phase inverter Tube JAN-6AC7 (V-107) the outDut of which is balanced with respect to ground and impressed upon the grids of the balanced modulator Tubes JAN 6AC7 (V108 and V109). When INDICATION switch 3107 is on manual arimuth position, the grids of the balanced modulator tubes are in push-pull and the plates are tied together in parallel. A modulating audio vol tage is impressed from screen to screen through capacitors C438 and C139 so that as one screen becomes more positive, the other becomes less positive. The output of the balanced modulator under these conditions consist of the same type of voltage that would be obtained if the directional vol tages were modulated by the audio and the corrier were suppressed. That is, the output of the balanced modulator consists of the upper and lower side frequencies only. When switch 3107 is on instantaneous azimuth or on nujl position, one of the balanced modulator tubes (v 109) is rendered inactive and the audio modulating voltage is removed from the screen grids. The remaining active tube (V1OB) acts as an r-f amplifier.
(2) Sense Channel Intut. The sense channel input is fed to a tuned r-f trans former (T1O2) through a balanced primary winding, and is then amplified by sense channel amplifier tube V1O2. This vol tage is then combined with the balanced modulator output. When the goniometer is on a null, and the controls set for manual azimath indication, the output of the balanced modulator is zero. Thus, under these conditions the input to second r-f amplifier tube V102, consists of the sense voltage onjy. However if the goniometer is rotated off the null, a signal is fed into the balanced modulator and the two side frequencies in the output
combine with the sense output from tube V1O2, which acts as a carrier, to form a modulated signal. The degree of modulation increases os the goniometer is further rotated of f the nulj. The sense is open while arimuths are taken with the automatic bearing indicator and is combined with the goniometer channel voltage in order to yielf an output suitable for sense determination (section X).
(3) Secona R-f Amplifier. After combination of the sense and goniometer channels, the resultant is fed into tuned amplifier tube V103 through r-f transformer T1O3. This amplifier in conjunction with the previous tuned amplifiers insures adequate preselectivity and reduces image response to a mi nimum. I-f trap inductance coil L111 in the cathode circuit of tube V103 prevents signals of an intermediate frequency at the ontenna from entering the i-f circuits.
(4) Sensitivity Control. The receiver sensitivity is manually controlled by variable resistors R431a and R131b (fig. 157). The gain of these stages is maintained essentially constant at any given RF GAIN control setting, by the $a-\nabla-c$ bias applied to the grids through their associated transformer secondaries when the AVO-MVG-CW switch is on AVC.
(5) Tuning. The r-f amplifiers, mixer, and high-frequency oscillator circuits are tuned by the corresponding sections of five-gain tuning capacitor C1O1. The h-f oscijlator Tube JAN-6SJ7 (V110) tracks at 175 kc above the r-f amplifier and mixer circuits to produce the 175 -kc intermediate-frequency output from the mixer stage, Tube JAN-6SA7 (V104).
C. A-f Oscillator. Modulation of the goniometer channel is obtained by impressing a low-frequency (100 cps) vol tage upon the screen grids of the balanced modulator. The same audio vol tage is impressed upon the horizontal deflection plates of cathode-ray Tube JAN-2AP1 (V -216) in the power-indicator

Figure 83. Functional diagram of $r-f$ section.
section of the receiver so as to yield the pattern characteristic of the matched line system of azimuth indication. The source of this audio voltage is the low-frequency oscillator (fig. 84) consisting of Tube JAN-6SQ7 (V_{211}) and Tube JAN-6SN7 (V212). The latter is a dual triode and only half is used with the oscillator. The oscillator is of the resistance-capacity phase-shift type employing inverse

2. 구 is srmeal For FIXED CAPACITOR
n novers
feedback (across resistor R254) to insure a high degree of voltage and frequency stability. The feedback voltage necessary for oscillation is fed from the cathode of tube V212 to the phase shift network through capacitor C237, and from there to the grid of tube V211. The frequency of oscillation is that frequency at which the total phase shift from the plate of tube "'211 (through tube V212 and the phase shift network) to the grid of tube V_{211} is 180°.
d. I-f Amplifier. Two stages of i-f amplification are used (fig. 85). After amplification in the first stage (tube V2O1), the i-f signal is split into two channels: one feeds the audio channel, and the other feeds the indicator channel. This separation is required so that the beat-frequency oscillator, used for reception of c-w signals, produces an audible signal from the speaker or earphones without appearing as modulation on the azimuth patterns obtained. The degrees of selectivity (broad and sharp) are obtained

Figure 84. Functional diagram of audio-frequency oscillator.

Figure 85. Functional diagram of i-f section.
by switching the coupling reactance of the interstage i-f circuits. The interstage coupling consists of two tuned circuits with part of the tuning capacitive reactance $X_{c b}$ and $X_{c s}$ common to both circuits. The magnitude of the coupling capacity determines the degree of coupling, which in turn determines the bandwidth or selectivity of the stage. When the selectivity control switch 5201 is on BROAD the coupling reactance is $X_{c b s}$ and when it is on GHARP, the coupling reactance is $X_{C 8}$. Changing the selectivity does not alter the i-f tuning, since the total tuning capacity (series combination of 200 micromicrofarads (mmf), 0.006 microfarad (mf), and 0.015 mf for the first s tage; and $200 \mathrm{mmf}, 0.006 \mathrm{mf}$, and 0.04 $m f$ for the second stage) is the same for both settings of the selectivity switch.
e. A-f Channel. The audio-frequency signal is fed from diode load resistor R213 of detector Tube JAN-6H6 (V2O3) (fig. 86) to the grid of cathode-follower Tube JAN-615 (V2O8). The output across cathode resistor R234 is attenuated by means of a T-pad (resistors R235, R236 and R237). This T-pad has a frequency characteristic introduced by the presence of capacitor C232 which discriminates against high audio-frequency noise voltages. The audio voltage is impressed upon the grid of a voltage amplifier Tube JAN-69K7 (V209). After amplification it is fed to a power amplifier Tube JAN-6K6GT/G (V21O). The audio output voltage is coupled to the speaker or headphones by means of output transformer T201 which has a 600 -ohm winding for headphones and a 4 -ohm winding for the speaker. The audio amplification is varied by means of the A.F. GAIN control R2iO.
f. Beat-frequency 0scillator. The beatfrequency oscillator (fig. 158) is dosigned to insure a high degree of froquency stability. Its operating frequency is near that of the intermediate frequency and it is coupled to the output of the second i-f stage in the audio channel,
where it mixes with the i-f signal to produce a difference or audible pitch. This pitch can be varied by changing the frequency of the beat-frequency oscillator with tuning capacitor C224.
g. Cathode-ray Tube Circuits. The circuits associated with cathodo-ray Tube JAN-2API (V216) used for the matchedline systen of azimuth indication are shown in figure 87. The audio voltage from the audio-frequency oscillator is fed to horizontal deflection plates DI1 and DJ2 through anplifier tube V212 and capacitor C241. Potentiometer R270 controls the horizantal position of the spot. The 100 cycle-per-second (cps) modulated i-f output from the indicator channel is impressed upan the vertical plates through capacitor C228. Vertical positioning of the spot is cantrolled by potentionoter R264. The brilliance and focus are controlled by potentioneters P268 and R266, respectively. The center portion of the pattern is suppressed by a trigger circuit consisting of a rectifier Tube JAN-6H6 (V217) and an amplifier (half of Tube JAN-6SN7 V-212) leaving only two vertical lines. The trigger rectifier acts as a full-wave rectifier with the 100 -cps input applied directly from the low-frequency oscillator through the transformer T202. The rectified pulses control the plate current of tube V212 which in turn controls bias on control electrode $G 1$ and, therefore, the brilliance of the pattern. During the peaks of the audio wave, the rectified pulses are sufficiently high to completely blank out the tube. The degree to which the pattern is blanked out can be adjusted by tlanking adjustment potentiometer R272. The blanking action can be removed entirely by the blanking switch 8204 which opens the cathode circuit of the amplifier tube.

h. Voltage Supply Circuits.

(1) A-c Circuits. The a-c input to the radio receiver is introduced at receptacles J2O5 (fig. 158). Each input lead is shielded and fused (F2C3

Figure 86. Functional diagram of receiver a-f section.

Figure 87. Cathode-ray tube controls.
and F2O4). A two-pole MASTE: switch (S206) controls the supply to the receiver and the MOTOR, BEAM, and AMPLIFIER switches. Each of these s'witches, and the MASTER switch has an indicating panel lamp. Each leg of the a-c connections to receiver power transformer T2O3, is fused (F 2 O and F 2 O 2) and filtered by a two-section capacity input network. Input capacitors C 253 and C254 are spark plates. The primary of transformer T 2 O 3 is tapped for operation on 110-, 115-, or 120 volt lines. The OFF-STANDBY-ON switch controls the a-c supply to the primary and interrupts the d-c output of the low- and highvoltage rectifiers in the OFF and STANDBY positions. The secondary of transformer T 203 has $f i v e$ windings. One 6.3-volt winding supplies the heaters
of all the 6.3 volt tubes except Tube JAN$2 \mathrm{AF1}$ (V216) which has its own 6.3-volt winding. A 2.5 -volt winding supplies heater voltage to Tube JAN- 2×2 (V215) and a 5-volt winding to Tube JAN-5U4G (V213).
(z) Rectifier Circuits. The high-voltage :inding is tapped at 400, 315, O, 100, and 315. Three separate rectifiers are used with the radio receiver. half-wave rectifier tube V215, connected to the 400 -volt tap, supplies the high voltage to the receiver cathoderay tube circuits. Full-wave rectifier tube V213 connected to the 315 -volt tap, supplies the plate and screen voltages for the receiver circuits. Tube JAN-6H6 (V214), connected as a half-wave rectifier to the 100 -volt tap, supplies bias voltage for the cathode-ray tube, the trigger amplifier, and the a-v-c return circuits.

The output voltages of these tubes have suitable filter and bleeder networks.

99. AMPLIFIER-RECTIFIER POWER UNIT PP-151/CRD-3.

a. General. Amplifier-rectifier Power Unit PP-151/CRD-3 operates from a 110to 120-volt, 55- to 65-cycle, singlephase a-c source to provide the a-c Voltages and the rectified, filtered d-c voltages required for operation of the automatic bearing indicator. The indicator deflection coil amplifier and its power supply are also included in the power unit.
b. Input. The a-c power input, from the switching circuits in the power indicator section of the radio receiver, is introduced at receptacle J405 (fig. 159). Fuses 5401 and 5403 protect the power connections to the primaries of the low and high-vol tage transformers T402 and T401, respectively. As a safety precaution, the return connection of transformer T 401 primary is completed through receptacle J403 and a shorting bar in the automatic bearing indicator, only when both ends of Cord CX-549/CRD-3 are connected.
C. Low-voltage Supply Section. Power t ransformer $T 402$ has three secondary windings. Two windings feed the plates and heaters of rectifier Tube JAN-6X5 (V_{402}) and supplies the power to operate relay K401. The output of the rectifier is filtered by a two-section, choke input filter. Voltage regulator tube JAN-OD3/VR-150 (V404) regulates the screen supply to the deflection amplifier tube.
d. High-voltage Supply Section. Power $t r a n s f o r m e r ~ T 401$ has a multi-winding secondary for feeding the supply circuits of the automatic bearing indicator cathode-ray tube. The high-voltage winding supplies half-wave rectifier Tube JAN-2X2A (V403) whose output is filtered by a single-section capacitor input, resistance-capacity filter. A 2.5-volt winding supplies the heater of Tube JAN-2X2A. The third winding of
t ransformer T4O1 supplies 6.3 volts for the heaters of the cathode-ray tube in the automatic bearing indicator. The output voltages to the bearing indicator connect to receptacle J4O4.
e. Deflection Coll Amplifier. The indicator output voltage from the radio receiver is introduced to the rectifier power unit at receptacle J401 (fig. 88). It is fed to the grid of deflection amplifier Tube JAN-6AC7 (V401) through the DEFL. SENS. control R401. CIBCLE DIA. control R403 adjusts the initial bias of the amplifier tube so that its plate current, through the automatic bearing indicator deflection coils can be set to deflect the cathoderay tube spot to the edge of the screen. Rectified signal from the radio receiver indicator channel is polarized to bias the amplifier tube V4O1 toward cut-off. This reduces the plate current through the deflection coils and the cathoderay tube spot returns toward the conter of the indicator screen in proportion to the amplitude of the rectified signal.

100. BEARING INDICATOR ID-121/CRD-3.

a. General. Bearing Indicator ID-124/ CRD-3 is an electromechanical unit for producing instantaneous visual azimuth and sense patterns characteristic of the antenna and goniometer outputs. Voltages from the rectifier power unit to the cathode-ray tube circuits are introduced at receptacle $J 501$ (fig. 161). The output of the deflection amplifier and the a-c power circuits to the motor and azimuth scale lamps are introduced at receptacle J502.
b. Cathode-ray Tube Circuit. Cathoderay Tube JAN-5NP1 (V5O1) with a 5-inch green screen is used in the indicator. The horizontal and vertical deflection plates of the cathoderay tube are used only for centering the azimuth patterns on the screan. The INTENSITY (R5O7), roCUS (R506), and POSITIONING (R5O1 and R5O2) controls function by varying the voltage supply to the various cathode-ray tube electrodes.

NOTE:
tis sYMBOL'FOR FIXED CAPACITOR $M=1,000 \Omega$

TL 10979-9

Figure 88. D-c deflection coil circuit.
c. Deflection Coil Circuit. The directional and sense deflection coils are connected in the plate circuit of the deflection coil amplifier for the respective azimuth bearing indication (fig. 88). Carbon brushes are used for electrical connections between the rotating and stationary circuits.
d. Motor and Azimuth Scale Lamp Circuits. The motor (fig. 161) is a $1 / 8-$ horsepower, single-phase, capacitystart, induction-run motor with a normal running speed of 1140 revolutions per
minute (rpm). A centrifugal switch cuts out capacitor C5O2 when the motor has reached its operating speed. At 110 volts, the motor draws 3.2 amperes. It is designed for operation from 110 to 120 volts, 55 to 65 cycles, singlephase altemating current. The a-c input connections which supply the motor fram receptacle J 502 are also connected to transformer T5O1. The control R509 is connected in series with the four az imuth scale lamps I5O1, I5O2, I5O3, I504.

TLII708
Figure 89. Indicator deflection coil circuit detail.
e. Optical System. The pattern on the cathode-ray tube screen is directly visible to the operator. The edgelighted 350° lucite azimuth scale is positioned around the periphery of the screen. A rotatable clidade blade is provided to facilitate interpretation betwoen the azimuth pattern and the scale.

101. COMTROL-RECTIFIER POWER UNIT PP-135/CRD-3.

a. General. Control-Rectifier Power Unit PP-135/CRD-3 serves primarily as a power supply for Phase Inverters MC-411-A and MC-413-A. It includes the phase inverter balancing circuits.
b. Input. The power input from receptacle J 208 on Padio Receiver Assembly R-128/CRD-3 is introduced at receptacle J351 (fig. 160) which is in parallel with auxiliary a-c outlet receptacle 5352 (AJX 115 V AC) on the front panel. Switch 9351 controls the power connection to the primary winding of the power supply transformer T351. Neon indicator 1 lomp 1301 protected by a 0.47 -megohm resistor, lights when the ON CFF AC

SWITCH is CN. Fuse F351 protects the circuits from overloads.
c. Power Supply Section. Power transformer T351 has a multiwinding secondary for feeding the supply circuits of the antenna phase inverters. The highvoltage winding (terminals 3 aid 5) connect to the plates of full-wave rectifier Tube JAN-504G (V351) which has an output that is filtered by a two-section choke input filter incorporating Tube JAN-6L6G (V352) in a hum-buck ing regulator circuit. Tube V352 functions as a variable resistance across the output of the power supply and operates within the voltage limits caused by the hum produced in the power supply. The voltage drop across resistor R352 is coused by the sum of the currents through tupe V352 and the load on the power supply. This voltage is negative with respect to ground and provides control for the action of tube V352. When the output rises slightly (because of the hum component), the vol tage drop across resistor R352 tends to increase and reduce the current through tube V352 because of higher grid bias. As
the current through the tube decreases however, the drop across resistor R352. decreases sufficiently to maintain the voltage across the output to an essentially constant value. When the output voltage decreases slightly, the reverse actions take place. Resistor R353 in the plate circuit establishes the proper operating conditions for tube V352.

d. Control Circuits.

(1) DF-SENSE-60 $180^{\circ}-90^{\circ}-270^{\circ}$ SELECTOR SWITCH. This is a multiple contact rotary switch which connects in meter M351 to measure the total or individual plate currents of Phase Inverters Mo-411A or the plate current of Phase Inverter MS-413-A. Regardless of what position the switch is thrown to, plate voltage is connected to all phase inverters, provided toggle switches 3353 to 5356 $0^{\circ}, 180^{\circ}, 90^{\circ}$, and 270°) are at the ON position. This allows a constant load while measuring the various plate currents in contrast to the varying load and inaccurate readings that would be obtained if the plate currents of one phase inverter were measured by turning off the other phase invertey switches. The switching operations of S357 are as follows:
(a) DF. Plate voltage is connected to all phase inverters. Meter M351 is connected to measure the total plate current af the four Phase Inverters MC-411-A.
(b) SENSE. Plate voltage is connected to all phase inverters. Meter M351 is connected to measure the plate current in Phase Inverter MC-413-A only.
(c) 0°, $180^{\circ}, 90^{\circ}$, or 270°. In any of these positions, plate voltage is connected to all phase inverters. Meter M351 is connected to measure the plate current of that Phase Inverter MC-411-A corresponding to the $0^{\circ}, 180^{\circ}$, 90°, or 270° antenna monopoles.
(2) BALANCE ADJUSTMENT. Resistors R355 to R358 ($0^{\circ}, 180^{\circ}, 90^{\circ}$, and 270°) match the gain of the respective directional antenna Phase Inverters MC-411-A by varying the applied voltage.
(3) SENSE GAIN. Potentiameter R354 varies the output of sense antenna Phase Inverter MC-413-A by varying its plate voltage.
(4) FIL SWITCH. Switch 8352 switches the heater supply voltage from one set of phase inverter tutes to the other for use in case of tube failure.

102. MODEL ON TEST OSCILLATOR EQUIPMENT.

a. General. The Model OAN Test Oscillator equipment consists of a test oscillator (Type CFT-60054-A) unit complete with tubes, internal a-c power supply and battery pack; cable accessories and a waterproof carrying case; and a sectional type whip antenna.
b. CFT-60054-A Test Oscillator. This test oscillator (fig. 62) is of the master-oscillator, tuned-amplifier type with a fixed antenna output, and a variable 150 -ohm balanced output, incorporating a constant impedance attenuator. A functional circuit of the oscillator is shown in figure 90. This output can be varied from maximum, in steps of C.C4, $0.02,0.01$, and 0.005 of maximum to zero. Zero output corresponds to the off position of the output control in which the attenuator is disconnected from the amplifier circuit. The a-c power supply and internal battery pack have separate on-off controls. The a-c control operates in the power input circuit and the battery control performs the double function of switching the oscillator amplifier circuits from the a-c power-supply outputs to the batteries and vice versa. When the battery power is on, the output of the a-c supply is disconnected and cannot deliver power whether energized or not. the BATT. switch must be CFF when a-c operation is desired. Turn CN only the control which correspands to the type of operation required: a-c or battery. Tubes JAN-6SK7 are normally supplied for the oscillator amplifier circuits. For increased battery life Tubes JAN$6 S 87$ are recommended, since the total heater current required by them is 0.3 amperes, where Tubes JAN-6SK7 require 0.6 amperes. The unit operates

Figure 90. Functional diagram of oscillator-amplifier in OAN test oscillator.
equally well with either type. The tube sockets are labeled fot both type of tubes.

SECTION XI

TROUSLE SMatilis

Ro matter how well equipment is designed and manufactured, fanits occur in service. When such foults occur, the repairman must locate and correct them as rapidly as possible. This section contains general information to aid personnel engaged in the important duty of trouble-shooting.
a. Trooble-shcoting Date. Take advantage of the material supplied in this momol to help in the rapid location of faults. Consult the following trouble-shooting data when necessary:
(1) Block diogram of Radio Set AN/CRD-3 (fig. 2).
(2) Complete schematic diagrams.
(3) Simplified and partial schematic diagrans. These diagrams are particularly useful in trouble shooting, because the repairman can follow the electrical functioning of the circuits more easily than on the regular schematics, thus speeding trouble location.
(4) Voltage and resistance data for all socket connections.
(5) Illustrations of components. Front, top, and bottom views which aid in locating and identifying parts.
(6) Pin connections. Pin connections on sockets, plugs, and receptacles are numbered or lettered on the various diagrams.
(a) Seen from the bottom, pin connections are numbered in a clockwise direction around the sockets. On octal
sockets the first pin clockwise from the kerway is the 5o. 1 pir.
(b) Pluge and receptacles are numbered on the side to witich the associated comector is attached. To avoid confusion, some Endividmal pine are identiffed by letters which eppear directly on the comector.
b. Treuble-shooting Steps. The first step in servicing a defective radio set is to sectionalize the fault. Sectionalization means tracing the fant to the componeat or circuit reaponsible for the abnormal operation of the set. The second step is to localise the foult. Locolization mease tracing the font to the defect ive part responaible for the obrormal condition. Some foults such as burned-aut resistore, and sherted t rans formers can be located by sight, smell, and hearing. The majority of foults, however, mast be located by checking roltage and reaistonce.
C. Sectionalization. Cureful observation of the performance of the redio set while turning the equipment on of ten sectionalizes the fomit. Adititional sectionalizing of the favit will be discussed in paragraph 110
d. Localizetion. Paragraph 110 describes the method of localizing faults within the individual components. This paragraph is accompanied by troubleshooting charts which list abnormal syaptoms and their probable causes. The charts also give the procecture for determining which of the probable locations of the fault is the exact one. In addition, there are a number of drawings which show the resistance and voltage at every socket pin cossection.
e. Voltage Messurements. Voltage measurements are an almost indispensable aid to the repairman, because most troubles either result from abnormal voltages or produce abmormal voltages. Voltage measurements are taken easily, because they are always made between two points in a circuit and the circuit meed mot be interrupted.
(1) Unless otherwise sfecified, the yoltager listed on the voltage charts are measured between the indicated points and ground.
(2) Always begin by setting the voltmeter on the highest range so that the voltmeter will not be overloaded. Then, if it is necessary to obtain increased accuracy, set the voltmeter to a lewer range.
(3) In checking cathode voltage, remember that a reading can be obtained when the cathode resistor is actually open. The resistance of the meter may act cs a cathode resistor. Thus, the cathode voltage may be approximately normal only as long as the voltmeter is connected between cathode and ground. Before the cathode voltage is measured, make a resistance check with a cold aircuit to determine whether the cathode resistor is normal.

f. Precautions Against High Voltage.

 Certain precautions must be followed when measuring voltages above a few hundred volts. High voltages are dangerous and can be fetal. When it is necessary to measure high voltages, observe the following rules:(1) Connect the ground lead to the voltmeter.
(2) place one hand in your pocket. This will eliminate the possibility of making accidental contact with either ground or another part of the circuit thus causing the electricity to travel from one hand to the other.
(3) If the voltage is less than 300 volts, connect the test lecd to the hot terminal (which may be either positive or negative with respect to ground).
(4) If the voltage is greater than 300 volts, shut off the power, cannect the hot lead, step anay from the voltmeter, turn on the power, and note the reading on the voltmeter. Do nct touch any part of the volimeter, particularly when it is necessary to measure the
voltage between two points which are above ground.
g. Voltmeter Loading. Voltmeter resistance must be at least 10 times as large as the resistance of the circuit across which the voltage is measured. If the voltmeter resistance is merely equal to the circuit resistance, the voltmeter will indicate a voltage lower than the actual voltage present when the voltmeter is removed from the circuit.
(1) The resistance of a voltmeter on any range can be calculated by this simple rule: Resistance of the voltmeter equals its ohms per volt multiplied by the full-scale range in rolts. ror example: The resistance of a 1,000-ohm-per-volt meter on the 300 -volt range is 300,000 ohms ($k=1,000$ ohms per volt times 300 volts $=300,000$ ohms).
(2) To minimize voltmeter loading in high-resistance circuits, use the highest voltmeter range. Although only a small deflection will be obtained (possibly only 5 divisions on a 100 division scale), the electrical accurccy of the voltage mecsurement will be increased. The decreased loading of the voltmeter will more than compensate for the visual incecuracy which results from reading oniy a small deflection on the voltmeter scale.
(3) Close observation of the meter when switching voltage ranges will show if the voltmeter is loading the circuit under test.
(a) Extreme ly heavy loading is indicated when the deflection of the pointer on the meter (not the voltage reading) is neariy the same for differont zanges.
(b) Appreciable loading is irdicated when the voltage reidings (not the deflection) for different ranges do net agree.
(c) Negligible louding :s ind:cated when the voliage readings (not the deflection) for differan: rances do agree.
(4) The ohm-per-volt sensitivity of the voltmeter used to obtcin the readings recorded on the voltage and resistance charts in this manual is printed on each chart. Use a meter having the same ohm-per-volt sensitivity. Otherwise it may be necessary to consider the effect of loading.

104. RESISTANCE MEASUREMENTS.

a. Normal Resistance Values. When 2 fault develops in a circuit, its effect very often shows up as a change in the resistance values. To assist in the localization cf such faults, trouble-shooting data includes the normal resistance values as measured at the tube sockets and at key termincl points. These values are measured between the indicated points and ground unless otherwise stated. It is often desirable to measure the resistance from other points in the circuit in order to determine whether the particular points in the circuit are normal. The normal resistance values at any point can be determined by referring to the resistance values shown in the schematic diagram or by the use of the resistor color code (fig. 134).

b. Precautions.

(1) Before making any resistance measurements, turn off the power. An ohmmeter is essentially a low-range ammeter and battery. If the ohmmeter is connected to c circuit which already has current flowing in it, the needle will be knocked of f scale and the meter movement may be burned out.
(2) Capacitors must always be discharged before resistance measurements are made. This is very important when checking power.supplies that are disconnected from their load. The discharge of the capacitor through the meter will burn out its movement and in some cases may ondanger life.

c. Correct Use of Low and High Ranges.

 It is important to know when to use the low-resistance range and when to usethe high-resistance range of an ohmmeter. When checking the circuit continuity, the ohnmeter should be set on the lowest range. If a medium or high range is used, the pointer may indicate zero ohms, even if the resistance is as high as 500 ohms. When checking high resistancos or measuring the leakage resistcnce of capacitors or cables, the highest range should be used. If c low range is used, the pointer will indicate infinite ohms, even though the actual resistance is less than 1 megohm.

त. Parallel Resistance Connections.

In a parallel circuit, the total resistance is less than the smallest resistance in the circuit. This is important to remember when trouble shooting with the aid of a schematic diagram.
(1) When a resistance is measured and the value is found to be less than expected, make a careful study of the schematic to be certcin that there are no resistances in parallel with the one that has been measured. Before replacing a resistor because its resistance measures too low, disconnect one terminal from the circuit and measure its resistance again to make sure that the low reading does not occur because some part of the circuit is in parallel with the resistor.
(2) In same cases it will be impossible to check a resistor because it has a low-voltage transformer winding connected across it. If the resistor must be checked, disconnect one terminal from the circuit before measuring its resistance.
e. Checking Grid Resistance. When checking grid resistance, a false reading may be obtained if the tuke is still warm and the cathode is emitting electrons. Allow the tube to cool or reverse the ohmmeter test leads so that the negative ohmmater test lead is applied to the grid.
f. Tolerance Values for Resistance Measurements. Tolerance means the normal difference that is expected between
the rated value of the resistor and its actual value. Most resistors that are used in radio circuits have a tolerance of at least 20 percent. For example: The grid resistor of a stage might have a rated value of 1 megohm. If the resistor were measured and found to have a value between 0.8 megohm and 1.2 megohms, it would be considered normal. As a rule, the ordinary resistors used in circuits are not replaced unless their values are of more than 20 percent. Some precision resistors and potentiometers are used. When a resistor is used whose value must be very close to its rated value, the tolerance is usually stated on the diagram or the list of maintenance parts.

105. CAPACITOR TESTS.

Capacitars which are leaky or shorted can be found by resistance checks of the stage. A capacitor which is suspected of being open can best be checked by shunting a good capacitor across it. In i-f circuits, keep the lead to the capacitor as short as the original capacitor leads. In low-frequency circuits (less than 1 megacycle (mc)) the test capacitor leads may be several inches long. A capacitor color code is shown in the appendix (fig. 133) for checking the capacitor value against the value shown on the circuit diagram.

106. CURRENT MEASUREMEMTS.

Current measurements are not ordinarily required in trouble shooting in the radio set. Under special circumstances where the voltage and resistance measurements alone are not sufficient to localize the trouble, a current measurement can be made by opening the circuit and connecting an ammeter to measure the current. This procedure is not recommended except in very difficult cases.
a. When inserting the meter in a circuit to measure current, insert it away from the $r-f$ end of the resistance. For example, when measuring plate current,
do not insert the meter beside the plate of a tube, but insert it beside the end of the resistor which connects to the power. This precaution is necessary to keep the meter from upsetting the r-f voltages.

> CAUTICN: A meter has least protection against damage when it is used to measure current. Alwys set the current range to the highest value. Then, if necessary, decrease the range to give a more accurate reading. Avaid working close to full-scale reading because this increases the danger of averload.
b. In most cases, the current ta be measured flows through a resistance which is either known or can be measured with an ohmeter. The current flowing in the circuit can be determined by dividing the voltage drop acrass the resistor by its resistance volue. The drop across the cathode resistor is a convenient method of determining the cathode current.
107. TUBE CHECKING.
a. Tube checkers are used primarily to check either the mutual conductance of a tube or the emission of electrons from the cathode and to test for shorted elements. Some tube checkers also have provision for checking for gassy and noisy tubes. Tube checkers will not test the performance of all tubes, such as high-voltage rectifier tubes. However, they are useful for checking standard receiving type tubes such as used in the various components of padio Set AN/CPD-3.
b. Results obtained fram a tube checker are not always conclusive because the conditions are not the same as those under which the tube operates in the set. For this reason, the final test of a tube must be its replacement with a tube which is known to be good. In many cases it is quicker and more reliable to replace a suspected tube with a good one than to chock it with a tube checker.

108. PARTS REPLACEMENT.

Careless replacement of parts often makes new faults inevitable. Note the following points:
a. Before a part is unsoldered, note the position of the leads. If the part such as a transformer has a number of connections to it, tag each of the leads.
b. Be careful not to damage other leads.by pulling or pushing them out of the way.
C. Do not allow drops of solder to fall into the set since they may cause short circuits.
d. A carelessly soldered connection may create a new fault. It is very important to make well-soldered joints, since a poorly soldered joint is one of the most difficult faults to find.
e. When a part is replaced in r-f or i-f circuits, it must be placed exactly as the original one was. A part which has the same electrical value but different physical size may cause trouble in highfrequency circuits. Give particular attention to grounding when replacing a part. Use the same ground point as in the original wiring. Failure to observe these precautions may result in decreased gain or possibly in oscillation of the circuit.

109. TEST EQUIPMENT.

a. Voltohmmeter (Weston Model No. 564 Type 3c). A multirange d-c voltohmmeter (Weston model No. 564 type 3c), or equal, with test leads terminated in prods, is supplied with Rodio Set AN/CRD-3. Its over-all dimensions are 4-33/64 by $3-45 / 64$ by $2-9 / 16$ inches; its weight is $1-3 / 4$ pounds; and it is accurate within 2 percent. Power is supplied by a 4-1/2volt C battery.
(1) Description. This is a completely self-contained pocket type multimeter measuring d-c voltage and resistance. All functions are designed around a diArsonval type meter with a basic
sensitivity of 100 microamperes. The vol tage and resistance ranges are available from 10-pin jack terminals located on the panel. The d-c voltage function has provisions for making measurements at the standard sensitivity of 1,000 ohms per volt. This function uses an individual set of selected multipliers and allows measurements from 0.1 to 600 volts in four ranges. The ohmmeter section uses the ring type parallel adjustment circuit and is powered by a self-contained battery. Measurement of resistances from 1 ohm to $1,000,00$ ohms (1 megohm) can be made in four ranges. The ohmeter has a center scale reading of 35 ohms on the first range and $350,3,500$, and 35,000 ohms on the remaining three ranges, respectively.

(2) Controls and Their Use.

(a) The meter on the front panel has a basic 100-microampere D'Arsonval type movement and contains two scales: an upper scale with nonlinear divisions used for resistance measurements, and a lower scale with linear divisions used for d-c voltage measurements.
(b) The ten pin jacks on the front panel are as follows: the jack marked $(-)$ on the upper left-hand corner is the negative or return terminal for all d-c voltage ranges; the jacks marked $3 V$, $30 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$ on the upper edge of the panel are positive terminals for the d-c voltage functions; the jack marked X on the lower left-hand corner of the panel is the common terminal for all ohmeter ranges; and the jacks marked $R, R \times 10, R \times 100$, and $R \times 1,000$ on the lower edge of the panel are the range selector terminals for ohmeter function.
(c) The switch marked VM-RES. is a toggle type selector switch used to change the instrument from ohmmeter to voltmeter and vice versa.
(d) The rotary control marked BATTERY ADJUST is used for ohrmeter zero adjustment.

(3) Operating Instructions.

(a) For resistance measurements and continuity tests, throw the toggle switch to the RES. position. Insert one test lead in the pin jack marked X and the other in one of the pin jacks on the lower edge of the panel depending upon the value of the resistor to be measured. Then touch the two test leads together and adjust the BATTERY ADJUST control until the meter reads full scale (zero ohms). Repact this adjustment each time the resistance range of the instrument is changed. The value of the unknown resistance is read on the OHMS (top) scale using the multiplying factor of the range.
(b) For d-c voltage measurements, throw the toggle switch to the VM position. Insert one test lead in the pin jack marked (-) and the other in one of the terminals on the upper edge of the panel. The value of the d-c voltage is read on the 0-300 or 0-600 (lower) scale depending "on the range selected.

(4) Applications.

(a) A chart showing the ranges of measurements, switch positions, and corresponding meter scales is given in subparagraph (8) below.
(b) When in doubt as to the approximate value of the voltage being measured, first use the 600 -vol't range of the instrument and then change to
a lower range if necessary. This will avoid overloading the meter movement.
(c) Always throw the toggle switch to the VM position when carrying the instrument.
(5) Meter Zero Adjust. Be sure that the meter needle is pointing to zero an the d-c volts scale before making ony measurements with the instrument. If the needle is not indicating zero when test leads are removed, make an adjustment by turning the screw on the meter case directly below the window.
(6) Battery Installation. To install the $4 \frac{1}{2}$-volt battery which is used as a source of current in the ohmmeter section of the voltohmeter, remove the four panel mounting screws and lift the tester out of its case. The battery will be found on the back of the instrument. Note the color coding of the battery leads, the red lead connecting to the positive terminal.
(7) Battery Replacement. When any of the ohmmeter rangas no langer adjusts to O ohms (full-scale deflection), replace the $4 \frac{1}{2}$-volt battery. Should replacement of the battery fail to rectify the trouble or should the instrument fail to function properly in any other respect, do not attempt to repair the device. Considerable damage may be caused by an inexperienced repairman.
(8) Operating Chart.

Type measuremeat	Range measurement	Toggle evitch	Pin jacks used	Read on meter acale	To iaterpret readiag
Resistance	$\begin{aligned} & 0 \text { to } 100 \text { ohms } \\ & 100 \text { to } 1,000 \text { ohme } \\ & 1,000 \text { to } 10,000 \text { ohas } \\ & 10,000 \text { to } 1,000,000 \text { ohms } \end{aligned}$	RES.	$\begin{array}{\|lll} \hline X & R & \\ X & R \times 10 \\ X & R \times 100 \\ X & R \times 1000 \\ \hline \end{array}$	$\begin{aligned} & \text { INP-1M-0 } \\ & \text { INP-IM-0 } \\ & \text { INP-M }-0 \\ & \text { INP-IN-0 } \end{aligned}$	Read direct Multiply by 10 Multiply by 100 Maltiply by 1000
D-c voltage	0 to 8 volts 8 to 80 volte 80 to 800 volts 800 to 600 volte	DM	$\begin{aligned} & -8 \mathrm{~V} \\ & -80 \mathrm{~V} \\ & -800 \mathrm{~V} \\ & -800 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0-800 \\ & 0 \rightarrow-800 \\ & 0 \rightarrow-00 \\ & 0-800 \end{aligned}$	Divide by 100 Divide by 10 Read direct Read direct

b. Signal Generator 1-72-J. This generator is supplied with Radio Set AN/CRD-3. Refer to TM 11-307J for operating and maintenance instructions.

I 10. TROUBLE-SHOOTING PROCEDURE.

a. Locate faults by following an orderly, systematic procedure. First determine whether the trouble is in the antenna system, the phase inverters, the junction boxes, the associated cables, the receiver, the goniameter, etc. After the difficulty is traced to one definite unit, proceed in a series of logical steps to isolate the fault further. For example, if the difficulty is in the receiver assembly, determine whether it is comman to both frequency bands. If it is found to be in one band only, the trouble probably exists only in the radio-frequency or oscillator circuits, since the intermediate-frequency, audiofrequency and indicator-channel circuits are common to both bands. Moreover, if the trouble is confined to a single frequency band, elements common to both bands are not at fault. Thus, the main tuning capacitor, vacuum tubes with associated sockets and circuit components, the power supply and control circuits may be exempt from suspicion. Then check the coil assemblies and wave-band switch. At this point make a resistance analysis of the radio-frequency amplifier and oscillator circuits to determine which is defective. If, in the defective circuit, the indicated resistance value changes with a slight movement of the band switch, there may be a faulty contact. If the dbnormal resistance value remains constant, the fault is probably in the coil assembly or wiring. Examine the switch and wiring of the particular stage. If these appear to be in operating condition, investigate the coil assembly.
b. A rough guide to the circuit position of the fault is the amount and nature of background noise in the output. Complete absence of any sound would possibly be due to power failure or to trouble in the output stage or output circuits. Normal microphonic sounds, without hiss, probably indicate a normal audio-amplifier system but a faulty radio-frequency system. Weak signals accompanied by background noise might indicate some fault in the antenna system or transmission lines. The indicator pattern is also an excellent guide in trouble location. For example, if the autamatic bearing indicator pattern remains fixed at 0° and 180° or at 90° and 270° regardless of the direction of arrival of the radio signal, it indicates trouble in one pair of the directional phase inverters, its associated cables, or the goniometer winding. Magnetism in the iron parts of the automatic bearing indicat or of fsets the center points of the twin-leaf pattern. If the shafts of the goniameter and autamatic bearing indicator rotating assembly are not exactly in line, the twin-leaf pattern will be bent (points less than 180° apart) for same azimuths but not for others.
C. The accompanying trouble-shooting chart, if properly used, simplifies trouble shooting. The chart lists the various symptoms which may be recognized easily by the operator, and gives the probable location for the existing trouble as well as the recommended correction. It tells the operator whether the trouble is in the antennasystem, phase inverters, power supplies, cabling, automatic bearing indicator, junction boxes, etc. By proper use of this chart, the operator can isolate the trouble to one particular camponent of the equipment, and thus save time that might otherwise be lost in checking camponents that are free of trouble.
111. SECTIONALIZING TROUBLE IM RADIO SET AN/CRD-3.

Symptoms	Probable trouble	Corrections
1. A11 pilot and dial lamps out. 2. No sigaal, weak eigaal, or incorrect indication.	1. Blowa fuse in a-c power spply. Patity ON-OPP switch. Break in contianity of power iaput or output cable cords (possibly at a plugl. Oper circuit in filemeat voltage circuit. 2. Buraed-out or weak rectifier tube in power upply of receiver or power supply in the control-rectifier pover enit. Fanty costact to rectifier tube pias. Break ia coatiauity of power uait cords. Shorted filter or bjpass capacitor. Poor contact betweea antenga input recepracles ad matiag plug or adapter. Ground or opea circuit in phase inverters, $h-f$ cords, goniometer, or iatercoanectiag cords. Weak or buraed-orit vacuam rube. All d-c voltages low becanse of weak rectifier tube. Opea lilter capacitor. Short circuit ia plate circite. Iacorrect cable coaaection.	1. Replace. Replace. Seat pluge firmly in their matiag receptacles. Coupliag rings on pluge met be tight. Repair if aecessary. Repair. 2. Replace. Clean. Repair. Replace. Correct. Correct. If positble, check the tubes with a sitable test set. If this is not arailable, replace each tube, ia tira, with a atw one or with oae ia good coadizion. Replace. Replace. Repair. Correct.

III. SECTIONLIZIMG TROVELE IN RRDIO SET AN/CRD-3 (contd).

Sympr ame	Probable trouble	Corfections
8. Noley or iatermitreat reception. 4. Padiag.	Drop of solder os plates or beat plates of trimar of tualag capacizor caseine ahort cifcile. 2. Noise plck-up is astease ayetemo Cossecrors loosely mated or breakage ol a cord condector. Defective control. Defective awitch. Poor coatact between racum tebe and its socker. Defective racesem tube. Frajed or brozea coaaection ia wiriag. Poor conzact between pilot or dial lamp and its socket. Defective bypase or coupliag capacitor. Loose retainiag ant oa bhield caz. 4. Defective or iatermitreat bjpass or conpling capacitor. Heater element in a vacuum tube periodically makes and breake contact dee to exparBion. Magaetic storm caseiag eafarorable traasmittiag coaditioas.	Locsie casse and correct. 8. 8hort cifcelt the atease lapyts and observe whether nolse stope. Locare and cofract. Replece. Roglace. Locate and clean. Tag each tube lightiy to locate; replace. Check by ahakiag composeat la geestion; corfect. Locare and correct. Locate and replace. Locate asd tighten. 4. Locate and replace. Tebe tester does not ceserally iadicate this type of defect. Check each tube ia tura with a tube kaown to be operatiag. Mothiag. Coadition will eveatuelly improve evea if oaly for short time iatervale.

III. SECTIOMRIZIMG TINUPE IM RLDIO SET AN/CDO-3 (contd).

8ymptam	Protable tromble	Correcrions
5. 111 sease indications revereed. G. Seace indicaticas reverse is ore pir of gredrane.	E. Deflection coil mently in artomatic beeriat indicstor rotated 186° with rempect 80 somio meter. G. Juaction Bex JE-91- \boldsymbol{N}° ot directiogal pair set consected to proper color coled r-1 corde. R-1 corde for directicall pair in gecetion incorrectiy ceanected to plages	5. Looen lockine serew and ters complise aljestment until gradeal Tiag lae terned 180° ific. 187%. 6. Correct coasections. Cerrect, befag mere that pias A_{0} R $C_{\text {a }}$ ou the plege at betm exde of cord are caseectef to the ahield and cerrempedjef conduccort of cert
7. 8ense volrage presest wies 8BAICmIM8TANT. BEAEING 81985 anitck om 87M8E bet 16 scase cetpet or is correct sease pattern.	T. Defective iube in ace ontyet of Sease Place Ieverter MC-A18-R. One oetpit cort open or eiscearected or short in one plase inverter circuit.	F. Cbeck by anitchiag PILAMENT from 1 to 2 tio eppore trbeet. If this corrects rrexie replece defective inverter tible. CHect castianity of cables and praee trmerter circiits.
8. Indicator patiern OR mith SBARCM1H8TAMT. EEARIE 8ERE ewitcl os IM8TAKT EEARIMG bet mo patzers os 87485 or vice ver 80	8. Opes dirceticeal or sesse deflectioa cont.	2. Checli cemeinutity betweea altp riags C-M ad C-B cope coit. if cey lpar. 117 ch
8. Distorted indicator pattern indicatiag wroag direction.	Brozes ptgtatl er ase brest sot in casract. 8. Driace eut oe lem cinision tete face phase inverter. Belay ia Plase Iaverter MC-1sI-I, drope cet at 2 to me ant pelis ia atcto mo.	Crech contimeity and clean er replece defoctive brish (see par. sgl. 8. Clect phate firverter operation lpreco tequ. If plate curreat Iese that 8 ma direct cerreut relay will greend this arteana. Switch PEL EWITCH ta 2 fspme twesel and replace defective trbe as mas atractical.

III. SECTIGMALIzImg trovele in radio Set an/cro-3 (contd).

Symptome	Probable trouble	Corrections
10. Receiver taees sifall satisfactorily and circle on beariat ladicator is astiofactory bat asimuths can be obtaiaed.	10. Cable aumber 12 opea. No receiver indicator chanael outpat.	10. Cleck aad repair. Check receiver indicetor chanael outpat with deflection amilitier connected and indicator foniomerer roraciag. Regeired voltage is epproximetely 4.0 volte direct cirrent. If ao voltage check ciresita agaiast applicable achematic diagrams.
11. Lack of akarp pattera from trensmitter and one directional phase iaverter.	11. Capacity curreats from improperly erounded anteana iatroduciag voltage in coaiometer stator at right agles to the oae correspoadiag to pair beiag balazced.	11. Cian enffeces of relay armatere where it costacts frame of relay in ose or both phase iaverters of the other directional pair.
12. Saw tooth pattera on cathode-ray tube circular pattera 18ig. 58\%.	12. Iatermitteat or vibratiag coatact due to pitted alip riags or low bresh spriag teasion. Loose slip riags.	12. Cieas and polish slip riaga, check and adjust brash apriag tension (par. 88). Tighter silp riag retalaer (subpar. 88c).
18. No curreat iadication in ptrese inrerter plate cerreat meter when ΔC SYITCH is OM.	18. Buraed out meter inse. Power cords discosiected. $1110^{\circ}, 180^{\circ}, 90^{\circ}$, and 270° switches or balazing resistors off. Cne or more balanciag resistors open.	18. Replace fuse. Check. Check switches asd balaziag resistors.
Plate curreat low for any directional phase iaverter.	Buraed-out or low emission tube in corresposding phase iaverter.	Switch FIL SWITCH to spare tabes and replace defective tube as soon as practical.

112. TUBE LOCATIONS.

Refer to figures 91 to 97.

Figure 91. Modulator section of Radio Receiver Assembly R-128/CRD-3. top view of chassis.

Figure 92. Power indicator section of Radio Recezver Assembly R-128/CRD-3. top view of chassis.

Figure 93. Amplifier-rectifier Power Unit PP-151/CRD-3, top view of chassis.

Figure 94. Control-rectifier-Power Unit PP-135/CRD-3 tube and parts locations, top view.

Figure 95. CAN test oscillator tube locations.

TLIIT20-A

Figure 96. Phase Inverters $M C-411-A$ and $M C-4: 3-A$ tube locations.

Figure 97. OAN test oscillator, bottom view, showing parts location.

II3. VOLTAGE MEASUREMEKTS.

a. General. The accompanying diagrams show voltage readings from socket pins to chassis measured by an electronic voltmeter under the conditions listed. Variations of more than 20 percent from the readings shown generally indicate a defective circuit or associated circuits, probably the tubes.

b. Radio Receiver Assembly R-128/CRD-3, Modulator Section Test Conditions.

(1) Remove the small cover plate located between receptacles J 233 and J201 at the rear of the modulator section, and adjust the primary voltage link to the 115 volt tap.
(2) Adjust line voltage to 115
volts as described in paragreph 126.
(3) All tubes are in sockets.
(7) Set the A.V.C.-M.V.C.-C.W. switch to A.V.C.
(5) Vary resistor R1 37 for tube V103 readings.
(5) Vary resistor R1:7 for tube V1O7 readings.
(7) Adjust resistor F 127 to half maximum for tubes V 108 and V 109 readings.
(8) Take readings on both band 1 and 2 for tubes V1O4 and V110.
(g) See figure 98 for voltage meosurements.

Figure 98. Yodulator section voltare measurements.
C. Radio Receiver Assembly R-128/CRD-3, Power Indicator Section Test Conditions.
(1) Remove the small cover plate located between receptacles J 203 and J 201 at the rear of the modulator section, and adjust the primary voltage link to the 145-volt tad.
(2) Adjust the line voltage to 115 rolts as describod in paragraph 126.
(3) All tubes are in sockets.
(4) Set the A.V.C.-M.V.C.-C.W. switch to A.V.C. for all readings except tubes V2O3 and V2O4.
(5) Set the A.V.C. M.V.C.-C.W. switch to C.W. for tubes V2O3 and V2O4.
(6) Set the RADIO SELECIIVITY switch to SHARP for tube V2O1 reodings.
(7) Adjust the VERT. ADJ., FOCUS and BRILL. controls for tube V216 readings.

Figure 99. Power indicator voltage measurements.
(8) Turn blanking switch 5204 on.
(g) Adjust blanking control R272 for tube V212 readings.
(10) See figure 99 for voltage measurements.
d. Amplifier-rectifier Power Unit Test Conditions.
(1) Adjust line voltage setting to 115 volts. Take readings from tube pin to chassis.
(2) All tubes are in sockets.
(3) Turn controls maximum clockwise.
(4) See figure 100 for voltage measurements.
e. Automatic Bearing Indicator Test Conditions.
(1) Connect cables to rectifier power unit.
(2) A-c input to rectifier power unit, 115 volts, 60 cycles.
(3) Cover plate on control box removed (fig. 116).
(4) See figure 101 for roltage measurements.

f. ONN Test Oecillator Test conditions.

(1) Equipment oscillating under normal conditions on band $2,700 \mathrm{kc}$.
(2) A-c input 115 volts, 60 cycles.
(3) Battery operation will give approximately the same readings except for pin 7 which will then be direct current.

TL11898-8

Figure 100. Amplifier-rectifier Power Unit PP-151/CRD-3 voltage measurements.

Figure 101. Automatic bearing indicator voltage measurements.

Figure 102. OAN test oscillator voltage measurements.
(4) Tube V6O4 is not used for battery operation.
(5) See figure 102 for voltage measurements.
g. Control-Rectifier Power Unit PP-135/CRD-3 Test Conditions.
(1) A-c input is 115 volts, 60 cycles.
(2) All tubes are in sockets.
(3) Remove all cords.
(4) Close switch 8351.
(5) See figure 103 for voltages.
h. Phase Inverter MC-4II-A Test Conditions.
(1) Connect by power cables to control-rectifier Power Unit PP-135/ CRD-3.
(a) A-c input to control-rectifior is 145 volts, 60 cycles.
(3) All tubes are in sockets.
(4) FIL SWITCH is on 1 fer tube V3O1 and on 2 for tube V3O2.
(5) Tum the $0^{\circ}, 180^{\circ}, 90^{\circ}$, or 270° switch for the corresponding phase inverter on and set the associated BAINNCE ADJUSTMENT on the control-rectifier panel for control panel meter reading of 10 ma .
(6) Turn the SELECTOR SWITCH to 0°, $180^{\circ}, 90^{\circ}$, or 270° positions for the corresponding phase inverter.
(7) See figure 111 for voltages.

FRONT
TL 13097-8

Figure 103. Control-rectifier Power Unit PP-135/CRD-3 voltage measurements.

i. Phase Inverter MC-413-A Test Conditions.

(1) Connect by power cable to con-trol-rectifier Power Unit PR-135/CRD-3.
(2) A-c input to control-rectifier is 115 volts, 60 cycles .
(3) All tubes are in sockets.
(4) Turn the FIL SWITCH to 1 for tubes V401, V403, and on 2 for tubes V402, V404.
(5) Tum the SELECIOR SWITCH to SENSE.
(6) Set the SENSE GAIN control for panel meter reading of 43 ma .
(7) see figure 112 for vol tages.

II4. RESISTANCE MEASUREMENTS.
a. General. The accompanying tables show nominal reodings between the points indicated, as measured with a voltohmmeter. Variations of more than 20 percent warrant c complete point-topoint circuit check of the associated circuits in accordance with the applicable diagram.

CAUTION: DISCONNECT POWER INPUTS OF ALL UNITS FROM THE gOURCE OF POWER.

b. Test Conditions.

(1) Line voltage is disconnected.
(2) Tubes are out of sockets, except for OAN Test Oscillator.
(3) cables are disconnected.

TL 11290 - 8

Figure 104. Modulator section receptacle pin positions.

c. Modulator Section.

See figures 98 and 104 for pin locations.

$\begin{aligned} & \text { Prom tube } \\ & \text { Deceptacle } \end{aligned}$	Pia No.	To	Condieions	Resiatance (olme)
V102	$\begin{aligned} & 8 \\ & 8 \\ & 2 \\ & 8 \\ & 1 \\ & 8 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { T102-G } \\ & \text { J104-B } \\ & \text { J104-B } \end{aligned}$ Cless is Classis Clases is Chass is J104-B Chass is Chess is	Basd 1 Baad 2 Baad 1 Baad 2 STAND BY Bagd 1 and bagd 2 Vary DIM coatrol pilot lighte ia pilat lighte oat	5 2 1200 1100 0.0 0.0 Iafiaity 1 I S6 \mathbf{E} 42025 Ialiaity
V108	2	Chase is Chass is Chass is Chase is J104-B	Nell only, vary R.f. GAIN control	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 1 \text { to } 2 \text { mes } \\ & 2 \\ & 50 \end{aligned}$
V104	$\begin{aligned} & 2 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	Classis J104-B Chass is Chaseis Chass is	Null MAN. and INST.	0.0 4700 B6 I 2 meg. Iafiaity
V106	2	Chassis Clases is Chassis J104-B J104-B		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 680 \\ & 66.1 \\ & 4700 \end{aligned}$
V107	$\begin{aligned} & 2 \\ & 8 \\ & 4 \\ & 8 \end{aligned}$	Chessis Chass is Chassis Chass is	Vary GONI. GAIN costrol	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 280 \mathrm{Z} \\ & 160-10,260 \end{aligned}$
V108	2	Chass is Chass is Chass is Chass is J104-B	ON sense and direction Vary R-127	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 220 \\ & 220 \end{aligned}$ 27 I 20

c. Modulator Section (contd).

$\begin{aligned} & \text { From tube } \\ & \text { or } \\ & \text { receptacle } \end{aligned}$	Pia No.	To	Conditions	Resistance (olms)
V108	8	J104-B		1000
V1 09	5	Chassis	ON MAN.	220
V110	2 8 $\begin{aligned} & 4 \\ & 6 \\ & 6 \end{aligned}$	Chassis Chass is Chassis Chassis Chass is	INST. MAN. and NOLL	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 100 \mathrm{~K} \\ & 40 \mathrm{~K} \\ & 80 \mathrm{~K} \\ & \hline \end{aligned}$
J101	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	Chass is J101-B Chassis Chess is	Band 1 and baad 2 Band 1 and band 2 Band 1 and band 2	$\begin{aligned} & 0.0 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$
108		Chess is J102-B Chass is Chass is J108-B Chessis	Band 1 and baed 2 Band 1 aad basd 2 Baad 1 and baad 2	0.0 8 1 1 Ialiaity Iafiaity
J104	A C B F G N M R H B P B	$\begin{aligned} & \text { J104-D } \\ & \text { J104-L } \\ & \text { J104-A } \end{aligned}$ Chess is Chassis Chass is Chassis Chess is Chass is V110-8 J105-A Chass is	MAN-NULL-INST. switch operatieg Vary R.P. GAIN cogtrol INDICATION switch aly position Vary R. P. GAIN coetrol MAN. NOLL INST.	```MAN. NOLL INST. 0.0 Infiaity 0.0 0.0 Iafiaity 0.0 milaity 0.0 Iafiaity 0.0 2800 to 12X Infiaity 0.0 Infiaity Iafiaity 0.0 lafiatty 0.0 0.0 0.0 0.0 Iafiaity Iafiaity 880 K 9.400 0.0 68 \ to 1 meg```
J105	B C A	Chass is Chess is J106-B	INST. MAN. and NULL MAN. and NOLL INST.	$\begin{aligned} & 0.0 \\ & \text { Iafiaity } \\ & 0.0 \end{aligned}$
J106	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	Chass is Chass is J104-D		$\begin{aligned} & 0.0 \\ & \text { Infiaity } \\ & 0.0 \end{aligned}$

C. Modulator Section (contd).

$\begin{gathered} \text { Pron titbe } \\ \text { or } \\ \text { receptacle } \end{gathered}$	Pia No.	To	Conditions	Resistazce (olime 1
J106	D	Chase is	ON sesse	0.0
V102	4	V101 (aeoa lampl		0.0
V106	4	V108(aeon lamp)		0.0
$\begin{aligned} & \text { V108 } \\ & \text { V104 } \end{aligned}$	8	T104-B L11 2-1	Baad 1 Band 2 Rand 1 asd band 2	$\begin{aligned} & 200 \\ & 100 \\ & 28 \end{aligned}$
T105	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Chassis Chase is	$\begin{aligned} & \text { Band } 1 \\ & \text { Baed } 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$
V106	8	L118-4	Baad 1 and baad 2	220
J107	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { B } \end{aligned}$	Chase in B Chase is Chassis		$\begin{aligned} & 0 \\ & 8 \\ & 80 \\ & 50 \end{aligned}$
J108	A B C B	Chass is Chass is Chass is C		$\begin{aligned} & \hline 0 \\ & 40 \\ & 40 \\ & 8 \\ & \hline \end{aligned}$
5109	A B C B	Chase is Chassis Chass is C		0 Iafiaity lafiaity 1.5
- J110	$\begin{aligned} & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { J107-C } \\ & \text { J107-B } \\ & \text { J107-A } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
- 5111	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & \text { J108-C } \\ & \text { :108-B } \\ & \text { J108-C } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
- J112	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { J109-A } \\ & \text { J1 09-B } \\ & \text { J109-C } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
T101	1	V106-4 V106-4	Band 1 Band 2 Baad 1 Band 2	$\begin{aligned} & 0 \\ & 2 \\ & 5 \\ & 0 \end{aligned}$

Not hown in fig. 104. These receptacles are located inside modilator sectipa of receiver chassis.
c. Modulator Section (contd).

C. Modulator Section (contd).

$\begin{aligned} & \text { Prom tube } \\ & \text { or } \\ & \text { receptacle } \end{aligned}$	Pin No.	To	Coaditioss	Resistance (olime)
T108	1	V110-5	Band 1	4.5
			Baad 2	0.5
	2	V1 10-5	Basd 1	1
			Band 2	2
	T1	Chass is		1
	12	Chassis		0.5
	G	Chassis		
L111	12	V108-5 Chass is		1.6
				1.8
1112	1	V104-8		28
	2	J104-B		4700
	8	J108-A		0
1118	1	J104-8		8000
	2	V107-4		280 -
	8	Chass is		220 K
	4	V1 06-8		280

d. Power Indicator Section.

See figures 99 and 105 for pin locatians.

$\begin{aligned} & \text { Prom Tube } \\ & \text { or } \begin{array}{c} \text { optac } \end{array} \end{aligned}$	Pia No.	To	Conditions	Resistance (ohma)
V201	2	Chassis		0
	8	Chassis		
	4	1201 (1)		B6 K
	5	Chassis	Radio Sblectivity oa sharp	1,000
	5	Chassis	Radio selbctivity oa broad	0
	6	J202 (B)		56 I
	7	Chass is		0.1
	8	J202 (B)		4700
V202	2	Chassis		0
	8	Chassis		0
	4	Chassis		1 meg
	8	Chass is		10 【
	6	5202 (B)		560 【
	7	Chaseis		0.2

d．Power Indicator Section（contd）．

From tabe or receptacle	Pia No．	To	Conditione	Resiatance （ ohnmel
7208	8	$J 202$（B）		4700
T208		Chaseis Chase is Chase is J202（D） Chass is J202（B） J202（B） Chase is	A．V．C．－M．V．C．－C．V．avitel on A．V．C． A．V．C．－M．V．C．－C．V．awitel om M．V．C． A．V．C．－M．V．C．－C．Y．awitek on A．T．C． or M．V．C． A．V．C．－M．V．C．－C．W．switel on C．W．	50，000 0 1 me 600 ： 80 【 20 I 4． 7 K
7204	$\begin{aligned} & 2 \\ & 8 \\ & 4 \\ & 6 \\ & 6 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Chats is Chass is Chassis Chass is Chase is J808（B） Chass is J208（B）	A．V．C．－M．V．C．－C．W．switch on C．W． A．V．C．－M．V．C．－C．V．svitch on M，V．C． A．V．C．－M．V．C．－C．M．switch on C．V．	100 K 0.1 20 【 50 K 0.2 7.74
7808	$\begin{aligned} & 2 \\ & 8 \\ & 4 \end{aligned}$	Chassis Chass is $J 202$（G）		$\left[\begin{array}{l} 0 \\ 0 \\ 1 \operatorname{meg} \end{array}\right.$
7208	2 8 4 4 δ 8 6 7 8	Chass is Chassis $J 202$（G） Chass is J202（F） Chassis J202（B） Chassis J202（B）	A．V．C．－M．V．C．－C．W．avitch on M．V．C． or C．V． A．V．C．－M．V．C．－C．V．switch oa M．V．C． or C．M．	2800 82 【 0.2 4． 7 I
7206	$\begin{aligned} & 2 \\ & 8 \\ & 8 \\ & 7 \\ & 8 \end{aligned}$	Chase is Chase is Chase is Chass is Chase is		68 1 56 I 0.8 －
V208	2	Chassis		－

d. Power Indicator Section (contd).

d．Power Indicator Section（contd）．

$\begin{aligned} & \text { From tisbe } \\ & \text { or } \\ & \text { receptacle } \end{aligned}$	Pia No．	To	Conditioas	Resistance （olme）
7218		V218（6） Chassis Chansis	OFP－STANDBY－ON switch ON	90 48 25 I
7214	$\begin{aligned} & 2 \\ & 8 \\ & 4 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	Chass is Chass is Chass is Chass is Chase is Chase is		0 880 【 18 880 I 0.2 18
7218	Plate cap	Chass is Crase is Chass is	OPF－STANDBI－ON awitch OPF OPF－STANDBI－ON switch ON	$\begin{aligned} & \text { Ialiaity } \\ & 280 \mathrm{~L} \\ & 70 \end{aligned}$
7217		Chases is Chass is J202（H） Chass is Chass is $J 202$（J）		$\begin{aligned} & 0 \\ & 0.6 \mathrm{meg} \\ & 0 \\ & 0.6 \mathrm{meg} \\ & 0.8 \\ & 0 \end{aligned}$
7816		Chase is Chese is Chass is Chess is Chess is Chase is	Tary FOCOS coerrol	0 0 850 I 80【 10 77 【 0.8 mec 250 I
V216	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & 11 \end{aligned}$	Chass is Chess is Chass is Chase is	Tary LINE SPRD coatrol Vary BRILL coatrol	$\begin{aligned} & 200 \mathrm{E} \times 747 \mathrm{E} \\ & 200 \mathrm{E} \\ & 1,000 \mathrm{E} .4140 \mathrm{E} \\ & 0.2 \end{aligned}$
． 1881		$\begin{array}{ll} 7201 & (4) \\ J 801 & (A) \\ 5801 & (A) \\ V 801 & (4) \\ J 208 & (A) \end{array}$	RADIO 8ELBCTIVITI awizct on bROAD RADIO 8ELBCTIVITI switch on 8MARP	$\begin{aligned} & 0 \\ & 0 \\ & \text { Ialiaity } \\ & 25 \\ & 86 \mathrm{E} \end{aligned}$
1808		$\begin{array}{\|cc\|} \hline 7201 & (8) \\ 1808 & (1) \\ 5808 & (8) \\ 1208 & (1) \\ \hline \end{array}$	RADIO 8EISCTIVITI awitch on Broad	$\begin{aligned} & 0 \\ & 4900 \\ & 4900 \end{aligned}$

d. Power Indicator Section (contd).

$\begin{gathered} \text { From tabe } \\ \text { or } \\ \text { receptacle } \end{gathered}$	Pia Mo.	To	Conditions	Resistance (ohme)
L208	$\begin{aligned} & 1 \\ & 8 \\ & 1 \end{aligned}$	Chass is Chassis L202 (4)	RADIO 8ELECTIVITY OE 8HARP	$\begin{aligned} & 85 \\ & 0 \\ & \text { Infinity } \end{aligned}$
L204	$\begin{aligned} & 1 \\ & 2 \\ & 8 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	7202181 V802 (8) Chass is Chass is Chass is L204 (4)		
L808.	$\begin{aligned} & 1 \\ & 2 \\ & 8 \\ & 4 \end{aligned}$	Chass is Chassis Chase is Chass is		$\begin{aligned} & 18 \\ & 0 \\ & 18 \\ & 2 \end{aligned}$
L206	$\begin{aligned} & 1 \\ & 2 \\ & 8 \\ & 4 \\ & 8 \\ & 6 \end{aligned}$			10 4700 56 【 0 0 0
J801	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	Chass is Chassis	RADIO SELBCTIVITY SHARP aad BROAD	$\begin{aligned} & \text { Iafiaity } \\ & \text { Iafiaity } \end{aligned}$
J 202	A B B C	Chass is Chassis Chass is Chass is	A.V.C.-M. V.C.-C.M. switch os C. W. A.V.C. -M.V.C.-C, W. switch on A.V.C. or M. V.C.	$\begin{aligned} & \text { Iefiaity } \\ & 20 \mathrm{X} \\ & 25 \mathrm{~K} \\ & 100 \mathrm{~K} \\ & \hline \end{aligned}$
J202	D B F G H J I I M N	Chass is Chaseis Chass is Chasesis	A.V.C.-M.V.C.-C.V. svitch os A.V.C. A.V.C. -M.V.C.-C.M. switch os M.V.C. or C.W. A.V.C. -M.V.C.-C.V. switch os M.V.C. or C. W. A.V.C. -M. V.C.-C.W. switch os M. V.C. or C.W.	2 meg Ialiaity 0 1.5 meg 1 meg 1 meg Iafiaity Infiaity 0 0

d. Power Indicator Section (contd).

$\begin{gathered} \text { From tube } \\ \text { or } \\ \text { recepracle } \end{gathered}$	Pin No.	To	Coaditioss	Restarance (0hem)
J202	P	Chass is		0
J208	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	Chass is Chass is Chassis		$\begin{aligned} & \text { Infiaity } \\ & 0 \\ & 1 \mathrm{mag} \end{aligned}$
J 208	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & C \end{aligned}$	Chass is Chassis Chass is J208 (B)	OPP-8TANDBY-ON avitch OFF OPF-STANDBI-ON switch OFF MASTER ad OFF-8TANDBI-ON switches ON	Ialiaity Iafiaity 2.8
J 206	$\begin{gathered} \mathrm{A} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{~B} \end{gathered}$	Chaseis Chase is Chaseis $J 206$ (C)	OFF-STANDBY-ON awitch ON	$\begin{aligned} & 0 \\ & \text { Iafisity } \\ & \text { Infiaity } \\ & 8 \end{aligned}$
J207	$\begin{gathered} \hline A \\ B \\ C \\ D \\ \mathbf{A} \\ B \\ C \end{gathered}$	Chass is Chase is Chasais Chassis J206 (B) J206 (C) J206 (C) J207 (B)	AMPLIPIBR awitch OFP MOTOR switch OFF BEAM switch OPF MASTER awitcl OFP MASTBR ewitcl our MASTBR avitch ON BBAM switcl ON AMPLIPIER and MOTOR switches OM	$\begin{aligned} & \text { Iafinity } \\ & \text { Iafiaity } \\ & \text { Iapiaity } \\ & \text { Iafiaity } \end{aligned}$

If ineeral
Figure 105. Power indicator section receptacle pin positions.

e. Amplifier-rectifier Powor Unit.

See figures 100 and 106 for pin loontions.

$\begin{aligned} & \text { Prom tube } \\ & \text { or } \\ & \text { receptacle } \end{aligned}$	Pin Mo.	To	Conditions	Lesistance (olame)
7401		Chase is Chess is Chass is Chass is Chass is Chase is Chassis Chess is	Vary DEFL. SBM8. coatrol Vary CIRCLE DIA. coatrol	
V402		Chase is Chass is Chaseis Chassis Chass is		$\begin{aligned} & 11 \mathrm{E} \\ & 810 \\ & 810 \\ & 11 \mathrm{E} \\ & 10.9 \mathrm{E} \\ & \hline \end{aligned}$
7408	$\begin{gathered} 1 \\ 4 \\ \text { Top cap } \end{gathered}$	Chassis Chase is Chase is		$\begin{aligned} & 0 \\ & 0 \\ & 4.6 \mathrm{me} \end{aligned}$
V404	2 5	Chase is Chase is Chase is		$15 \mathrm{I}$ $15 \mathrm{E}$

ninemero

Figure 106. Amplifier-rectifier power unit receptacle pin positions.
e. Amplifier-rectifier Power Unit (contd)

Figure 107. Control-rectifier power unit receptacle pin positions.

J 408	1 B C D B F G	Chase is Pia B, J 405 Pin C, J40S Chase is Chass is Chass is Pia A, J 405	Ialiaity 0 15 0 10 I Iafiaizy 0
J404	A B D	Chase is Pi: C, J404 Chass is	0.4 $4 \text { mes }$
J 405	D	Pia A, J405	8.8

f. Junction BOX J-99/CRD-3.

See figure 108 for pin locations.

From tibe or receptacle	Pin No.	To Coaditions	Resistance (ohme)
J 451	A	Chase is	0
	B	Pin C, J451	4
J452	A	Chassis	0
	B	Pia C, J452 Tura knob on side clockwise	120

Figure 108. Junction Bux $J-99 / C R D-3$ receptacle pin pusitions.

f. Junction Box \downarrow-99/CRD-3 (contd).

From tube or receptacle	Pin No.	To	Conditions	Resistance (ohms)
J 456	A	Chass is		0
	B	Pin B, J458	Turn knob on side clockwise	0
	C	Pin C, J458		0
J 457	A	Chass is		0
	B	Pin B, J458	Turn knob on side	0
	C	Pia C, J458	connterclockwise	0
J468	A	Chass is		0
J459	B	Pin A, J459	Tura kaob on side clockwise	2
	C	Pin A, J 459	Tura kaob on side counterclockwise	2

g. Automatic Rearing indicator.

See figure 109 for pin locations.

$\begin{gathered} \text { From tube } \\ \text { or } \\ \text { receptacle } \end{gathered}$	Pin No.	To	Conditions	Resistance (0 hms)
J 501	A B C D	Chass is Pin C, J501 Pin D, J501 Chassis	VEOL out of soc:et	0 Infinity $25 K$ 950 K
J 502	A B C	$\begin{array}{ll} \text { Pin E, J502 } \\ \text { Pin G, J502 } \\ \text { Pin G, J502 } \end{array}$		$\begin{aligned} & 900 \\ & 3 \\ & 0 \end{aligned}$

g. Automatic Bearing Indicator (contd).

Figure 109. Automatic bearing in-
Figure 110. Goniometer receptacle pin positions. dicator receptacle pin positions.

h. Coniameters.

See figure 110 for pin locations.

$\begin{gathered} \text { From tube } \\ \text { or } \\ \text { receptacle } \end{gathered}$	Pia No.	To	Conditions	Resiataace (olme)
J851	A	J851-B		48
	A	J851-C		48
	B	J851-C		8
	1	Chase is		0
	B	Chase is		52
	C	Chase is		82
	1	J882-B		82

h. Goniameters (contd).

From tube or receptacle	Pia No.	To		Resistance (obms)
J852	A	J852-C		52
	B	J852-C		8
	A	Chassis		0
	B	Chassis		52
	C	Chassis		52
J853	B	J858-C		1

i. OAN Test Oscillator.

See figure 102 for pin locations.

I. any Test Dacillator (contd).

$\begin{gathered} \text { From tube } \\ \text { or } \\ \text { receptacle } \end{gathered}$	Pis No.	To	Conditioas	Resistance (olums)
J608	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { B } \end{aligned}$	Chass is $\begin{aligned} & \text { J6 02-C } \\ & \text { J6 02-C } \end{aligned}$	OUTPOT CONTROL OA MAX. OUTPUT CONTROL all other poeitiona	$\begin{aligned} & 0 \\ & 110 \\ & 140 \end{aligned}$

Hote: I deactes thousand 1885 equals 88,000)

J. Phase Imverters MC-4/I-A and MC-4I3-A.

See figures 111 and 112 for pin locations.

$\begin{gathered} \text { Fron tube } \\ \text { or } \\ \text { recepracle } \end{gathered}$	Pla Mo.	To	Conditions	Reo ferazce (oham)
7801*	1	Chassis		Iatimety
	2	Chassis		Iapledey
	8	Chase is		Indialey
	4	Chase is		-
	5	Class is		
	6	Chase is		28,000
	1	Chasese		150
	8	Chaseis		Infiaity

-8ame readiage apply io 7802, and F401, and 7404.

 all TUNE in nesperive socnets. MATE ENAM NO MA PEA PUDE.

 aLL PUSE m neseretive sooners. TOTM MATB OMan 80 MA.

Figure 112. Phase Inverter $N C-413-A$ voltage analysis.
k. Control-Rectifier Power Unit PP-I35/CRD-3.

See figures 103 and 107 for pin locations.

From tube or receptacle	Pin No.	To	Conditions	Resistance (0 hms)
V852	1		No convection	
	2	Chass is		0.2
	8	V351 pia 8		990
	4	V851 pin 8		990
	5	V351 pia 4		60
	5	V351 pia 6		60
	6	Chass is		200
	7	Chass is		0
	8	Chass is		0
	4	J358 pia B	Vary SBNSB GAIN coatrol	0-10,500
	4	3858 pia B	0° switch ON, vary 0°	0-10,800
	4	J354 pia B	BALANCE ADJUSTMENT 180° switch $O N$, vary 180°	0-10,500
	4	J856 pia B	BALANCE ADJUSTMENT 90° switch $O N, \operatorname{vary} 90^{\circ}$	0-10,500
	4	J357 pin E	BALANCB ADJUSTMENT 270° switcb $O N$, vary 270°	0-10,500
V851	2	V351 pia 8		0.1
	4	Chass is		260
	6	Chassis		260

SECTION XII

REPAIRS

115. GENERAL.

Be careful in maintaining and servicing this equipment. Servicing and repair, other than replacement of tubes (except the cathoderay tubes) should be performed only by campetent persannel equipped with adequate tools and instruments. An inexperienced operator attempting to locate and repair troubles may damage the equipment to such an extent that shipment to a higher repair echelon will be necessary. This is particularly true of indiscriminate adjustment of some of the frequency alignment capacitors. Most of the parts in Radio Set AN/CRD-3 are readily accessible and are ecsily replaced if they are faulty. However, there are several exceptions, notably the cathode-ray tube in the automatic bearing indicator. Before attempting repairs, make every effort to obtain the proper tools for the job.

116. REPLACEMENT OF PARTS IN RECEIVER ASSEMBLY.

a. Reolacina Potentiometer Controls and Switches.
(1) Remove bot tom cover plate if necessary.
(2) Remove knob after loosening setscrews with Allen head wrench.
(3) Unsolder connections one at a time, and tag them to insure proper reconnection.
(4) Remove hexagon nuts and washers from shaft bushings and remove unit from panel.
(5) Mount replacement unit, replace washers and hexagon nuts, and resolder connections.
(6) Replace bcttom cover plate.
b. Reolacing l-f Transformer Components.
(1) Remove bottom cover plate.
(2) Remove two tap screws and lift the shield from the required transformer assembly associated with coils L2O1 to L206, L111 to L113 (figs. 131 and 132).
(3) Remove the nearby tubes.
(4) Before unsoldering any leads make a sketch showing all connections and record color codes of associated leads, or tag them for identification.
(5) Place the receiver on its left side while soldering or unsoldering.
(6) It may be found more convenient to remove the entire assembly for repair. To do this, disconnect under chassis connections for the assembly in question, being careful to identify all terminals and leads for reconnaction, and remove frame mounting nuts.
(7) All assemblies may be removed directly after connections are unsoldered.
c. Removina R-f, Mixer, or H-f Oscillator Coil Assemblies.
(1) Remove the bottom cover plate.
(2) Remove the shield holding the nut on the top center of the shield can (fig. 114).
(3) Femove the connections fram lugs on bottom coil assembly, tagging each for identification.
(4) Remove the nuts, washers, and bushings holding the coil to the chassis (fig. 114).
(5) Remove the coil.
d. Reolacing Main Tuning Caoacitor. Do not remove the main tuning capacitor unless it is absclutely necessary. Access to the interior of the capacitor may be obtained without removing the capacitor from the chassis. Remove only the capacitor shield. If main tuning capacitor must be removed, proceed as follows:

Figure 113. Modulator section of Radio Receiver Assembly R-128/CRD-3. bot tom view showing parts location.
(1) Remove the bottom cover plate.
(2) Loosen the two Allen head screws securing the counterweighted coupling to the capocitor shaft and drive out the taper pin. Be sure to drive the small end of the taper pin. To determine which end is the smaller, test each one with a few light hammer bl ows.
(3) Disconnect all wiring to the five stator terminals and unsolder the five rotor-grounding braided leads from the chassis ground terminals.
(4) The capacitor is secured to the chassis by three fillister-head machine screws, one at the rear and two at the front. The screws are ac-

Figure 114. R-f coil removal detail.
cessible from the bottom side of the chassis. Each mounting screw passes through an adjustable mounting device which permits precise control of elevation and alignment of the tuning capacitor shaft with the drive shaft. The adjustment of these mountings has been carefully made at the factory for the particular capacitor in the receiver; the adjustment is locked by the large hexagon nut. To remove the capacitor, remove the fillister-head machine screws. Don't loosen the mounting locknut.
(5) Turn the chassis on the right side (as seen facing the panel), place the left hand under the rear of the

Figure 115. Power indicator section of Radio Receiver Assembly R-128/CRD-3, bottom view showing parts location.
main tuning capacitor and remove the rear mounting screw.
(6) Holding the rear of the capaciter to avoid strain on the shafts, turn the chassis on its base (that is, to the normal operating position) allowing the front edge of the chassis to overhang the edge of the table by a few inches. Remove the two front capcitormounting machine screws wi th the chassis in this position to avoid strains on the capacitor and drive shafts.
(7) Slide the capacitor directly to the rear and lift it up and out.
(8) If a new capacitor is to be installed, it may be necessary to readjust the height of the three mounting assemblies. To do this, loosen the locknuts and el evate or lower the threaded spacers, as required, to align the capacitor shaft with the coupling. This adjustment should be made with the mounting screws in place, but not tightened; for this operation the chassis must be resting on its base.
(g) When rewiring the capacitor, take care not to drop solder into the plates through the terminal clearance holes; it is advisable to lay the chassis on its left side when soldering.

e. Removing Receiver Goniometer.

In order to remove the receiver goniometer, it is necessary to release the goniometer dial and drive shaft before disengag.ing the thumbscrews. With the modulator section out of the cabinet, proceed as follows:
(1) Remove the plastic goniometer dial index pointer from the front panel by removing the two screws (fig. 129). Be careful not to scatter the washers and spacers.
(2) Loosen the front shaft collar by loosening the Allen head screws.
(3) slide the dial and shaft out sufficiently for the shaft to clear the goniometer coupling.
(4) Loosen the goniometer thumbscrews and swing them clear.
(5) Remove the goniometer by pulling it straight up.
(6) After the goniometer is replaced check its mechanical alignment (par. 131b).

II7. REPLACEMENT OF PARTS IN AUTOMATIC BEARING INDICATOR.

CAUTION: WHEN THE COVER ON TOP OF THE INDICATOR IS OPENED, CIRCUITS CARRYING VOLTAGES DANGEPOUS TO HUMAN LIFE ARE EXPOSED. NEVER OPEN THIS COVER BEFORE TURNING THE AMPLIFIER OR MASTER SWITCH OFF EXCEPT AS SPECIFICALLY DIRECTED.

a. Removing and Replacing Cathode-ray

 Tube.(1) Turn the MASTER and AMPLIFIER switches OFF.
(2) Swing back the optical housing.
(3) Grasp the tube and carefully pull it out by working it from side to side very slightly.
(4) In replacing it observe the position of the socket key slot in the tube housing, orient the cathode-ray tube so the key in the base lines up with the socket slot.
(5) Insert the tube and turn it slowly until the key slips into place. Don't force it.
(6) Then push the tube in firnly by working it from side to side very slightly until it is well seated.
(7) Release both light shield brake screws and pull the shield as far forward as it will go (fig. 13).
(8) Close and lock the optical housing.
(9) Push the light shield back carefully until it just touches the tube.
(10) Tighten the brake screws.
b. Replacing Flexible Motor Coupling.
(1) To replace the leather pad, remove the four screws in the pad. Loosen the setscrew on the motor half
of the coupling. Insert the new pad, replace the screws, and lock the setscrew on the motor shaft.
(2) If the entire flexible coupling

CONTROL BOX

COVER PLATE

Figure 116. Control-box and cathode-ray tube housing showing controls and connecting pins.

TLIO998-S

Figure 117. Bearing Indicator $I D-121 / C R D-3$ (without cathode ray tube housing) showing deflection coils.
asseribly must be replaced, remove the rotating assembly and reassemble as outlined in paragraph 118.
(3) pealign the goniometer (par. 131a).

C. Replacing Deflection Coils.

(1) Turn OFF all power switches.
(2) Turn back the optical housing, the drop control box, and remove the tube and tube housing.
(3) Open the top cover of the automatic bearing indicator and check the continuity of the deflection coils across the coil terminals. A reading of infinity indicates an open coil.
(4) Unsolder the leads to the defective coil and tag them so there will be no mistake in connecting them to the proper terminals of the replacement coil.
(5) Straighten the bent lamination, holding the coil by pressing on it with a screwdriver from the front of the indicator, and remove the coil.
(6) Insert the new coil and secure it by bending over the front lamination as before and resolder the leads to the terminals.
(7) Replace the tube housing and cathode-ray tube, attach the control bex, and close the optical housing.
(8) Check the goniometer alignment (par. 131).

I 18. REMOVING SLIP RIMG ECCENTRICITY IM aUTOMATIC BEARING IMDICATOR.

a. To check for eccentricity, observe the protruding arm of the brush pressure spring while the indicator is running. If the spring remains stationary in its slot, the slip ring is concentric within the allowable limits. Any receptible movement of the brush pressure spring arin is an indication of eccentricity and immediate steps should be taken to restore the slip to its original concentric shape. Figure 18 illustrates
such an adjustment of the slip rings. proceed as follows:
(1) Throw the MOTOR, MASTER, and AMPLIFIER switches CFF.
(2) Rotate the slip rings until the hagh spot of eccentricity is located and this hegh spot is in an accessible position.
(3) Place the end of a rod of baker lite, or cther nometallic material with a square smooth end on the high spot of the ring and lightly tap the other end of the rod.
(4) Recheck the high spot, and if necessary repeat the above procedure until there is no movement of the brush spring arm during the full rotation of the slip ring.
b. Occasionally the eccentricity of the slip rings cannot be removed by the above described method. In such cases the slip rings must be machined in a lathe. proceed as follows:
(1) Swing back the optical housing, lower the control box and remove the tube and tube housing (figs. 116 and 117).
(a) Remove the screws from the leather pad of the flexible motor coupling holding axle and worm coupling (fig. 127).
(3) Remove the front and rear top bearing housings and lift out the rotating assembly.
(4) Remove the axle and worm coupling and mount the rear shaft of the rotating assembly in a lathe, being careful not to damage the gear on the shaft.
(5) Clamp the front of the assembly by means of the front oilite bearing in a lathe center rest, and carefully machine all three slip rings just enough to remove eccentricity. Exercise care in tightening the steady support so as to prevent damage to the bearing.

Figure 118. Deflection coil assembly, removing eccentricity.
(6) Polish the rings before removing from the lathe as described in paragraph 58.
(7) Renove the rings from the lathe and attach the axle and worm coupling, carefully seating the guide spacer in the slot under the locking screw.
(8) Reassemble in the bearing indicator, being careful to fit the pin next to the oil hole in the front bearing housing into the slot in the oilite bearing.
(g) Be very careful to properly shim the front bearing housing so as not to jam the oilite bearing.
(10) Check the brush epring pressure (par. 58).
(12) Realign the goniometer (par. 131).

I 19. REPLACEMENT OF PARTS IM MPLIFIERRECTIFIER POWER UNIT PP-I5I/CRD-3.
a. General. Amplifier-rectifier Power Unit PP-151/CRD-3 is in a cabinet (on a
shelf) to the rear of the autamatic bearing indicator. To gain access to the unit, disconnect the cables at the rear, remove the nuts on the upper bearing indicator shockmount and the pins on the lower supporting rod, and lower the indicator on its chain. Unlock the chain and carefully lower the indicator to the floor. Release the bar under the shelf by pulling it forward and lower the shelf on its bracket. Loosen the captive screws around the the panel on the rectifier unit and remove it from its cabinet.
b. Renoving Relay. To remove the relay it is necessary to remove the resistor board which covers the mounting screws under the chassis. Proceed as follows:
(1) Carefully unsolder resistor R413 from its terminals without danaging its leads.
(2) Unscrew the four flatheod screws which hold the board to its insulators. The two screws which hold the relay in place will now be accessible.

I20. REPLACEMENT OF PARTS IN GOWIOMETERS.

a. General. Interior connections are accessible through the side or top openings by removing the cover plates.

b. Replacing Rotor Shaft Bearings.

(1) Remove the three bearing carrier screws; remove the carrier, rotor, and bearing spring.

Figure 119. Amplifier-Rectifier Power Unit PP-151/CRD-3, bottom view showing parts location.
(2) Drive out the taper pin holding the coupling to the shaft, and remove the coupling and front bearing carrier.
(3) Pull off the bearing, using a wheel puller if necessary. Use proper precautions to prevent damage to the shaft and bearing seat.
(4) Clean the shaft and bearing spring with a clean piece of cheese cloth saturated with carbon tetrachloride.
(5) Prepare two wood blocks with a hole in each slightly larger than the rotor shaft.
(6) Slide the new bearing over the shaft. Mount the rotor in a vise between the two blocks.
(7) Force the bearing onto the shaft by tightening the vise slowly until the bearing makes contact with the shoulder.
(8) Reassemble the front bearing carrier and coupling to the shaft.
(g) Peplace the bearing spring and rotor into the goniometer housing and replace the screws.
(10) After assembly, press on the projecting end of the shaft with sufficient finger pressure to compress the flat spring under the rear bearing. When properly assembled the bearing must be free enough in the housing to permit the shaft to return to its original position when the pressure is removed.

121. REMOVING ROTARY SWITCH WAFER IN JUNCTION BOX J-99/CRD-3.

2. Loosen the Allen head setscrew and remove the knob (fig. 121) on the side of the junction box.
b. Unscrew the hexagon nut on the shaft bushing and remove the bushing.
C. Loosen the Allen head setscrews in the front shaft coupling and remove the shaft extension, coupling, washers, and hexagon nut.
d. Loosen the Allen head setscrews on the end shaft coupling and slide
the switch shaft out through the wafer sections and hole in the junction box.
e. Unsolder connections to the defective wafer switch section, tagging each for proper replacement.
f. Remove nuts, screws, washers and bushings holding the switch section to the partition.
g. Remove the switch section.

122. EMERGENCY REPAIR.

Trouble may exist in a component of Radio Set AN/CRD-3 at a time whon the equipment is most vitally needed. By becoming familiar with the troubleshooting charts in this manual, the operator may be able to sectionalize the fault to a specific component. Since spare antenna assemblies, antenna mooring platforms, counterpoises, goniometers, Junction Boxes JB-91-A, phase inverters, and a spare power unit are provided, rapid emergency repairs can be effected by substituting a unit in good condition for a faulty one.

123. RUSTPROOFING AND REPAIMTING.

When the finish on the case or panel has been scarred or dameged, rust and corrosion can be prevented by touching up the bared surface as follows:
a. Use $\$ 0$ or $\$ 00$ sandpaper to clean the surface down to the bare metal. Obtain a bright, smooth finish.
b. When a touch-up job is necessary, apply paint with a small brush. If numerous scars and scratches warrant complete repainting remove the unit to be painted and paint it with a spray gun or a brush. Remove rust by cleaning corroded metal with dry-cleaning solvent (SD). In severe cases it may be necessary to use dry-cleaning solvent (SD) to soften the rust, and sandpaper to complete the preparation for painting.

124. UNSATISFACTORY EQUIPMENT REPORT.

a. When trouble in equipment used by Army Ground Forces or Army Service

Figure 120. Control-Rectifier Power Unit PP-135/CRD-3, bottom view showing parts location.

Figure 121. Junction Box J-99/CRD-3, front view without cover showing parts location.

Forces occurs more often than repair personnel feel is normal, War Department Unsatis factory Equi pment Report, W.D., A.G.O. Form No. 468 should be filled out and forwarded through channels to the Office of the Chief Signal Officer, Washingt on 25, D. C.
b. When trouble in equipment used by

Army Air Forces occurs more often than repair personnel feel is normal, Army Air Forces Form No. 54 should be filled out and forwarded through channels.
C. If either form is not available, prepare the data according to the somple form reproduced in figure 124.

Figure 122. Phase Inverter MC-411-A, component locations.

Figure 123. Phase Inverter $M C-413-A, c o m p o n e n t ~ l o c a t i o n s . ~$

WAR DEPARTMENT UNSATISFACTORY EQUIPMENT REPORT			
FOR	rechnical aenvice Signal Corps	MATERIEL	${ }^{\text {OnTE }} 1$ Feb 45
FROM	onganization 175 Signal Repair Co		${ }^{\text {TATION }}$ APO 102
T0	NEXT SUPERIOR HEADQUARTERE Supply Sec, Hq Fourth Army Sig Sv	$\begin{array}{r} \text { EATION } \\ \text { APO } 110 \\ \hline \end{array}$	TECHNICAL sERVICE Signal Corps

COMPLETE MAJOR ITEM

DEFECTIVE COMPONENT-DESCRIPTION AND CAUSE OF TROUBLE

Operation in tropics; heavy rainfall. Was replaced and set given moistureproofing and fungiproofing treatment, 20 Jan 45.
TMAINING OR SKILL OF USING PERSONNEL

roon	rair	X	Substitute capacitor designed for tropical operation

ORIGINATING OFFCER

instruction:

 This form is desiened to fecliltate raeb reports and to provida a uniforre wethod of submitting the regalred data.
2. This form will be used for reporting manufacturiog, design, or operational defects to materiel, petroleom foela, fabricanta, and proverving materiala with a view to improving and correeting such defects, and for use to recommendisg modifications of materiel.
3. This form will not be used for reporting fallurss, tsolated matertal datects or malfunctions of materiel resultiog from falr-wear-and-tear or aceidental damage nor for the replacement, repalr or the tsuue of parts and equipment. It does not reglece currently suthorised operathanal or performance records.

3. It will not be practicable or deadrable in all caser to all all blank speces of the report. However, the report should be an complete as poesible th order to espeaite necese ry corrective action. Additional pertinent information not provided for to the biank speces should be gabmitted as inelosures to the form. Photographs, atroteb or other lllustrative material are bighly destrable.
6. When cases arise where it ts neceseary to communicate with a cbitef of erriloe in order to assure safoty to personnel, more axpeditious menne of communication are suthorised. This form should be used to confirm reports made by more expeditions means.
7. This form will be made out in triplicate by astag or service crgaziestion. Two coples will be forwarded diruet to the techaleal sarvies; one cepp will be forwarded through command channels.
8. Necoesalty for using this form will be determined by the using or servico troope.

SECTION XIII ALIGNMENT AND ADJUSTMENT

125. INITIAL ALIGMENT.

The following alignment must be performed after installation, and before placing the equipment in service. Read section IV to became familiar with the performance of the equipment before proceeding with these instructions.
a. Start Radio Set AN/CRD-3 according to instructions given in paragraph 27.
b. Check the line voltage (par. 126).
C. Check the preliminary adjustments of the radio receiver assembly (par. 128).
d. Check for and remove the bearing indicator magnetization, if any (par. 130).
e. Check the alignment of the goniometers (par. 131).
f. Check the phase inverter balance (par. 129).

126. LIME VOLTAGE CHECK.

a. Start Radio Set AN/CRD-3 according to instructions given in paragraph 27.
b. Set SEARCH-INSTANT. BEARING-SENSE switch at SEARCH position.
C. Set SELECTOR SWITCH on the con-trol-rectifier power unit at SENSE.
d. Increase the SENSE GAIN on the control-rectifier unit to maximum (clockwise).
e. The line voltage is normal if the PLATE MA ANT COUPLING UNITS meter reads 20 to 30 ma . If the reading is less than 20 or more than 30 ma for both filament switch positions, adjust the output of the power unit accordingly. A reading of approximately
one-half the required value on either filament position indicates an inactive tube in sense Phase Inverter MC-413-A.

127. PREL IMIMARY ADJUSTMENT OF PMASE IMVERTERS.

a. Turn the SEARCH-INSTANT. BEARING SENSE switch to INSTANT-BEARING.
b. Check the $0^{\circ}, 180^{\circ}, 90^{\circ}$, and 270° phase inverter plate currents by turning the SELECTOR SWITCH to the 0°, 180° etc positions. Adjust the 0°, $180^{\circ}, 90^{\circ}$, and 270° screwdriver controls if necessary to obtain the plate current readings recorded when the phase inverters were last balanced (par. 129). Be sure the FIL SWITCH on the control-rectifier power unit is also in the corresponding position (positions 1 or 2).

128. PRELIMIMARY ADJUSTMENT OF RADIO RECEIVER ASSEMBLY.

a. Manual AzImuth Adjustments.

(1) Set the INDICATION switch at MAN.
(2) Tune in a strong signal.
(3) Adjust the BRILL control for opt imum cathode-ray tube intensity.
(4) Set the LINE SPRD. so that lines on the cathode-ray tube screen are approximately $1 / 16$ inch apart.
(5) Adjust the FOCUS control for sharpness of lines.
(6) Set the R.F. GAIN at O.
(7) Adjust the VERT. ADJ. so that two dots on the cathode-ray tube are just at the top of the screen.
(8) Disconnect the sense input cable at Junction Box J-99/CRD-3.
(g) Turn up the R.F. GAIN, and turn the GONIOMETER to maximum.
(10) Adjust the balanced modulator control (R127) until the two lines on the 2 -inch cathode-ray tube screen
are equal. This control is located on the right-hand side of the chassis. If the lines will not equalize, interchange modulator tubes V108 and V109.
(11) Reconnect the sense input cable at Junction Box J-99/CRD-3.
b. Automatic Azimuth Adjustments.
(1) Set the INDICATION switch at INST.
(2) Set the R.F. GAIN at 0 .
(3) Adjust the INTENSITY control for optimum brilliance of the circular pattern.
(4) Adjust the FOCUS control for - sharp trace.
(5) Adjust the CIRCLE DIA. control for a circle $1 / 16$ inch inside the azimuth scale.

c. Other Adjustments.

(1) To align the sense input stage refer to paragraph 132.
(2́) To align the directional input stage refer to paragraph 132.
(3) To adjust the GONI. GAIN stage proceed as follows:
(a) Set the RADIO SELECTIVITY switch at SHARP.
(b) Set the A.V.C.-M.V.C.-C.W. switch at M.V.C.
(c) Set the INDICATION switch at MAN, and adjust SENSE GAIN to mid position.
(d) Tune in a strong signal near 610 KC on band 2.
(e) Adjust the GONIOMETER (inside receiver) until two lines on the receiver cathode-ray tube match in length.
(f) Set the VERT. ADJ. control to bring the two lines to the center of the tube.
(g) Turn the GONICMETER control off course 15°.
(h) Adjust the GONI. GAIN control until the longer line is approximately twice the length of the shorter line.
(i) Turn down the R.f. GAIN control until the lines becone dots.
(j) Reset the VERT. ADJ. to bring the dots to the top of the cathoderay tube.
(4) To adjust the DEFL. SENS. proceed as follows:
(a) Set the INDICATION switch at NULL.
(b) Set SEARCH-INSTANT. BEAR-ING-SENSE to INSTANT. BEARING.
(c) Tune in a strong signal near 610 kc on band 2.
(d) Adjust the R.F. GAIN control to give a 1-1/2-inch line on the receiver cāthode-ray tube.
(e) Switch the INDICATION switch to INST., and adjust the DEFL. SENS. control so that the center of the auto matic bearing indicator pattern just comes together.

NOTE: All the adjustments must be checked frequently for optimum equipment performance.

129. PHASE INVERTER BALANCE.

a. With INDICATION switch at INST., and SEARCH-INSTANT. BEARING-SENSE switch at INSTANT. BEARING, set up the OAN test oscillator exactly in line with the north and south antennas at a distance of approximately 800 feet north from the center of the array. Tune the transmitter to a clear channel at 600 kc .
b. Check the goniometer alignment (par. 131).
c. Turn the $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270° switches ON, and adjust the receiver for a good pattern.
d. set the $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270° screwdriver BALANCE ADJUSTMENTS at approximately the middle of their range.
e. Turn the 0° and 180° switches OFF.
f. Alternately adjust the 90° and 270° BALANCE ADJUBTMENTS, completing approximately hal f the correction with each control, until the pattern is as nearly circular as possible (largest north-Bouth diameter will probably be $1 / 4$ inch less than east-west diameter). If it is impossible to obtain this circular pattern, check the phase inverter tubes, and check the r-f cords for continuity and shorts. Check for $100 s e$ or corroded counterpoise groundstrap connections. If balance is still impossible, try a apare phase inverter in either position; then replace the r-f cords one at a time.
g. Record the north and south azimuth scale readings as the receiver is tuned to the transmitter frequencies in clear channels at approximately 250, 450, 750,1000 , and 1500 kc (all antenna switches ON).
h. Move the target transmitter to a similar position exactly in line with the east-west antennas, east of the center of the array, and repeat steps c, e, f, and g, above except that the instructions referring to the 0° and 180° controls now apply to the 90° and 270° controls, and vise versa.
i. Now repeat step g above (all anantenna switches $O N$) with the transmitter at the south, west, and 45° positions, at distances approximately 800 feet from the anterna systen. Check the sense indication. Refer to the troublemshooting chart (par. 111) and correct reversed sense indications, if any.
j. If azimuth errors are observed over the operating frequency range, check for loose or corroded counterpoise ground-strap connections. (Poor ground connections may cause errors as high as 6°). Recheck the phase inverter balance and azimuth accuracy. If errors greater than 4^{0} still exist, the site is probably unsuitable for direction finging purposes.
K. Record the phase inverter plate currents after balance by turning the SELECTOR SWITCH on the control-rectifier power unit panel to the 0°, 180° etc. positions. Rebalance the phase inverters with the FIL SWITCH in the other position, and record the phase inverter plate currents for the spare phase inverter circuits.

1. Record the directional phase inverter plate currents for both filament switch positions as follows:

$\begin{aligned} & \text { Pilement } \\ & \text { switch } \\ & \text { position } \end{aligned}$		Phase inverter plate crrfents		
	00	180°	90°	270°
1	-	\cdots	--	--
2	--	--	--	-

m. When checking the sense indications, using the target transmitter 28 the signal source, it is necessary to locate the target transmitter at a distance from the center of the antenna array that is greater than onequarter wavelength at the operating frequency. Otherwise a reversal of the sense indication will result. Since the output of the target transmitter is considerably less at the lower frequencies where the required distance between the target and the antenna array is greatest, it is recommended that commercial stations of known azimuths be used to check the sense indications at the lower frequencies. If the sense indications are still reversed, refer to paragraph 111.

I30. AUTOMATIC BEARING IMDICATOR DEmagetization.

a. Check for Magnetism.

(1) Set the equipment in operation (section IV) and tune in a strong signal, preferably continuans wave or one having a minimum of modulation, so as to insure a clear, steady twinleaf pattern.
(2) If the centers of the twinleaf trace are offset fram one another as in figure 125 sone part of the rotating assembly has residual magnetism. The pattern may also be slightly bent as in figure 126.

Figure 125. Pattern bent and cénter points displaced due to residual magnetism in the rotating assembly.
(3) As a further check turn the AMPLIFIER switch OFF. The presence of a small circular trace as shown in figure 126 instead of a dot also indicates residual magnetism in the rotating assembly.
(4) Turn the AMPLIFIER switch ON. Turn the receiver OFF-STANDBY-aN switch OFF. If the circular trace appears elliptical or has bulges or depressions, some of the studs, or fired portions of the indicator, around the rotating assembly are magnetized sufficiently

Figure 126. With AMPLIFIER switch OFF small circle instead of a dot shows residual magnetism.
to deflect the cathode-ray tube spot from its normal circular path on the screen.
b. Demagnetizing Procedure.
(1) Never attempt to demagnetise the equipment until careful checking insures that magnetism is present.
(2) Plug the demagnetizer into a 115-volt, a-c outlet, and if tests indicate magnetism proceed ds follows:
(a) Turn the MASTER switch OFF.
(b) At about 3 feet from the automatic bearing indicator, turn the demagnetizer on by depressing the snap switch on the cord, bring it as close to the point to be demagnetized as possible, withdraw it to the starting point, and turn it off. This operation should take about 15 or 20 seconds when the demagnetizer is moved at a uniform rate of speed.

> CAUTION: NEVER LEAVE THE DEMAGNETIZER ON MORE THAN 30 SECONDS FOR EACH OPERATION OR IT WILL BURN OUT.
(c) The demagnetizer has been designed to give a strong alternating current field and can still be physically small onough to fit inside,
the cathode-ray tube housing as required for demagnetizing the rotating assembly.
(d) Repeat this procedure for each of the fixed pins and studs whose location is shown in figures 37 and 127. Move the demagnetizer up and down past the points shown, on both sides of the indicator, while it is close to them.
(e) Now swing back the optical housing and carefully remove the cathoderay tube (par. 117).
(f) Demagnetize the rotating assembly according to step (b) above by inserting the demagnetizer, with a twisting motion, as far into the housing as it will go. During this operation turn the MASTER and MCTCR switches $C N$, and the receiver and BEAM and AMPLIFIER switches CFF.
(g) Replace the tube, close the optical housing, check to make sure the magnetism has been removed, and repeat these operations if necessary.

131. GONIONETER ALIGMMENT.

a. Automatic Bearing Indicator Goniometer.
(1) With the equipment set up for normal automatic bearing indicator operation (par. 28), tune in a strong signal at approximately 600 kc . If no satisfactory signal is found, use the target transmitter as described in paragraph 129 .
(2) Turn off the $90^{\circ}, 180^{\circ}$, and 270° switches leaving only the 0° switch on. Adjust the receiver-sensitivity control until the pattern just closes at the center.
(3) The points of the pattern should read 0° and 180° on the azimuth scale.
(4) Check the 90° to 270° pattern by turning the C^{0} switch of f and the 90° switch on.
(5) If the 0° and 90° readings
are in error by more than 1° proceed as instructed in subparagraph b below.
b. 0° and 180° Adjustment. Leave the 0° switch on and the $90^{\circ}, 180^{\circ}$, and 270° switches off. If the twin leaf pattern does not point exactly to 0°, proceed as follows:
(1) Record the exact reading of the pattern in degrees plus or minus fram 0° on the azimath scale.
(2) Now turn the motor, beam, and amplifier switches off; unlock the automatic bearing cover, and remove it by removing the hinge screws. Do not replace the cover until the adjustment is complete.
(3) Grasp the flexible leather coupling and loosen the locking screw on the worm coupling (fig. 27). While holding the flexible coupling, turn the coupling adjustment in the proper direction to rotate the unit the same number of degrees (as indicated on the graduated ring), and in the opposite direction to the deviation. Tighten the locking screw.
(4) Turn the equipment on and recheck the 0° pattern orientation. Repeat if the pattern is not on 0°.
(5) Turn the 90° switch on and the 0° switch off. Check the 90° pattern, but make no further adjustments.

C. Receiver Conlameter.

(1) Remove the nuts on the upper mount of the automatic bearing indicator. Remove the pins on the lower supporting rod and lower the indicat or on the chain.
(2) Remove all interconnecting cables from the modulator section of the receiver (lower half of receiver assembly).
(3) Loosen all captive screws and remove the unit from its cabinet.
(4) place the unit on the wooden table adjoining the metal mounting table.

Figure 127. Bearing Indicator ID-121/CRD-3, top view.
(5) Reconnect the r-f and power cords to the modulator section.
(6) Tura the power on and the indication switch to NULL.
(7) Turn the 0° switch on and the $90^{\circ}, 180^{\circ}$, and 270° switches off.
(8) Tune in a strong signal at approximately 600 kc . If no satisfactory signal is found, the target transmitter must be used as described in paragraph 129a.
(9) An azimuth should be obtained at 0° and 180°.
(10) If the azimuth does not read exactly 0° and 180°, loosen the locking screws on the worm coupling (fig. 129). Set the dial to the desired reading, and tighten the bakelite brake on the goniometer shaft. Turn the adjusting screw on the worm coupling until a bearing is obtained at 0° and 180°.

Figure 128. Radio Set $A N / C R D-3$ in position for servicing receiver assembly.
(11) Tighten the locking screw and $l 008$ on the brake to the desired drag.
(12) Check to see if the azimuth is correct. If not, the adjustment must be repeated.
(13) Turn the 90° switch on and the 0° switch off. Check the 90° azimuth, but make no further adjustments.
(14) Turn the power off and disconnect the test set-up.
(15) Replace the equipment in the normal operating condition and check.

NOTE: The maximum error between direct and reciprocal azimuths is limited to 1° at the factory for both the automatic and manually operated goniometers.

TLII488-S

Figure 129. Top view of modulator section showing poriometer coupling.

132. RADIO RECEIVER ALIGNMENT.

The receiver has been carefully and completely aligned at the factory; do not attempt complete realignment in the field.

a. Equipment Required.

(1) One standard signal generator accurately calibrated at $175 \mathrm{kc}, 263 \mathrm{kc}$, $580 \mathrm{kc}, 640 \mathrm{kc}$, and 1420 kc .
(2) A target transmitter or test oscillator transmitter calibrated at
frocuer:cies of $250 \mathrm{kc}, 580 \mathrm{kc}, 640 \mathrm{kc}$, and 1420 kc .
(3) Two* d-c vacuum tube voltmeters (VTVM 1 and VTVM ${ }_{2}$) with a range to 50 volts direct current.
(4) One fixed capacitor 0.01 mf or larger.
(5) The completo Radio Set antenna system AN/CRD-3, comprising U-Adcock

[^2]antennas, sense antenna and r-f transmission lines, and the receiver Junction Box J-99/CRD-3 installed as used with the receiver to be aligned.
(6) I-f test cable (RF-1812-2) and power test cable (RF-1813-3).

b. Prel iminary Preparations for Alignment.

(1) Remove the nuts on the upper shockmount of the automatic bearing indicator; remove the pins on the lower supporting rod and the lower indicator on the chain.
(2) Remove all interconnecting cables from both the power-indicator and modulator-receiver units.
(3) Loosen all captive screws and remove both units from the cabinet.
(4) Place the units on a bench, each on its left side.
(5) Remove the bottom plate from each unit.
(6) Reconnect power cable 18, and i-f cable 17.
(7) Connect the a-c power cable (No. 16) directly to the a-c power input on power-indicator unit.
(8) Turn switch OFF-STANDBY-ON to an and allow $1 / 2$ hour to warm up.
c. Control Settings.

AUDIO GAIN	Maximam
R. P. SBlbctivity	SHARP
A. V. C-M. V.C.-C.N.	M. V. C.
INDICATION	noll
8BARCH-INSTANT. BBARINGSENSB	As required
R. P. GAIN	As required
GONI. GAIN	$1 / 2$ maximam
gon IOMBTER	As required

NOTE: USE A O.O1 MF CAPACITOR IN SERIES WITH THE SIGNAL GENERATOR TO THE GRIDS OF THE VARIOUS TUBES.

d. I-f Alignment.

(1) Set the signal generator to 175 kc . Connect the first vacuum-tube voltmeter ($\mathrm{Vt} \mathrm{\nabla} \mathrm{~m}_{1}$) to J203 (or to 3 and 4 of L 206) in the power indicator unit (fig. 130). Connect the second vtrm ${ }_{2}$ across the diode load (R213) or from lug number 4 on L2O4 to ground.
(2) Before attempting alignment set the powdered-iron cores of all i-f transformers all the way out. Feed in sufficient signal without modulation to the control grid (pin number 8) of V1O4 (fig. 130) to get a reading on the second $\nabla t \mathrm{vm}$ across R213.
(3) Adjust the core of L2O4 (fig. 131) for maximum reading on the $\mathrm{Vtvm} \mathrm{v}_{2}$ and the core of L2O6 for maximum reading on $\nabla t v m_{1}$.
(4) Adjust L2O3, L2O2, L2O1, and L112, individually for maximum reading on $v t v m_{1}$.
(5) Ad just L2O4 for maximum reading of the Vtrm .
(6) Adjust L2O6, L2O3, L2O2, L2OA, and L112, individually for maximum reading of vtrm_{1}.
(7) Adjust L2O3, L2O2, L2O1 and L112, individually for maximum reading of Vtrm .
(8) Repeat step (7) as often as necessary to secure a final peak.
(g) Vary the frequency, and observe Whether both vtums peak together. If they do, the alignment is complete.
(10) If the vtrms do not peak to-
'her, check the aifignment of 1206 and 2204.

Figure 130. Receiver alignment hookup.
(11) After i-f alignment, check beat-frequency oscillator output. If the output interferes on indicator pattern, adjust C221 to just remove interference. If C221 is adjusted, repeat adjustment of C2O4.
e. I-f Trap Alignment. With the equipment set up as for the i-f alignment, feed sufficient 175 kc signal to the control grid (pin number 4) of the 6AC7 sense input tube ($\mathrm{V}_{1} \mathrm{O} 2$) to make Vtvn 2 read near the conter of its scale. Adjust the iron core Llil for minimum indication on Vtrm_{2}. Increase the generator output and repeat the adjustment.

f. Low-band Aligment.

(1) Necessary alignment frequencies are: inductance (core adjustment) 260 kc , and capacitance (trimer adjustment) 580 kc .
(2) With the equipment set up as for i-f alignment connect the signal generator to the signal grid (pin No. 8) of V104 in the modulator-receiver unit (fig. 130). Adjust the oscillator coil L109 (fig. 132) and trimmer C125a for maximum output at the frequencies given above. Repeat until the alignment is accurate at both frequencies.

Figure 131. I-f trimmer locations.
(3) Connect the signal generator to the grid (pin No. 4) of V1O2 (fig. 130) and adjust the inductance L107b and the trimmer C124a of the mixer tube V 104 for maximum output and switch SEARCH-INSTANT.BEARING-SENSE to SEARCH.

Figure 132. R-f trimmer locations.

Adjust the inductance L105b and trimer C123a for maximum output at the frequencies given. fepeat until the alignment is accurate at both frequencies.
g. Wigh Band 610 to 1500 kc .
(1) Necessary alignment frequencies are inductance (core adjustment) 640 kc, and capacitance (trimer adjus tment) 1420 kc.
(2) Align the high band in the same manner as the low band adjusting the following circuits:

Circuit	Inductance	Trimmer
Oscillator	110	C125b
Mizer	L 108b	C184b
R-1 amplifier	L100b	C183b

h. Sense Input Stage Alignment.
(1) With the equipment set up in ite normal operating position remove the nuts on the upper shockmount of the automatic bearing indicator, and the pins on lower supporting rod and lower indicator on chain.
(2) Cover the indicator apron with canvas included with the tools and test -quipment.
(3) penove the hooks from the pocket and hook one at each edge on top of the mounting table.
(4) peenove all interconnecting cables from the modulator-receiver unit (the lower half or radio receiver).
(5) Loosen all captive screws and remove the unit from the cabinet.
(6) Place the unit in its left side on top of the apron using the hooks to hold it in place (fig. 128).
(7) Connect the cables to the unit as follows:
(a) Use the power test cable (RF-1813-3) and i-f test cable (RF-1812-2) in place of cables 18 and 17 respectively, running them through the cutouts in the rear of the cabinet to the power indicator unit.
(b) Reconnect cables 1 and 5.
(c) Remove cables 8, 9, and 10 from the indicator goni aneter and connect thea to the receiver goniometer. Substitute cable 8 for cable 2, cable 9 for 3, and cable 10 for 4.
(8) By means of the external knob on the junction box, switch to manual operation. Leave the controls as indicated in paragraph 132c.
ig) Set the SEARCH-DNBTNNT. BEARDGG SENBE switch at SEARCH.
(20) Set the target transmitter at 58 ckc and place it as far as possible, up to 500 feet, from the antenna eystea. Tune the receiver to the signal.
(11) Set R.F. GAIN control so as to give a line approximately 1-1/2 inches long on the receiver cathoderay tube.
(2a) Adjust trimer C122A for maximum length of line. This must be done very accurately.
(13) Tune the target and receiver to 260 kc and set R.E. GAIN control so as to give a line approximately 1-1/2 inches long.
(14) Adjust 1403 for maximum length of line. This must be done very accurately.
(15) Repeat steps (10) through (14) as often as is necessary to result in accurate alignment at both frequencies.
(16) Using frequencies of $1,420 \mathrm{kc}$ and 640 kc repeat steps (10) through (15), ad justing C122B and L1O4.

i. Directional Input Stage Alignment.

(1) Set the SEARCH-INSTANT.BEARINGSENSE switch to INSTANT.BEARING.
(2) Tune the target and receiver to 580 kc .
(3) Set the receiver GONIOMETER to
give maximun length of line on a 2 -inch cathode-ray tube.
(4) Set the R.F. GAIN control so as to give a line 1-1/2 inches long.
(5) Ad just C121A for maximum length of line. This must be done very accurately.
(6) Tune the target and receiver to 260 kc and set the GONIOMETER to give maximum length of line.
(7) Adjust inductance LdOA for maximum line length on a 2-inch cathoderay tube. This must be done very accurately.
(8) Repeat steps (2) through (7) as often as is necessary to result in accurate alignment at both frequencies.
(9) Using frequencies of $1,420 \mathrm{kc}$ and 640 kc repeat steps (3) through (8) above, adjusting C121B and LAO2.

APPENDIX

SECTION XIV

REFERENCES

JOINT ARMY-NAVY TYPE DESIGNATION CODES
 FOR ELECTRICAL COMPONENTS

Abstract

INTRODUCTION: Fixed and variable resistors and fixed capacitors manufactured under JAN specifications may be labeled with a type designation code instead of a color code or actual electrical value. For resistors and capacitors marked with the JAN type designation code, electrical values and other data can be determined by consulting the following information.

RESISTORS

FIXED, COMPOSITION

COMPONENT: RC signifies fixed, composition resistor.

STYLE: A two-digit symbol indicates power rating and physical size.

Resister serle	Wemege
RC10, RC15, 2C16	y_{4} WATT
ncen, ac21, RC25	\% WATT
Reso, RC31, RC35, RC38	1 WATT
RCAO, RCAI, RCAS	2 walts
ness	4 Watts
2.75, nc76	5 Warts

RESISTANCE: A three-digit symbol indicates the resistance value in ohms. The first two digits give the first two figures of the resistance value; the third digit gives the number of zeros which follow the first two figures.

RESISTORS

VARIABLE, WIRE-WOUND

COMPONENT: RA signifies variable, wire-wound resistor.
STYLE: A two-digit symbol indicates power rating and physical size and shape.

SWITCH: Symbol A indicates no switch. Symbol B indicates a switch turned ON at start of clockwise rotation.
resistance: A three-digit symbol indicates the resistance value in ohms. The first two digits give the first two figures of the resistance value; the final digit gives the number of zeros which follow the first two figures. The letter R may be substituted to represent a decimal point; but when R is used, the last digit of the group becomes significant.

RHEOSTATS

WIRE-WOUND, POWER-TYPE

COMPONENT: RP signifies all rheostats.
STYL: Same as for variable, wire-wound resistors.

OFF POSITION:

Nemererel	OFF pesilion
1 2 3	Neme. Af and of ceemberclectrwise refetion. Af and of clochwise refotion.

resistance: Same as for variable, wire-wound resistors.

[^3]
CAPACITORS
 FIXED, MICA-DIELECTRIC

COMPONENT: CM signifies ficed, mica-dialectric capacitor.
CAse: A two-digit symbol identifies a phyzical case size and shape.

CAPACITANCE: A three-digit symbol indicates the capacitance value in micromicrofarads. The first two digits give the first two figures of the capacitance value; the final digit gives the number of zeros which follow the first two figures. When more than two significant figures are required, additional digits may be used, the last digit always indicating the number of zeros.

D-C WORKing VOltage for CAPACTTANCE RANGE

Cono	Coprecinemee renge	Vew
CM20 CM25 CMSO		$\begin{aligned} & 000 \\ & 500 \\ & 500 \end{aligned}$
CM38	$\begin{gathered} 470-6,200 \\ 0,600-10,000 \end{gathered}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$
CMAO	$\begin{aligned} & 8,900-8,200 \quad \text { manf } \\ & 9,100-10,000 \quad \text { mank } \end{aligned}$	$\begin{aligned} & 500 \\ & s 00 \end{aligned}$

mort: Working voltages for capacitors above CMs0 are stamped on the case.

The d-c working voltage of a capacitor can be determined from the above table when the case size and value of capacitance are known.

CAPACTORS

FIXED, MOLDED, PAPER-DIELECTRIC \dagger

COMPONENT: CN signilies fixed, molded, paperdiclectric capacitor.

Caser Same as for fixed, mica-dielectric capacitors.
CAPACTANCE: A three-digit aymbol indicatea the capacitance value in micromicrofarads. The first two digits give the lisut two figurea of the capacitance valus; the third dight gives the number of sarce which follow the furst two ngures.

D-C WOmmo Volitar por
 CAPACTANCE RANOE

Com	Copermenos	Whaw
Cuss		$\begin{aligned} & \infty 00 \\ & 400 \\ & 400 \end{aligned}$
CN36		$\begin{aligned} & 400 \\ & 400 \\ & \\ & \hline 000 \end{aligned}$
CN4O	$\begin{aligned} & \text { 2,000 man } \\ & \text { 6,000 man } \\ & 10,000 \mathrm{mmp} \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \\ & 300 \end{aligned}$
CMO	$\begin{aligned} & \text { 2,000 mma } \\ & 6,000 \mathrm{~mm} \\ & 10,000 \mathrm{mmp} \end{aligned}$	$\begin{gathered} 40 \\ 400 \\ 400 \end{gathered}$

The d-c working voltage of a capacitor can be determined from the above table when the case size and value of capacitance are known.

CAPACITORS

FIXED, CERAMKC-DHELECTRIC

COMPONENT: CC signifies flued, coramic-dielectric capacitor.
CASE: Same as for fixed, mica-dielectric capacitors
CAPACTANCE: Same as for fixed, molded, pa-per-dielectric capacitors.

MOT: All Axed, ceramic-iblectitc capacitors have a woriding voltage of 500 volts, d-c.

[^4]
CAPACITOR COLOR COOES

JAN 6-DOT COLOR CODE FOR
IMA 3-DOT COLOR CODE FOR MICA-DELECTRIC CAPACITORS

Capaction marked with thix crock hitice a inltuge rating of 500 voits.

RMA 6-DOT COLOR CODE FOR MICA-DIELECTRIC CAPACITORS

RMA COLOR CODE FOR TUBULAR CERAMIC-DIELECTRIC CAPACITORS

Capacitorx marked with this code have a voltage rating of $\mathbf{5 0 0}$ volts.

KMA Radio Manufacturers Assoctation JAN Joint Army Navy Note Theme color codea kive all capactiancers in micromicrofarads. -Itema marked with an asterisk are of intercet primarily to depot and bigher ectelon repair personnel

PAPER-DIELECTIKC CAPACITORS

The siluer dots serve to identify this marking. For working volts ages wee JAN type designation code.

JAN 6-DOT COLOR CODE FOR MICA-DHELECTRIC CAPACITORS

The black dot serves to identify this code. For working voliages see JAN type designation code.

JAN COLOR CODE FOR FIXED CERAMIC-DIELECTRIC CAPACTORS

Capacitors marked with this code have a voltage rating of $\mathbf{5 0 0}$ volts. Either the band or dot code may be ueed.

coll	SHCNHACANT FOUN:	multina			
		$\begin{aligned} & \text { RMA MICA-ANO } \\ & \text { C:RAMC-DIELECTAS } \end{aligned}$	$\begin{aligned} & \text { JAN MICA-ANP } \\ & \text { PAP: DICMCTAIC } \end{aligned}$		
Cuck	0	1	1	1	
Chown	1	10	10	10	10.
\cdots	2	100	100	100	200
OnNos	3	1.000	1,000	1.000	200
Yullow	4	10,000			400
cund	5	100,000			50
M10	6	1,000,000			00
VOM	7	10,000,000			700
Ceny	8	100,000,000		001	00
Wwit	9	1,000,000,000		0.1	00
000		0.1	0.1		1200
sMy		001	0.01		2000
M COMCX					800

Figure 133. Capacitor color codes.

RESISTOR COLOR COOES

RMA COLOR CODE FOR FIXED COMPOSITION RESISTORS

Inculated fixed composition resistors with axial leads are desig. nated by a natural tan background color. Non-insulated fixed compoeition reststors with axial leads are designated by a black background color.

color	sicmmeant	muntipuex	TOLERANCE (PEACENT)
cuack	-	1	
mown	1	10	
200	2	100	
canver	3	1,000	
Vellow	4	10,000	
Cuspen	5	100,000	
U10	6	1,000,000	
nous	7	10,000,000	
cray	-	100,000,000	
Wume	\checkmark	1,000,000,000*	
COD		$0.1{ }^{\circ}$	5
sive		0.08°	10
No coror			20

JAN COLOR CODE FOR
FIXED COMPOSITION RESISTORS

Resistors with axial leads are insulated. Resistors with radial leads are uninsulated.

Example: A 50,000 -ohm resistor with a standard tolerance of 20 percent (no color) would be indicated by a green ring (5), a black ring (0), and an orange ring (000)

RMA: Radio Manufacturers Association JAN: Joint Army-Navy

Figure 134. Resistor color codes.
133. ARNY REGULATIONS.

AR 380-5 Safequarding Military Information.
134. SUPPLY PUBLICATIONS.

SIG 1 Introduction to ASF Signal Supply Catalog.
SIG 2 Complete Index to ASF Signal Supply Catalog.
SIG 3 List of Items for Troop Issue.
SIG 4-1 Allowances of Expendable Supplies.
SIG 4-2 Allowances of Expendable Supplies for Schools, Training Centers, and Boards.

SIG 5
Stock List of All Items.
SB 11-6 Dry Battery Supply Data.
SB 11-8 Chests for Running Spares.
SB 11-10 Signal Corps Kit and Materials for Moisture and Fungi-Resistant Treatment.

SB 11-17 Electron Tube Supply Data.
135. TECHNICAL MANUALS ON AUXILIARY EQUIPMENT AND TEST EQUIPMENT.

TM 11-333 Telephones EE-8-A, EE-8-B, and EE-8.
TM 11-307 Signal Generator s-72-()
TM 11-940 Power Unit PE-197
136. PAINTING, PRESERVING, AND LUBRICATION.

TB SIG 6 A Method of Prolonging the Life of Dry Batteries.
TB SIG 13 Moistureproofing and Fingiproofing Signal Corps Equipment.

TB SIG 69 Lubrication of Ground Signal Equipment.
137. CAMOUFLAGE.

FM 5-20 Camouflage, Basic Principles.
138. SHIPPING INSTRUCTIONS.
U.S. Army Spec

No. 100-14A.
Army-Navy General Speci.fication for Packaging and Packing for Overseas Shipment.
139. DECONTAMINATION.

TM 3-220 Decontamination.
140. DEMOLITION.

FM 5-25 Explosives and Demolitions.
141. OTHER PUBLICATIOMS.

FM 21-6*

IM 24-18
TB SIG 5
TB SIG 25
TB SIG 66

TB SIG 72

TB SIG 75

TB SIG 123

TM 1-455
TM 11-227

TM 11-310

TM 11-314
TM 11-453
TM 11-455
TM 11-46 2
TM 11-483
IM 11-496

TM 11-499
TM 37-250
TB 11-499-()

List and index of Publications for Training.

Radio Communication.
Defonse Against Radio Jamening.
Preventive Maintenance of Power Cords.
Winter Maintenance of Ground Signal Equipment.

Tropical Maintenance of Ground Signal Equipment.

Desert Maintenance of Ground Signal Equipment.

Preventive Maintnenace Practices for Ground Signal Equipment.

Electrical Fundamentals
Signal Communication Equipment Difectory Radio Communication Equipment.

Schematic Diagrams for Maintenance of Ground Radio Communication Sets.

Antennas and Antenna System.
Shop Work.
Radio Fundamentals.
Reference Data.
Suppression of Radio Noises.
Training Text and Applicatory Excercises for Amplitude-modulated Radio Sets.

Radio Propagation.
Basic Maintenance Manual.
Basic Radio Propagation Predictions.
142. FORMS.
W.D., A.G.O. Form No. 468 (Unsatisfactory Equipment Report).

Army Air Forces Form No. 54 (Unsatisfactory Report).

[^5]143. ABBREVIATIOMS.

$a b i$ $a-c$	automatic bearing indicator alternating current
ADJ.	adjustment
a-f	audio-frequency
amp	amperes
amplir	amplifier
approx.	approximately
$a u x$.	auxiliary
A.v.c.	automatic volume control
bal	balanced
bfo	beat frequency oscillator
BRILL	brilliance
cps	cycles per second
c-r	cathode-ray
c-w	continuous-wave
d-c	direct-current
def1.	deflection
DIA.	diameter
E-W	east-west
fig.	figure
fil	filament
GONI.	goniometer
h-f	high-frequency
i-c-w	interrupted-continuous-wave'
i-f	intermediate-frequency
INSTANT.	instantaneous
INST.	instantaneous
kc	kilocycles
kva	kilovolt-ampere
ma.	milliamperes
mf	microfarad

143. ABBREVIATIONS (contd).
mmf
$m-c-w$
MAN.
M.V.C.
mh
\bmod
No.
N-S
08 C
RES.
SENS.
SPRD
term.
VERT.
VTVM vacuum-tube volumeter
144. GLOSSARY.

Refer to TM 11-455 for a glossary of the common radio terms.

Figure 135. Outline drawing of OAN test oscillator.

APPROXIMATE WEIGHT: 43 LBS.

Figure 136. Outline drawing of Goniometer Navy No. CFT-4732.

Figure 137. Outline drawing of Phase Inverter MC-411-A and MC-413-A.

Figure 138. Outline drawing of Reel $D R-10-A$ and Reel Unit RL-49-A.

Figure 139. Outline drawing of Bearing Indicator ID-121/CRD-3.

TLI1495-S
Figure 140. Outline drawing of Rectifier-Power Unit PP-151/CRD-3.
146. CHESTS AND CRATES.

Figure 142. Chest CY-315/CRD-3.

Figure 144. Chest CY-318/CRD-3.

Figure 141. Chest CY-315/CRD-3.

Figure 143. Reel $D R-10-A$ and cable protector.

Figure 145. C'ase CY-319/CRD-3.

Figure 146. Chest CY-251/CRD-3.

Figure 147. Chest CH-211.

Figure 149. Chest iY-252/CRD-3.

Digitized by GOOgle

Figure 151. Crate for fire extinguishers.

Figure 149. Chest CY-409/U.

Figure 150. Chest CH-210-A for Junction Box JB-126.

Figure 152. Packing of Shelter HO-20-B in detail, crate No. 1.

Figure 153. Packing of Shelter HO-20-B in detail, crate No. 2.

Figure 154. Bag CW 120/CRD-3 open showing mast sections.

Figure 155. Chest CY-317/CRD-3.

Figure 150. Crate for Reel Unit RL-49-A.
147. TABLE OF COMPONENTS.

Description	Quantity	
	Dsed in equipmeat	Raaniag spares
```Amplifier-Rectifier Power Dait PP-151/CRD-8, includes: Tube JAN-OD8/VR-150 Tube JAN-2X2A Tube JAN-6ACT Tube JAN-6X5GT/G Puse, FO-26 Pase, 5-amp, 250-volt Littelfuse (8AG) No. 1858 or equal Aatenaz Assembly AS-204( )/CRD-8; iacludes: Mast Base AB-57/CRD-8 Mast Section AB-65/CRD-8 Mast Section AB-66/CRD-8 Mast Section AB-67/CRD-8 Mast Section AB-68/CRD-8 Mast Section AB-69/CRD-8 Mast Section AB-70/CRD-8 Mast Section MS-116-A Gnys MX-298/CRD-8 Guys MX-299/CRD-8 Guys MI-800/CRD-8 Stakes GP-25 Stakes GP-2 Ground Conaector CX-459/CRD-8 Guy spreader chaia Aatenae Mooriag Platform AB-82/CRD-8 iacludes: Boz of bolts, screws, and washers, consistiag of: Bolt, hex. head, steel 1/2 m 1-1/2 Lag screws, 1/2 x 7 Washers for lag screws Bag CW-120/CRD-8 (to carry mast sections o Agtenga Assembly AS-204/CRD-8) Beariag Iadicator ID-121/CRD-8; includes: Conpliag, flexible, Federal Telephoae & Radio No. NL-40101; or equal, Tubes JAM-5NP1```   Case, compass, seved leather, Bugene Dietsgen Co. No. 6221, or equal   Case CH-211 ito hold Control-Rectifier Power Dait PP-185/CRD-8)   Case CY-819/CRD-8 (to hold stakes and chains)	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

147. table of compoments (contd).

Descripitor	Quantity	
	Daed is equipmest	Ruaniag spares
Chair PN-12/0	1	0
Chest CH-210-A	1	0
Chest CY-251/CRD-8	1	0
Chest CY-252/CRD-8	1	0
Chest CY-815/CRD-8	1	0
Chest CY-816/CRD-8	1	0
Chest CY-817/CRD-8	1	0
Chest CY-818/CRD-8	1	0
Chest CY-409/0, for spare and amiliary parts	8	0
Chest Set TD-1-A	1	0
Compase, pocket zrasit, bruston design, Bugese Diersgen Co. No. 6620, or equel	1	0
Control-Rectifier Power Uait PP-185/CRD-8	1	0
Fuse, 250-rolt, $1 / 8$-amp; Littolfuse type 2AG, No. 1044, of eqial	1	10
Fuse, PO-50	1	10
Lamp, pilot; 1/4-matt, 110-volt, neon glow lamp, Mestiaghouse iype T-4-1/8, or equal	8	6
Trbe JAN-6L6G	1	1
Tube JAN-0C8/VR-105	1	1
Trbe JAN-504G	1	1
Cord, power 150 ft leagit of 2 coadector (Mo. AVGI. Both eads rermisete in a cosector, Crouse hiads APJ-6875, or equal (Used to consect Power Dait PE-197 to Cord CX-565/CRR-81	1	0
Cord CD-201	1	0
Cord CD-829	4	2
Cord CD-845	1	0
Cord CD-1080	8	2
Cord CG-271/CRD-8	8	4
Cord CX-402/CRD-8, (185 P (1)	4	2
Cord CY-408/CRD-8, $(40 \mathrm{ft})$	1	1

147. TABLE OF COMPONENTS (contd).

148. TABLE OF COMPOMENTS (contd).

Description	Quasity	
	Used ia -quipmear	Reaniae a pares
Juaction Box JB-91, color-coded freen, yellow, asd yellow-greea	1	0
Juaction Box JB-91, color-coded biee, browa, aad blee-browa	1	0
Juaction Box JB-91, uacolored, ruaniag apares	0	2
Juaction Box JB-126	1	0
Juaction Box J-99/CRD-8, color-coded ereen-jellow, blue-brown, and red	1	0
Monatiar Collar MT-884/CRD-8	6	2
Mountiag Table MT-847/CRD-8	1	0
Phase Iaverter MC-411-A, color-coded green, facludes:	1	0
Tıbe JAN-7V7	8	1
Phase Iaverter MC-411-A; color-coded jellow, faciudes:	1	0
Trbe JAN-7V7	8	1
Phase Inverter MC-411-A; color-coded blee, iacludes:	1	0
Tube JAN-7V7	2	1
Phase Iaverter MC-411-A; color-coded browa, iacludes:	1	0
Tube JAN-7V7	2	1
```Phase Iaverter MC-411-A; vacolored, ruagiag spares, includes: Tabe JAN-7V7```	0 8	8
Phase Inverter MC-418-A, color-coded red, facludes:	1	0
Tube JAN-7V7	4	1
```Phase Iaverter MC-418-A, nacolored, ramaiag apare, includes: Tube JAN-7V7```	0 4	1
Power Dait Ps-197	1	1
Radio Receiver Assembly R-188/CRD-8, iacludes:	1	0
Pase, 8 amp, 250-volt, 8AG, Littelfase No. 1860 or equal   Fuse, PO-50	8	80

147. TABLE of components (contd).

Description	Quantity	
	Used ia - quipmeat	Ruaniac apares
Lemp, GS-T8, of equal	8	4
Lamp, LM-58	6	10
Lemp, $1 / 4$ vatr acoa, Vestiaghouse T-4-1/8, or equal	4	8
Cord CG-870/CRD-8	1	1
Cord CX-546/CRD-8	1	1
Trbe JAN-2API	1	1
- Tube JAN-8Xea	1	1
Trbe JAN-5046	1	1
Tube JAN-6AC7	5	1
Tube JAN-646	4	1
Tube JAN-6Js	1	1
Tube JAN-68AT	1	1
TEbe JAN-6SJ7	8	1
Tebe JAN-6SKT	6	1
Tabe JAN-6SN7GT	1	1
Tabe JAN-6SQ7	1	1
Tube JAN-676	1	1
Reel DR-10-A	6	0
Reel Dait RL-49-1	1	0
Scrows, atts, asd bolts, ruagiat apares	0	1 Kit
Shelter HO -80-B includes:   Tables, woodea   Chairs, woodea	1 8 8	0 0 0
Sigat Geserator I-78	1	1
Tage, color-coded	1 Kit	0
- Target tranamitrer and aigaal ceaerator	1	0
Sigati Geserator T8-800( //CRD-8; contains the following:	1	0
Battery BA-88	2	4
- In some cases, the model OAN test osci 1asteed of Sigaal Generator TS-300/CRD-8.	ea suppli	

147. TABLE OF COMPOMENTS (contd).

148. TABLE OF COMPONENTS (contd).

Description	Quantity	
	Used ia -quipmeat	Ruaniag epares
Screwdriver, apiral ratchet, Yanke 1180A, or equal   Socret combiaation, 7/17" square, to fit spiral ratchet wreach North Bros. Yakke type, or equal   Wreach, Allea $1 / 16^{\prime \prime}$ crossflats Beadix dwe B-15447 screw, or equal   Wreach, Allen $5 / 64-i n$. for 88 set screw, or equal   Wreach, Allez 8/82-ia. or equal   Wreach, Allea 1/8-ia., Coatiacatal Blec. dwe No. 148-80672-11, or equal   Wreach, Allea 5/82-in., or equal   Wreach, Allea 8/16-in., or equal   Wreach, Allea 7/82-in., or equal   Wreach, Allea $1 / 4-\mathrm{i}$.,, Magaavox No. 80004-5G9 or equal   Wreach, Steveas Spiatite 18408, or equal   Wreach, Stevens Spiatite 18410 , or equal      Wreach, TL-108   Wreach, ead, 6 ia. adjustable, TL-111   Wreach, TL-112   Wreach, ead, lib-degree, Chrome-alloy, Williams type No. 1721, or equal Wreach, end, 15-degree, Chrome-alloy, Williams type No. 1725, or equal Wreach, ead, 15-degree, Chrome-alloy Williams type No. 1727, or equal Wrench, end, 15-degree, Chrome-alloy, Williams type No. 1029, or equal   Beach vise   Puel pipe and ventilatiag assembly   Wooden frame for monating J-99/CRD-8   Wooden frame for supporing PP-135/CRD-8   Vire harness clips, type B, pari No. 49168, size 6, United Carr Fastener Corp. or egaal   Hooks for hanging Telephone BB-8-B   Tripod, Bugeae Dietzgen Co., metal telescopiag ripod No. 6624A, or equal   Voltolmmeter, Weston Blectric Instrument Corp. Model No. 664, Type 8C, or equal   Yoke with ball and socket-joint, Bugene Dietzgea Co. No. 6622, or equal	1   1   1   1 1   2   2   2   1   1   1   1 12   2   1   1   1	0   0

147. TABLE OF COMPOMENTS (contd).

Description	Quantit
Service items laclude:	
Test cable, Federal Telephose and Radio RP-1818-8, or equal	1
Teat cable, Federal Telephome asd Radio RF-1818-8, or equal	1
Teat cable, Federal Telephone and Redio RP-1984-2, or equal	1
Repair apron	1
Deangactiser, Federal Telephoae and Radio No. NLA 42970-8, or equal	1
```Oaivis No. 40 Oil, Pederal Tolephone and Radio RF-759-1, or equal```	1 ces
(1/2 pr) Permatex, No. 8 or equal	1 cas
Spare parts iaclude:	
Gaskers	1 set
```Paper capacitora, Pederal Telephose and Radio RF-2578-1, or egral```	$188 t$
Mica capacitors, Pederal Telephoae and Radio, RP-2575-1, or equal	1 set
Transformers, Federal Telephoae and Radio RP-2568-2-1, or equal	1 set
Transformers, Federal Telephoae and Radio, RP-8586-2-2, or equal	1 set
Resiators and pots, Federal Tolephoae and Radio RF-2591-1, or equal	1 set
```Resistors and pots, Pederal Telophose and Radio RF-2590-1, or equal```	1 set
```Sockets and contacts, Pederal Telephose and Radio RP-2587-2-2, of equal```	1 set
Switches, Pederal Telephoae and Radio RP-2589-1, or equal	1 set

147. TABLE OF COMPONENTS (contd).

Description	Quatity
Relays, Pederal Telephoae and Radio RF-2588-2-2, or equal	$180 t$
Receptacles, Pederal Telephone asd Radio RP-2577-1, or equal	1 set
Brushes, spriags, and coils, Federal Telephoae and Radio RP-2576-2-2, or equal	18 er
Tools, Pederal Telephoae and Radio RP-2578-2-1, or equal	1 set
Oscillator coil, L-608, Pederal Telephoae and Radio RP-2588-8-8, or equal	1
Oscillator coil, L-601, Federal Telephoae and Radio RF-2588-8-1, or equal	1
Oscillator coil, L-110, Pederal Telephoae asd Radio RP-2584-8-6, or equal	1
Oscillator coil L-602, Federal Telephoae and Radio RF-2588-8-2, or equal	1
Oacillator coil, L-109, Federal Telephose and Radio RF-2584-8-5, or equal	1
B-1-0 coil, L-205, Federal Telephone aad Radio RP-2582-8-6, or equal	1
```Amplifier transformer, L-605, Pederal Telephone asd Radio RF-2588-8-5, or equal```	1
```Amplifier transformer, L-604, Federal Telephose and Radio RP-2588-8-4, or equal```	1
```Amplifier transformer, L-606, Federal Telephone and Radio RP-2583-8-6, or equal```	1
```Antenna transformers, Pederal Telephone and Radio RF-2584-8-1, or equal```	1 set
R-1 traasformers, L-106 and L-108, Federal Telephone and Radio RF-2584-3-4, or equal	188 t
R-1 trassformers, L-105 and L-107,   Federal Telephone and Radio RF-2584-8-8, or equal	1 set
Anteana transformers, L-102 asd L-104, Federal Telephoae and Radio RF-2584-8-2, or equal	1 set

147. TABLE OF COMPONENTS (contd).

148. TABLE OF COMPONENTS (contd).

Descripition	Quastity
Tube JAN-0D8/VR-150	1
Tube JAN-2AP1	1
Tube JAN-2X2A	2
Tube JAN-5NP1	1
Tube JAN-6AC7	10
Tube JAN-6H6	1
Tube JAN-6J5	1
Tube JAN-6SA7	1
Tube JAN-6SJ7	18
Tube JAN-6SK7	1
Tube JAN-6SN7GT	1
Tube JAN-6SQ7	1
Tube JAN-6V6	1

IM8. PACKABIME DATA.
Rodio Set AN/CRD-3 is packed in crates, the dimensions, volume and woight of which are shown in the following table.

	Length (in.)	$\begin{aligned} & \text { Width } \\ & \text { (in.) } \end{aligned}$	Hoigle (in.)	Tolume   (es 1t)	Volght $(1 b s)$
```Crato 1: Power Uaft PE-197 Crate &```	80	84	80-1/2	81.7	1480
Crate $8:$	80	34	80-1/2	61.9	1480
Electroljte	18	8-1/2	10	0.9	$\boldsymbol{0}$
Crate ©					
Sloctrolyte	18	8-1/8	10	0.9	20
Crate E:					
Antoana mooriag platform	51-1/4	49-1/8	- -1/2	0.6	100
Crate 0:					
Anteasa mooriag platform	E1-1/4	49-1/2	6-1/2	0.6	100
Crate 7:					
Antoasa mooriag platiorm	51-1/4	49-1/2	6-1/8	9.5	100
Crate s:					
Antoana mooriag platiorm	51-1/4	49-1/2	6-1/8	9.5	100
Crate 9:					
Antoana mooriag platform	61-1/4	49-1/2	-1/2	9.6	100
Crate 10:					
Anteana mooriag platform	51-1/4	49-1/2	6-1/2	9.5	100
Crate 11:					
Aateana mooriag platiorm	51-1/4	49-1/2	6-1/2	9.5	100
Crate 12:					
Fire extiagiahers (2 eack in cratel	36	27-7/8	16	9.8	808
Crate 18:					
stelter, $40-80-\mathrm{B}$	75	65-1/2	26-1/2	75.8	870
Crate 14:					
Shelter, $\mathrm{HO}^{\text {- 20-B }}$	81	68	19-1/2	62.1	850

I48. PACXAGIMG DATA (contd).

148. PACKAGING DATA (contd).

	Length (in.)	$\begin{aligned} & \text { Width } \\ & \text { (ia.l } \end{aligned}$	Height (in.)	Tolume (ct Pt)	Woiflt (2bs)
```54 ea Ground Coaductor \[ \text { CX- } 460 / \text { CRD- } 8 \] \\ 12 ea Ground Coadector \[ C X-461 / C R D-8 \] \\ 12 ea Ground Coaductor CX-46 2/CRD-8 \\ Crate 27: \\ Reel \(D R-10-A\), and grouad coaductor assembly \\ Coateats: \\ 1 ea Reel, DR-10-A \\ 72 ea Grouad Coaductor CX-460/CRD-8 \\ 16 ea Ground Coadector CX-461/CRD-8 \\ 16 ea Groued Coaductor CX-46 2/CRD-3 \\ Crate 28: \\ Reel Uait RL-49-A \\ Crate 29: \\ Chest, CI-816/CRD-8 \\ Conteats: \\ 1 ea Operator's chair \\ 2 ea Blectric heaters \\ 1 ea Tripod \\ 1 ea Compass adapter \\ 1 ea Adapter assembly \\ 1 Set of tools \\ 1 ea Compass \\ lea Chest Set TD-1-A \\ 1 ea Headset HS-29 \\ 1 ea Jack JK-39 \\ 1 Set misc auts, screws, etc. \\ 1 Set of tags \\ 1-ea Telephoae BE-8-B \\ 1 ea Sledge hamer \\ 8 ea Flexible motor coapliag \\ 2 ea Techaical Manal \\ 1 Cord CD- 201 \\ 28 ca Gny rope fasteaers```	$\begin{aligned} & 45-1 / 4 \\ & 66-7 / 8 \end{aligned}$	$\begin{gathered} 18-8 / 8 \\ 88-1 / 8 \\ 27-8 / 4 \end{gathered}$	87-1/4   (diam)   15-5/8   29-1/2	0.7	160

148. PACKAGIMG DATA (contd).

149. PACKAGIME DATA (contd).

	Leacth (in.)	$\begin{aligned} & \text { Width } \\ & \text { (in. } \end{aligned}$	Moigle (ia.)	$\begin{aligned} & \text { Tolume } \\ & \text { (ce } \mathrm{ft} \text { ) } \end{aligned}$	$\begin{aligned} & \text { Veiglt } \\ & \text { (lbs) } \end{aligned}$
Crate 85:					
Chest Cu-810-1	20-1/2	15-8/4	25-8/8	4.7	105
Conteara:					
1 ca Juaction Box Jb-126					
Crute 80:					
Chest CI-819/ CRD-8	61-1/2	28	22-84	18.9	275
Contears:					
1 ea Amplifier Rectifier Power					
8 -a Cord CG-271/CRD-8					
1 ea Cord CX-547/CRD-8					
1 ea Cord CX-848/CRD-8					
1 -a Cord CX-550/CRD-8					
1 ea Cord CT-651/CRD-8					
1 ea Cord CT-552/CRD-8					
1 ea Tool Equipment TB-41					
1 ea Juaction Boz J-99/CRD-8					
Crate 89:					
Case CI-819/CRD-8	44-8/8	25-8/8	16-1/2	10.8	290
Contents:					
58 ca Stake GP-2					
21 ea 8take GP-25					
14 ea Guy spreader chala					
Crate 88:					
Case CI-819/CRD-8	44-8/8	25-8/8	16-1/2	10.8	290
Conteats:					
58 ea Stake GP-2					
21 ca Stake GP-25					
14 ea Guy spreader chain					
Crate 89:					
Chest CY-251/CRD-8	46-1/4	22	28-8/8	18.7	865
Coateats:					
1 ea N Phase Iaverter MC-411-A					
1 ea S Phase laverter MC-411-A					
1 ea E Phase Iaverter MC-411-A					
1 ea $V$ Phase Inverter MC-411-A					
1 ea C Phase Iaverter MC-411-A					

148. PACKAGIMG DATA (contd).

	Leagth   (in.)	Width $\text { (in. })$	Heleft (12.)	Volume (ca ft)	Veight   (1bs)
2 ea Phase laverter MC-411-A   1 ea Phace laverter MC-418-A   1 ea Juaction Box JB-91-A (yellownereen)   1 ea Juaction Box JB-91-A (blue-browa)   2 ea Juaction Box JB=9 1-A (spare)   1 ea Juaction Box J-97/CRD-8   1 ea Sigaal Geaerator I-72   1 ea Goaiometer CPT-47872   1 et Toltohmeter   Craze 40:   Chest CY-409/0 (1)   Conteats:   Misc spare paris   Crate 41:   Chest CY-409/0 (8)   Contents:   Misc epare parts   Crate 42:   Chest CY-409/0 (8)	$47-8 / 8$	$\begin{aligned} & 22-8 / 4 \\ & 28-8 / 4 \\ & 22-8 / 4 \end{aligned}$	$\begin{aligned} & 16-7 / 8 \\ & 16-7 / 8 \\ & 16-7 / 8 \end{aligned}$	$10.6$   10.6   10.6	200   200   800

149. MODEL OAN TEST EQUIPMENT.

Model ON test equipment consists of the fallowing:

1 CFY-60054-A Test Oscillator unit.
1 waterproof carrying case.
1 Iifteen-foot type CFT-66082 whip antenna with carrying case.

1 Junction Box J-97/CRD-3.
1 Cord CE-241/CRD-3.
4 Battery BA-35.
3 Battery BL-59.
150. MAIMTEWAMCE PARTS FOR RADIO SET AN/CRD-3.

The following information was compiled on 21 July 1945. The appropriate pamphlets of the ASF Signal Supply catalog for Padio Set AN/CRD-3 are:

Sets of equipment
SIG 6-TE-41
Organizational spare parts
SIG 7-PE-197
Higher echelon spare parts
SIG 8-EE-8
SIG 8-GN-38
SIG 8-PE-197
SIG 8-TS-9
Combined organizational and higher echelon spare parts

SIG 7- \& 8-AN/CRD, (when published)
SIG 7- \& 8-HIS-29, (when publishod)
SIG 7- \& 8-I-239, (when publishod)
For an index of available catalog pamphlets, see the latest issue of ASF Sigmal Supply Catalog SIG 2.
150. MAINTENANCE PARTS FOR RADIO SET AN/CRD-3.

Ref symbol	Signal Corps stock No	Name of part and description
	281515	RADIO SET AN/CRD- 3: semi-transportable, semi-fixed, ground station radio direction finder; cw , mew and icw; Sig C spec *271-3175.
	3H1 38.1-151	AMPLIFIER - RECTIFIER POWER UNIT PP-151/CRD- 3: election tube rectifier; input $110 / 120 \mathrm{~V}, 55 / 65 \mathrm{c}$ single ph; 8-3/4" $\times 19^{\prime \prime}$ x 13-1/2"; Sig C spec *271-3175.
	2A264-204	ANTENNA ASSEMBLY AS-204/CRD-3: steel and aluminum; olive drab; telescopic, 9 sect; 64 ft extended, 9 ft collapsed, $3^{\prime \prime}$ OD; w/Mast Base AB-57/CRD-3; Sig C spec \%271-3175.
	2A312-120	BAG CW-120/CRD-3: antenna; hard-texture duck; Sig C spec \#271-3175 (for carrying Mast sections, gin pole and antenna guy collars).
	6Q2104-16	BAG, tool: canvas; olive drab; 4-1/4" wd x 4-1/2" h when open; Fed Tele \& Rad part/dwg *RF-1156-2-34 (for plumbbob).
	6Q2104-17	BAG, tool: canvas; olive drab; 9" wd x 9" h; Fed Tele \& Rad part/dwg \#1156-2-35 (for wrenches).
	2C156 5-121	BEARING INDICATOR ID- $121 /$ CRD-3: an electro-mechanical unit for producing instantaneous hearing and sense patterns characteristic of the antenna and goniometer; w/a 1150 rpm driving motor; Navy *CFT-55092-A.
	6R19130/S1	BIT, screwdriver: combination socket type; used on stove bolts and hex nuts for spiral ratchet screwdriver; 7/16".
	3E1201	CABLE ASSEMBLY, AF: Sig C Cord CD-201; telegraph key; RC; 60" 1g; 2 \#18 AWG copper cond ea compriaing 41 \#34 AWG strands; w/Plug PL- 55 , one end and 2 spade Terminal TM- 29 on the other end.

150. MAINTEMANCE PARTS FOR RADIO SET AN/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	3 E 1829	CABLE ASSEMBLY RF: Sig C Cord CD-829; twin-axial; flexible; characteristic impedance 125 ohms; $92 \mathrm{ft} \mathrm{lg;} 2$ cond ea comprising 7 \# 21 AWG strands; Intelin type 45 solid dielectric; with Amphenol \#AN-3106-22-2S socket one end, Amphenol \#AN-3106-22-2P plug other erd (connects Phase Inverter MC-411 to Junction Box JB-91).
	3E1845	CABLE ASSEMBLY, RF: Sig C Cord CD-845; general purpose; RC; $150 \mathrm{ft} 1 \mathrm{~g} ; 2$ cond ${ }^{1} 14$ AWG; with Universal type male plug one end; Universal type female socket other end; Sig C spec *271-1612 (utility).
	3E1999-20	CABLE ASSEMBLY RF: Sig C Cord CD-1020; twin-axial; flexible; characteristic impedance 125 ohms; 40 ft lg; 2 stranded cond; solid styrene dielectric; with Amphenol \#AN-3106-222P plug ea end (connects Junction Box J-91 to Junction Box J99/CRD-3 and Junction Box J-99/CRD- 3 to Phase Inverter MC-413).
	1F430-271	CABLE ASSEMBLY, RF: Army-Navy Cord CG-271/CRD-3; twinaxial; flexible; impedance 95 ohms; 66" lg; ea cond composed of 7 strands of $0.0152^{\prime \prime}$ diam plain copper wire; polythylene dielectric (connects Junction Box J-99/CRD-3 to goniometer and radio receiver assembly).
	3E6015-270	CABLE ASSEMBLY, power: Army-Navy Cord CG-270/CRD-3; general purpose; aluminum shielding; 36" lg; 2 cond \#20 AWG stranded hook-up wire; with Amphenol \#AN-3108-125-3P connector ea end (i-f between two sect of R-128/ CRD-3).

150. MAINTENANCE PARTS FOR RADIO SET AN/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
	$\begin{aligned} & 3 E 6000-402-480 \\ & 3 E 600-402-1620 \\ & 35900-456-39 \\ & 3 E 6000-458 \end{aligned}$	CABLE ASSEMBLY, power: Army-Navy Cord CX-402/CRD-3; Buna 3 jacketed; 40 ft lg; 5 cond, 3 \#14 AWG and 2 \#16 AWG cond; Amphenol \#AN-3106-22-13S connector one end Amphenol $\#$ AN-3106-22-13P other end (connects coupling unit to control rectifier power unit).   CABLE ASSEMBLY, power: Army-Navy Cord CX-402/CRD-3; Buna S jacketed; $135 \mathrm{ft} 1 \mathrm{~g} ; 5$ cond, 3 \#14 AWE and 2 \#16 AWG; Amphenol \#AN-3106-22-13S connector one end Amphenol :AN-3106-22-13P connector other end (connects coupling unit to rectifier power unit).   CABLE ASSEMBLY, power: Army-Navy Cord CX-456/CRD-3; Buna S jacketed; 39" lg; 3 \#16 AWG cond; Amphenol connector AN-3108-20-6S one end, Amphenol connector \#AN-3108-20-6P other end (connects rectifier power unit to receiver assembly).   CABLE ASSEMBLY, power: Army-Navy Cord CX-458/CRD-3; Buna 3 jacketed; 15 ft Ig; 3 \#16 AWG cond; Amphenol connector *AN-3106-20-68 one and Hubbell $\% 7573$ connector other end (connects receiver to junction box).

150. MAINTENANCE PARTS FOR RADIO SET AN/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	356000-460-387	CABLE ASSEMBLY, power: Army-Navy Ground Conductor CX-460/CRD3; $32 \mathrm{ft} 3^{\prime \prime}$ of $5 / 8^{n}$ fiat copper tinned braid; with 13 Dot male and 13 female fasteners (for distributing ground currents in the vicinity of antenna system; p/o Counterpoise MX-318/CRD-3).
	3E6000-461	CABLE ASSEMBLY, power: Army-NaFy Ground Conductor CX-461/CRD3; 8 ft 1 g of $5 / 8^{\prime \prime}$ flat copper tinned braid; with 7 male and 7 female Dot fasteners (for distributing ground current in the vicinity of antenna system; p/o Counterpoise MX-318/ CRD-3).
	3E6000-46 2-99	CABLE ASSEMBLY, power: Army-Navy Ground Conductor CX-462/CRD$3 ; 8 \mathrm{ft} 3^{\mathrm{n}} \mathrm{lg}$ of flat copper tinned braid with 5 Dot male fasteners and 5 female fasteners (for distributing ground currents in the vicinity of antenna system; p/o Counterpoise MX-318/CRD-3).
	3E6000-463-72	CABLE ASSEMBLY, power: Army-Navy Cord CX-463/CRD-3; general purpose; flat, $5 / 8^{n}$ wd; 6" lg; copper braid; with clamp on 1 end and double Dot fastener other end; (to connect sig C Stoke GP-2 to Army-Navy Counterpoise. MX-318/CRD-3; p/o Conaterpoise MX-318/CRD-3).
	3E6000-465	CAble Assembly, power: Army-Navy Cord CX-465/CRD-3; aluminum shielding; 48" 1g; 2 "16 AWG stranded hook-up wires, 2.7 mm ignition wire per spec AN-J-C-56; one end terminated in Amphenol connector AN-3108-22-10s and 1 amphenol connector AN-3108-22-10P (connects rectifier power unit to bearing indicator).
	3E6000-546	CABLE ASSEMBLY, power: Army-Navy Cord CX-546/CRD-3; general purpose; aluminum shielding; 36 " 1 g ; 14 cond, 12 \#16 AWG and 2 *12 AWG stranded hook-up wire; with Amphenol \#AN-3108-28 2 P connector ea ond (power between two sect of $\mathrm{A}-128 / \mathrm{CDD}-3$ ).

150. MAINTEMANCE PARTS FOR RADIO SET AM/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	3E6000-547   3E6000-548   3E6000-549   3E6000-550-18   3E600C-551	CABLE ASSEMBLY, power: Army-Navy Cord CX-547/CRD-3; general purpose; aluminum shielding; 30"; 3 \#16 AWG stranded hookup wire cond; with Amphenol AN-3106-16S-5S connector one end Amphenol WAN-3108-16-5P connector other end (connects Junction Box J-99/CRD-3 to Receiver R-128/CRD-3).   CABLE ASSEMBLY, power: Army-Navy Cord CX-548/CRD-3; general purpose; aluminum loom; 24" $1 \mathrm{~g} ; 3$ cond; with Amphenol \# $4 \mathrm{~N}-3106$-20-6s connector one end Amphenol \#AN-3108-20-6P r inector other end; Sig $C$ spec $\$ 271-3175$ (connects Receiver -128/CRD-3 to Junction Box J-99/CRD-3).   CABLE ASSEMBLY, power: Army-Navy Cord CX-549/CRD-3; general purpose; aluminum shielded; 48" 1g; 7 cond, 5 \#16 AWG and 2 *12 AWG stranded hook-up wire; with Amphenol \#AN-3108-24-38 connector 1 end, Amphenol *AN-3108-24-3P other end; Sig C spec 271-3175 (connects rectifier power unit to bearing indicator).   CABLE ASSEMBLY, power: Army-Navy Cord CX-550/CRD-3; general purpose; aluminum shielded; 18" 1g; 4 cond; 116 AWG with Amphenol \#AN-3108-18-4S connector 1 end, Amphenol AN-3108-18-4P other end; Sig C spec 271-3175 (connects receiver to rectifier power'unit) color coded O.745" OD.   CABLE ASSEMBLY, power: Army-Navy Cord CX-551/CRD-3; general purpose; 18" 1g; 4 A16 AWG stranded hook-up wire cond; with Amphenol AN-3108-22-108 connect or ea end; (R-128) CRD-3 to rectifier power unit).

150. MAINTEMANCE PARTS FOR RAD 10 SET AN/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and doceription
	356000-552	CABLE ABSEMBLY, power: Army-NaFy Cord CX-552/CRD-3; general purpose; aluminum shielded; $36^{\circ \prime}$ 1g; 2 cond; with Anphenol (AN-34O8-1 28-38 connect or 1 end Amphenol anl-3108-148-1 $P$ connector other end (R-128/CRD-3 to rectifier power unit).
	3E6000-565	CABLE ASSEMBLY, power: Army-Nary Cord CX-565/CRD-3; general purpose; 150 ft; 2 AWG cond; with Crouso-Hinds aAPR6255 connector one end, Pile National 2P-3OA other ond; 8ig C spec 27L-3175 (connects Junction Boz JB-126 to power cable from PE-197). .
	3E6000-566	CABLE ABBEMBLY, power: Army-Navy Cord CX-566/CRD-3; vinylite jacketed; 70" 1g; 2 cond 20 AWG atranded tinned copper wite; Amphenol AN-3106-1.48-1P plug one ond Amphenol wan-3106-14\$-18 connector other end (connects Radio Receiver Assombly R-128/CRD-3 to Control Rectifier Power Unit PP-135/CRD-3).
	$3 E 7201$	CABLE AB8EMBLY, power: double cotton braid and RC; $1-1 / 8^{n}$ diam; 15 ft ; 2 IL4 AWG soft tinned copper cond ea comprising 712 AWG atrande; Crouse-Hinds APJ6275 Arktite RC plug at ea end; Hobart Bros $\$ 3402$ (connects Power Unit PE-197 to Cord CX-565/CRD-3).
	6, 2217-3	CHAIR: ateels groy finish; without arms f folded $36^{\prime \prime} \mathrm{h} \times 17 \mathrm{n}$ wd $\times 2-3 / 4^{\prime \prime}$ thk; unfolded 30-1/2" h $x 17^{\prime \prime} \mathrm{wd} \times 19-3 / 4^{\prime \prime}$ thk; Fod Tole $k$ Rad part/dwg BRF-4t66-1 Amer. Beating Co. Type VII.
	22 2636-70	OLAMP: cable; 24 mes ga steal; claar lacquer finish; 4 cupped boath rivets; 2-5/8" ID, $0.81^{\prime \prime} h \times 3 / 8^{\prime \prime}$ thz, clip 0.020 thk; United Carr \#49163 size $\% 6$.

150. MAINTENAMCE PARTS FOR RADIO SET AN/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
J-451	224886	OILL, RF: Gonlometer; Assembly r-f transformer; 2 stator windings 1 rotor winding, pri and secd transformer on same form as rotor; shielded; 8-1/8" wd $\times 5-3 / 4^{\prime \prime} h \times 5-3 / 4^{\prime \prime} d$ RF-1485-14; Navy \#CFT-47372.
	622203-2	COMPASS, magnetic: moving needle; compass ring graduated $0-360^{\circ}$, counterclockwise; aluminum case; 2-3/4n $1 \mathrm{~g} x$ 2-3/4" wd x 1-1/2" thk; Dietzgen $\$ 6620$.
	225594.10	CONNECTOR, female contact: 1 cont; straight; nickel pl brass; 5/8" diam head; body 7/8" lg x 1/2"-20 thd: Birnbach $\# 399$ ( $p / 0$ Junction Box J-97/CRD-3).
	228673.1	CONNECTOR, female contact: $3 \geqslant 8$ round cont; straight; 1-11/32" $1 \mathrm{~g} \times 1-5 / 8^{\prime \prime} h \times 1-5 / 8^{\prime \prime} \mathrm{wd}$; Amphenol AN-3102-22-23; Fed Tele \& Rad spec *AN-9534 (p/o Junction Box J-97/CRD-3).
	228799-129	CONNECTOR, male contact: $2 \geqslant 12$ round cont and $1 \geqslant 16$ round cont; straight; 1-3/8" lg x 1-3/8" $h \times 1-11 / 32^{\prime \prime} w d$, less cont; Amphenol \#AN-3102-18-5P; (p/o Junction Box J-97 / CRD-3).
$\begin{gathered} J-851, \\ 852, \\ 853 \end{gathered}$	228799-127	CONNECTOR, male contact: Sig C Socket so-127; 3 round polarized cont, two $\$ 12$ and one $\# 16$ cont; $1-3 / 8^{\prime \prime}$ sq $x$ 1-11/32" 1g; Amphenol \#AN-3102-18-5P (p/O Navy \#CFT-47372 goniometer).
	3H1099-135	CONTROL-RECTIFIER POWER UNIT PP-135/CRD-3: steel chassis, panel and cabinet, chassis zinc pl grey wrinkle finish; input 117 v $50 / 60 \mathrm{c}$, ${ }^{11}$ output 250 V dc, 2 output 7.5 V ac; 22-11/16" $1 \mathrm{~g} \times 10-7 / 8^{\prime \prime}$ wd $\times 11-1 / 4^{\prime \prime} \mathrm{d}$; Fed Tele \& Rad part/dwg \#RF-4353-1.

150. MAINTENANCE PARTS FOR RADIO SET AN/CRD-3 (contd).

151. MAINTEMANCE PARTS FOR RADIO SET AN/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	225600-97	JUNCTION BOX J-97/CRD-3: for 3 Amphenol connectors and 2 banana jacks; sheet steel, grey wrinkle Ei $3^{\prime \prime} \times 3^{\prime \prime} \times 3^{4 \prime}$; sig C spec $\$ 27$ l-3175 (voltage distribution box).
	2Z5600-99	JUNCTION BOX f-99/CRD-3: theot steel, groy wrinkle E; 18" 1g $\times 10-1 / 2^{\prime \prime} \mathrm{d} \times 6-3 / 4^{\prime \prime} \mathrm{h}$; Fed Tele \& Rad part/dwg RF-1748́-2; Navy \#CFT-62127.
	$225652-914$	JUNCTION BOX JB-91-A: brass, olive drab E; with cover; case 2-3/4" $\times 3-3 / 8^{\prime \prime} \times 1-7 / 8^{\prime \prime} ; 31 g$ C spec 271-16-12 (uncolored).
	225652-126	JUNCTION BOX JB-126: sheet steel, Olive drab; with cover; $17^{\prime \prime} h \times 10^{\prime \prime} w d \times 8^{\prime \prime} d$.
	3E4390-24	LEAD, test: test cord; RC; round shape, 5/16" diam; 2 cond \#18 AWG comprising 16 strands \#30 AWG; with AH\&H fomale plug type MB and Hubbell male plug 19754 ; Fed Tele \& Rad dwg *RF-1065.
	6063012	LEVBL, spifft: carpenters; japanned finish with niciel pl trim; 18" lg; Stanley $\% 36$.
	3H2689A. 1	LINE ABSEMBLY fuel: brass; cadmium pl; for insertion in fuel drum; approx $32-1 / 8^{\prime \prime} 1 \mathrm{~g} \times 2-3 / 4^{\prime \prime}$ wd $x 1-1 / 2^{\prime \prime} \mathrm{d}$; consists of elbow, bushing and nipple; Fed Tele \& Red part/dwg tRF-4859-3.
	425842-3	MARKER SET, cable: tags, color coded; $\% 26$ B48 ga brass; zinc pl; 1/2" wd; Sig C apec $\% 271-3175$ (identification for r-f cords).
	3F4056A/V1	METER, multi-scales do; 0 to 3/30/300/600 $\%$; 0 to $1000 / 10,000 / 100,00 / 1,000,000$ ohms; 4-33/64" x $3-45 / 64^{\prime \prime} \times 2-9 / 16^{n}$; Weston $\$ 564$.

150. MAINTENANCE PARTS FOR RADIO SET AN/CRD-3 (contd).

151. MAINTEWANCE PARTS FOR RAD 10 SET AN/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corpe stock No.	Name of part and description
$\begin{gathered} R-851, \\ 85 ? \end{gathered}$	2C4180-128	RADIO RECEIVER ASSEMBLY R-128/CRD-3: CW, MCW, iCW; a-f output 15 vdew into 600 ohms load, 1.5 w into 4 ohms load; 115 v 60 c 143 w ; $19^{\prime \prime}$ wd $\times 28-27 / 32^{\prime \prime} h \times 21-5 / 16^{\prime \prime} \mathrm{d}$; 2 units in one steel cabinet; Navy type \$46183-A.
	6H2510A	REEL DR-10-A: cable; plywood, reinforced with steel; olive drab; 27-1/8" diam $\times 18-1 / 2^{\prime \prime}$ 1g with protective lagging.
	6H2549A	REDL UNIT RL-49-A: steel tubing; olive drab; 34-3/4" wd $x$ 31-7/8" d x 32-1/4" lg overall; collapaible frame with handle and brake.
	3RC21BE510J	RESISTOR, fixed: composition; 51 ohms $\pm 5 \%$; $1 / 2 \mathrm{w}$; max body dimen O.655" lg x C.249" diam; JAN type RC21BE51OJ (p/o Navy CFT $\# 47372$ Goniometer).
	GR19130	SCREWDRIVER: spiral ratchet; complete with 3 bits, $20^{\prime \prime} 1 g$ with bit extended, $14-3 / 4^{\prime \prime} 1 g$ with bit closed; Yankee *130A.
	327700-208	```SHDLTER HO-2O-B: sectional plywood panel construction, canvas roof cover; olive drab; houses componente; 8 ft lg x 72" h x 60" wd.```
	3F38522	SIGGAL GENERATOR I-72: 100 kc to 32 mc with 400 c modulation; metal case with leather handle and removable cover; 15-1/8" $\times 6-3 / 4^{\prime \prime} \times 9-7 / 16^{\prime \prime}$ overall; sig C spec *71-968.
	$2 \mathrm{A3302}$	STAKE GP-2: ground; wrought steel; galv; 16" $1 \mathrm{~g} \times 3 / 4^{\prime \prime}$ diam; Sig C spec 71-393 (p/o Counterpoise MX-318/CRD-3).
	6R36027	TAPE, measurings steel; $100 \mathrm{ft} 1 \mathrm{~g} \times 3 / 8^{\mathrm{n}} \mathrm{wd}$; brown leather case with folding flush hande nickel pl; Lufkin Challenge 266.

150. MAINTENANCE PARTS FOR RADIO SET AN/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	4B5008	TELEPHONE EE-8: portable; local or common battery; self contained; 3-1/2" $\times 7-7 / 16^{\prime \prime} \times 9-1 / 2^{\prime \prime}$; with carrying case and strap; sig $C$ spec *71-631.
	6R38041	TOOL EQUIPMENT TE-41: consists of radio repair tools in Bag BG-44.
	2210100-1	TRIPCD, telescope: collapaible; 18" collapsed, 61" extended; aluminum; Dietzgen $6624 A$ (support for compass).
	6R47040.6	VISE: bench; machinists; extra pipe jaw, $6^{\prime \prime}$ opening.
	6R55561	WRENCH: double open ends; 4-1/2" lg, thk of head 3/16"; 5/16" and 3/8" openings; Williams JH \$1721.
	6R55563	WRENCH: double open ende; 5-5/8" $1 \mathrm{~g} \times 15 / 64^{\prime \prime}$ thk; openings 7/16" and 1/2"; Williams JH 725.
	6R55565	WRENCH: double open ends; 6-5/8" $1 \mathrm{~g} \times 17 / 64^{\prime \prime}$ thk; openings 9/96" and 5/8"; Williams JH \$1727.
	6R55567	WRENCH: double open ends; $-1 / 2^{\prime \prime} \lg x$ 5/16" thk; openings 11/16" and 25/32"; Williaims JH 1029.
	6R55075	WRENCH: setscrew; L shape 1/8" across flate; Cetron dwg \#Ms-30672-11 (fits 1/4" diam Allen setscrew and \#8 0.164" diam cap screw).
	6R57400-1	WRENCH: setscrew; $L$ shape, $3 / 16^{\prime \prime}$ across flate (fits Allen 3/8" diam setscrew, $1 / 4^{\prime \prime}$ diam cap screw, $3 / 8^{\prime \prime}$ diam shouldex screw and $1 / 8^{\prime \prime}$ diam pipe plug).
	6R57400-2	WRENCH: setscrew; $L$ shape, $7 / 32^{\prime \prime}$ across flats (fits Allen 7/16" diam setscrew and 5/16" diam cap screw).

150. MAINTENANCE PARTS FOR RADIO SET AN/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	6R55496	WRENCH:-setscrew; L shape, $3 / 32^{\prime \prime}$ across flats (fits Allen "10-0.190" diam setscrew; \#5, $0.125^{\prime \prime}$ diam and $\# 6$ cap screw).
	6R57 400-6	WREN'CH: setscrew; L shape, $1 / 16^{n}$ across flats; Bendix dwg \#B-15447 (fits Allon setscrew \#5 and *6).
	6R57500	WRENCH: setscrew; 5/64" across flats (fits Allen 8 setscrew).
	6R57400-3	WRENCH: socket; L shape 1/4n across flats; Magnovox *80004-5G9 (fits Allen 1/2" diam setscrew, 1/2" diam shoulder screw and 1/4" diam pipe plug).
	6R57400-10	WRENCH: socket; L shape, 5/32n across flats (fits Allon 5/16" diam and \#10,0.190" Ciam setscrews).
	6R57 413-3	WRENCH: socket; 6" 1g; 1/4"; Stevens-Walden Spintite 3400.
	6R57413	```WRENCH: socket; 6" overall; 1/4"; Stevens-Walden Spintite #3410.```
	6R57413-8	```WRENCH: socket; 6" overall; 11/32"; Stevere-Walden Spintite #3411.```
	6R57412	WRENCH TL-1O8: socket; 6" lg overall; 3/8" hex.
	6R55006	WRENCH TL-111: adjustable; $6^{n 1 g}$ 1g/4n capactty.
	6R55010	WRENCH TL-112: adjustabla; 10" 1g; 1-1/8" capacity.

151. MAINTEMANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3.

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corpe stock No.	Name of part and description
	2C4180-128	RADIO RECEIVER ASSEMBLY R-128/CRD-3: CW, mew, icw; power output 15 milliwatts into 600 ohm load; $115 \mathrm{v}, 60 \mathrm{c}$, 143 w; 2 units in one steel cabinet; $19^{\prime \prime}$ wd $\times 28-27 / 32^{\prime \prime}$ $h \times 21-5 / 16^{\prime \prime}$ d; 1.5 w through 4 ohm load; Navy type *46183-A.
$\begin{gathered} C 106 \\ 113 \end{gathered}$	3DB2-95	CAPACITOR, fixed: mica; 2 mmf t0. 5 mmf ; 500 vdcw; 11/16" $1 \mathrm{~g} \times 7 / 16^{\prime \prime}$ wd $\times 11 / 64^{\prime \prime}$ thk; Solar MOBW; Navy -48842.
C145	3K2510021	CAPACITOR, fixed: mica; $10 \mathrm{mmf} \pm 10 \% ; 500$ vdcw; max body dimen 1-i/16" sq $\times 7 / 32^{\prime \prime}$ thk; JAN type CM25B100K.
$\begin{aligned} & C 102 \\ & 104, \\ & 107, \\ & 111, \\ & 114, \\ & 127, \\ & 140, \\ & 141, \\ & 144, \\ & 148 \end{aligned}$	3K252702ı	CAPACITOR, fixed: mica; 25 mmf t10\%; 500 vdew; max body dimen 1-1/16" sq $\times 7 / 32^{\prime \prime}$ thk; JAN type CM25B27OK.
$\begin{aligned} & \text { C105, } \\ & 112, \\ & 117, \\ & 131, \\ & 216, \\ & 228, \\ & 229 \end{aligned}$	3K2510121	CAPACITOR, fixed: mica; $100 \mathrm{mmf} \pm 10 \%$; 500 vdcw; max body dimen 1-1/16" lg $\times 15 / 32^{\prime \prime}$ wd $\times 7 / 32^{\prime \prime}$ thk: JAN type CM 25B1O1K.

151. MAIMTEMANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
C126, 204, 207, 211, 215, 227	322520122	CAPACITOR, fixeds mica; $200 \mathrm{mmf} \pm 5 \%$; 500 vdCw; max body dimen 1-1/16" 1g $\times 15 / 32^{\prime \prime}$ wd $\times 7 / 32^{\prime \prime}$ thk: JAN type CM25B2O1J.
$\begin{aligned} & C 108, \\ & 115, \\ & 130, \\ & 212, \\ & 214, \\ & 217, \\ & 219, \\ & 225 \end{aligned}$	3D9 250-9	CAPACITOR, fixed: mica; 250 maf t10\%; 500 vdcw; 11/16" 1g $\times 7 / 16^{\prime \prime}$ wd $\times 11 / 64^{\prime \prime}$ the; Solar type MOBW; Navy *-48690.
C222	3K2551112	CAPACITOR, fixed: mica; $500 \mathrm{mmf} \pm 5 \%$; 500 vdcw; max body dimen 1-1/16" $1 \mathrm{~g} \times 15 / 32^{\prime \prime}$ wd $\times 7 / 32^{\prime \prime}$ thz; JAN type CM25A511J.
C237,   238,   239	3K3510233	CAPACITOR, fixed: mica; 1,000 menf $\pm 2 \%$; 500 vdcw; max body dimen 53/64" $1 \mathrm{~g} \times 53 / 64^{\prime \prime}$ wd $x$ 11/32" thz: JAN type CM 35C1O2G.
$\begin{gathered} \text { C433, } \\ 134 \end{gathered}$	3K2510221	CAPACITOR, fixed: mica; 1,000 menf tiow; 500 vdew; max body dimen 1-1/16" lg $\times 15 / 32^{\prime \prime}$ wd $\times 7 / 32^{\prime \prime}$ thk; JAN type CM 25B1O2K.
C143	3DA1. 145	CAPACITOR, fixed: mica; 1,145 mmf t1\%; 500 Vdcw; 3/4" sq $\times 1 / 4^{\prime \prime}$ the; Solar type MWSCW (r-f oscillator, band *1 padder).

151. MAINTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
C231	3K352C222	CAPACITOR, fixed: mica; 2,000 mmf t5\%; 500 vdcw; max body dimen 53/64" lg x 53/64" wd $x$ 7/32" thk; JAN type CM 35B202J.
C142	3DA2.610	CAPACITOR, fixed: mica; $2,610 \mathrm{mmf} \pm 1 \% ; 500$ rdew; 3/4" sq x 1/4" thk; Solar type MWSCW (r-f oscillator, band " 2 padder).
C136, 137, 232	3DA5-37	CAPACITOR, fixed: mica; $0.005 \mathrm{mf} \pm 10 \%$; 500 \%; Solar type MWBW.
$\begin{aligned} & C 109, \\ & 120, \\ & 202, \\ & 203, \\ & 208, \\ & 209 \end{aligned}$	3 K 3562232	CAPACITOR, fixed: mica; 6,200 mmf t5\%; 500 vdcw; max body dimen 53/64" lg $x$ 53/64" wd $x$ 11/32" thk; JAN type CM35C622J.
C119	3K3591222	CAPACITOR, fixed: mica; 9,100 mmf t5\%; 300 vdew; max body dimen 53/64" $1 \mathrm{~g} \times 53 / 64^{\prime \prime}$ wd $x$ 11/32" thy; JAN type CM 35B912J.
C210	3 K 3510322	CAPACITOR, fixed: mice; 10,000 maf t5\%; 500 vacw; max body dimen $53 / 64^{\prime \prime} \lg \times 53 / 64^{n}$ wd $\times 11 / 32^{\prime \prime}$ thk; JAN type CM 35B103J.
C218	3K3510321	CAPACITOR, fixed: mica; 10,000 min t10\%; 500 vdcw; max body dimen 53/64" lg x 53/64" wd $x$ 11/32" thk; JAN type CM 35B1C3K.
$\begin{gathered} C 234, \\ 240 \end{gathered}$	3DA10-357	CAPACITOR, fixed: mica; 10,000 maf tiO\%; 500 vdcw; 2-11/32" $\lg \times 1^{\prime \prime}$ wd $\times 9 / 16^{\prime \prime}$ thk; Solar type XBBW.

151. MAIMTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	$\begin{aligned} & \text { Signal Corps } \\ & \text { stock No. } \end{aligned}$	Name of part and description
$\begin{gathered} \hline \text { C118, } \\ 132, \\ 146, \\ 147, \\ 201_{2} \\ 206 \end{gathered}$	3DA50-247	CAPACITOR, fixed: paper; $50,000 \mathrm{mmf}$ t10\%; 600 vdew; Dubilier type DY; Navy type *-481391.
C223	3DA50-246	CAPACITOR, fixed: paper; 2 sect; $50,000-50,000 \mathrm{mmf}$ t15\%; 600 vdew; Navy -48315.
C241	3DA100-617	CAPACITQR, fixed: paper; $100,000 \mathrm{mmf} \pm 10 \% ; 1,000 \mathrm{vdcw} ;$ Fed Tele \& Rad dwg \#F-36434-1; Navy \#48197.
$\begin{aligned} & \text { C103, } \\ & 110, \\ & 116, \\ & 128, \\ & 129, \\ & 135, \\ & 205, \\ & 213, \\ & 220, \\ & 226, \\ & 244 \end{aligned}$	3DKA100-92.1	CAPACITOR, fixed: paper; 3 sect; $100,000-100,000-100,000$ maf t20\%; 600 vdew; Fed Tole \& Rad F-36416-4.
C233, 235, 245, 246	3DA250-312	CAPACITOR, fixed: paper: 2 sect; 250,000-250,000 menf $\pm 15 \% ; 600 \mathrm{vdcw} ; 1-13 / 16^{\prime \prime} 1 \mathrm{~g} \times 1-1 / 4^{\prime \prime} \mathrm{wd} \times 3 / 4^{\prime \prime}$ the: Dubilier \#DYRT-6022-2.
$\begin{gathered} \text { C138, } \\ 139, \\ 251 \end{gathered}$	3DA500-393	CAPACITOR, fixed: paper; 500,000 maf tiOw; $600 \mathrm{vdcw} ;$ Dubilior type DY; Navy *-481002.

151. MAINTEMAMCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
C250	3DA 500-443	CAPACITOR, fixed: paper; 2 sect; 500,000-500,000-menf $\pm 15 \%$; 600 vdew; Fed Tele \& Red dwg FF-38362-1; Navy
$\begin{gathered} \text { C242, } \\ 243 \end{gathered}$	3DB1.6100G-2	CAPACITOR, fired: paper; 1 mf $\pm 10 \% ; 600$ vdew; Fed Tele \& Rad dwg F-36436-1.
C236	3DB2.6200G-2	CAPACITOR, fixed: paper; $2 \mathrm{mf} \pm 10 \%$; $600 \mathrm{vdcw} ;$ Fed Tele \& Rad dwg *F-36435-1.
C252	3DB4-238	CAPACITOR, fixed: paper; $4 \mathrm{mf} \pm 10 \%$; 1,000 vdew; Fed Tele \& Rad dwg F-36694-1; Navy type *-481903.
$\begin{gathered} C 247, \\ 248, \\ 249 \end{gathered}$	3DB8-180	CAPACITOR, fixed: paper; $8 \mathrm{mf} \pm 10 \%$; 600 vdew; Fed Tele \& Rad dwg \#F-36695-1.
ClO	3D9708V	CAPACITOR, variable: air; 0 to 708 menf ea sect; 5 sect; Fed Tele \& Rad dwg ${ }^{\text {FF-33747-14 (maintaining capacitor). }}$
C224	3D9022V-3	CAPACITOR, variable: air; $17 \mathrm{mmf}+20 \%$ 5\%; Fed Tele \& Rad dwg *F-34481-2-1(BFO vernier).
$\begin{array}{r} \text { C1 21, } \\ 122, \\ 123, \\ 124, \\ 125 \end{array}$	3D9050V-114	CAPACITOR, variable: air; 50 minf +20\%-5\%; Fed Tele thad dwg *F-28180-2-2 (trimmer).
C221	3D9007V-10	CAPACITOR, Veriable: ceramio; 1.5 to 7 mif; Fed Tele \& Rad dwg \#F-38149-1 (BFO coupling).
	222712.1	OLIP, tube contact: Fed Tele a Rad dwg tr-41035-1 (grid cap).

151. MAINTEMANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
$\begin{array}{\|c\|} \hline \text { L211, } \\ 212 \end{array}$	3 C 57 4K-2	COIL, AF: filter choke; single winding; inductance $10 \mathrm{~h}+30 \%$ -ON; at 150 ma dc, $0.15 \mathrm{amp}, 150$ ohms; 3,260 turns E wire; UTC as per Fed Tele \& Rad dwg F-33094-1; Navy *-30933 (filter choke).
$\begin{gathered} 1207, \\ 208, \\ 209, \\ 210 \end{gathered}$	3C31 5-117	COIL, AF: filter; single winding; inductance $20 \mathrm{mh}+20 \%$, variable inductance; d-c resistance 0.193 ohms ; Fed Tele \& Rad dwg RF-1633-1(r-f line filter).
	3C108 4K-59	COIL, RF: i-f trap; inductance 0.028 mh , d-c resistance 1.50 $\pm .06$ ohms; Fed Tele \& Rad dwg $\begin{aligned} & \text { F-35510-3-6. }\end{aligned}$
L110	3C1084K-57	COIL, RF: oscillator; single winding; total inductance 70 mh $\pm 4 \%$ at 2,000 and 1,000 kc, d-c resistance 2.5 ohms; Fed Tele \& Rad dwg 38329-3-4.
L109	3C108 4K-60	COIL, RF: oscillator; single winding; total inductance 287 $\mathrm{mh} \pm 4 \%$ at 1,100 and $5,000 \mathrm{kc}$, total $\mathrm{d}-\mathrm{c}$ resistance 4.8 ohms; Fed Tele \& Rad dwg 38329-3-1.
	229641. 232	COIL, RF: BFO coil assembly; single winding; variable inductance; shielded; 175 kc ; Fed Tele \& Rad dwg $\mathrm{FF}-406$ 54-2.
L2O5	3C108 4K-53	COIL, RF: BFO grid coil; single winding; inductance 0.98395 mh, d-c resistance $18.4 \pm 4$ ohms; Fed Tele \& Rad dwJ F-35510-3-5 (i-f output).
	229641.239	COIL, RF: first i-f amplifier grid coil assembly; single winding; variable inductance; shielded; 175 kc ; Fed Tele \& Rad dwg \%F-40651-2.

151. MAINTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
	229641.236	COIL, RF: first i-f amplifier plate coil assembly; single winding; variable inductance; shielded; 175 kc; Fed Tele \& Rad dwg :F-40652-2.
	229641.240	COIL, RF: second i-f amplifier grid; single winding; variable  
L2O3	3C315-119	COIL, RF: i-f grid coil; single winding; inductance 0.28 mh , d-c resistance $29.0 \pm 5$ ohms; Fed Tele \& Rad dwg F-35510-3-2 (second i-f amplifier grid coil).
L20	229641.241	COIL, RF: i-f transformer; 2 windings; secd inductance 0.16 $\mathrm{mh}, \mathrm{d}-\mathrm{c}$ resistance $11.3 \pm 2$ ohms, primary inductance 1.3 mh , primary d-c resistance $11.0 \pm 5$ ohms; Fed Tele \& Rad dwg 35510-3-4 (i-f indicator channel).
L2O4	229641. 242	COIL, RF: i-f transformer; 2 windings; secondary inductance 1.994 mh , secd d-c resistance $43 \pm 5$ ohms, primary inductance 1.2648 mh , pri d-c resistance $11.4 \pm 5$ ohms; Fed Tele \& Rgd dwg 35510-3-3 (i-f output).
$\begin{gathered} \text { L101, } \\ 103 \end{gathered}$	3C108 4R-58	COIL, RF: r-f transformer; 2 windings; secd inductance 545 mh $\pm 4 \%$ at 700 and 350 kc , secd d-c resistance 5.3 ohms, primary 4 ft 3888 enamel wire; Fed Tele \& Rad dwg F-38329-3-3.

151. MAINTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).


[^6]151. MAINTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	3C315-120	COIL, RF: variable inductor; single winding; inductance $31.33 \mathrm{mh}, \mathrm{d}-\mathrm{c}$ resistance 193. $\mathbf{\pm 2 0}$ ohms; Fed Tele \& Rad dwg F-35510-3-7 (goniometer plate amplifier).
J 204	4C4312-2	CONNECTOR, female contact: telephone jack; 2 cond; 1 make, 1 break; straight; 3-1/8" $1 \mathrm{~g} \times 5 / 8^{\prime \prime} \mathrm{w} \times 1-1 / 8^{\prime \prime} \mathrm{h}$ overall; Fed Tele \& Rad dwg F-36116-1 (audio output).
$\begin{gathered} \mathrm{J} 103, \\ 201 \end{gathered}$	228672.47	CONNECTOR, female contact: 2 round cont; straight; 1-3/32" sq $\times$ 19/32" lg less cont; Amphenol \#AN-3102-128-38.
J2O3	228673.20	CONNECTOR, female contact: 3 round cont; straight; 1-3/16" sq x 29/32" lg less cont; Amphenol :AN-3102-14S-1S (d-c amplifier input).
J110, 111, 112	223064-78	CONNECTOR, female contact: 3 round cont; straight; 1~5/16" sq x 1-13/32" lq; Amphenol *97-5105-18-5S.
J105	228673.33	CONNECTOR, female contact: 3 round cont; straight; 1-9/32" sq $\times 29 / 32^{\prime \prime} \mathrm{lg}$ less cont; Amphenol :AN-3102-16S-5S (antenna relay).
J206	228673.2	CONNECTOR, female contact: 3 round cont; straight: 1-1/2" sq $x$ 1-11/32" lg less cont; Amphenol \#AN-31O2-20-6S (a-c outlet for junction box).
J208	228673.2	CONNECTOR, female contact: 3 round polarized cont; straight; 1-1/2" wd $\times 1-1 / 2^{\prime \prime} h \times 1-11 / 32^{\prime \prime} \mathrm{lg}$ less lugs; Amphenol (AN-3102-20-6s.

151. MAINTENANCE PARTS FOR RAD 10 RECEIVER ASSEMBLY R-128/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
J207	228799-163	CONNECTOR, female contact: 4 round cont; straight; 1-5/8" sq $x$ 1-11/32" lg less cont; Amphenol AN-3102-22-108(a-c outlet for indicator power supply).
$\begin{gathered} \mathrm{J} 104, \\ 202 \end{gathered}$	228799-189	CONNECTOR, female contact: 14 round cont; straight; 2 " sq $x$ 1-11/32" 1 g less cont; Amphenol $\mathrm{AN}-3102-28-28$.
$\begin{gathered} \mathrm{J} 101, \\ 102, \\ 107, \\ 108, \\ 109 \end{gathered}$	228799-129	CONNECTOR, male contact: 3 round cont; straight; 1-3/8" sq $x$ 1-11/32" lg less cont; Amphenol \#AN-31O2-18-5P.
J205	227113.9	CONNECTOR, male contact: 3 round cont; straight; 1-1/2" sq $x$ 1-11/32" 1 g less cont; Amphenol (AN-3102-20-6P (a-c input).
J106	22K7 409-2	CONNECTOR, male contact: 4 round cont; straight; 1-3/8" sq x 1-11/32" lg less cont; Amphenol \#3102-18-4P (sense control).
	$223273-70$	COUPLING: Fed Tele \& Rad dwg 34241-2-1 (goniometer line up coupling).
	$2 \mathrm{3876.85}$	DRIVE ASSEMBLY, capacitor: variable; Fed Tele \& Rad dwg *F-34340-14 (condenser drive assembly).
$\begin{gathered} \text { F2O1, } \\ 202 \end{gathered}$	321950	FUSE FU-50: 3 amp; 250 V ; glass body; nickel plated ferrule ends, 1-1/4" $\lg x$ 1/4" (receiver).
F203, 204	322608.1	FUSE, cartridge: 8 amp, 250 v ; glass; ferrule 1/4" diam z 1/4" $1 \mathrm{~g} ; 1$ 1-1/4" $1 \mathrm{~g} \times 1 / 4^{\prime \prime}$ diam; Littlefuse \#3AG-1360 (master).

151. MAINTENANCE PARTS FOR RAD 10 RECEIVER ASSEMBLY R-128/CRD-3 (contd).

152. MAINTEMANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	3G1250-16.6	INSULATOR, stand-off: round post; white ceramic glazed; 1" 1g $\times 3 / 8 \mathrm{Cl}$ diam, tapped $\mathbf{\# - 3 2}$ thd, both ends; Isolantite *395-I-1.
$\begin{aligned} & \mathrm{V}_{101}, \\ & \text { V105 } \end{aligned}$	225889	LAMP, glow: neon; striking $\nabla, 65 \mathrm{ac}, 90 \nabla \mathrm{dc}$; ext resistance 200,000 chms; 1/25 w; T-2 bulb, clear; approx 1 g of glass 1-1/16" unbiased w/2 wire leads; GE \#T-2 (over-voltage protection).
$\begin{aligned} & \text { I2O2, } \\ & 203, \\ & 204, \\ & 205 \end{aligned}$	225889-13	LAMP, glow: 105 to $125 \mathrm{~V}, 1 / 4 \mathrm{w}$; bulb T 4-1/2 clear; 1-1/2" lg; candelabra screw; neon; GE \#T-4-1/2 (power indicator).
$\begin{aligned} & \text { I101, } \\ & \text { 102, } \\ & 103, \\ & 104, \\ & 201 \end{aligned}$	225952	LAMP LM-52: 6 to 8 , $0.15 \mathrm{amp} ; T-3-1 / 4$ clear; 15/16" 1g; miniature bayonet (pilot).
	225991-57	LIGHT, indicator: Fed Tele \& Rad dwg \#F-28790-1.    $\times 2-1 / 4^{\prime \prime} \times 1-13 / 16^{\prime \prime}$ wd; rubber cushion $2^{\prime \prime}$ diam $\times 1-13 / 16^{\prime \prime}$ thk; Lord $\% 200 \times P 60$.
R258	3RC31BE131J	RESISTOR, fixed: composition; 130 ohms $\pm 5 \%$; 1 w; max body dimen $1.28^{n} \mathrm{lg} \times 0.310^{n}$ diam; RC31BE131J.
$\begin{gathered} \text { R116, } \\ 118 \end{gathered}$	3RC21 BE161 J	RESISTOR, fixed: composition; 160 ohms $45 \%$; $1 / 2 \mathrm{w}$; max body dimen O.655" 1g x O.249" dian; JAN type RC21BE161J.
$\begin{gathered} \text { R1 23, } \\ 124 \end{gathered}$	3RC21BE221K	RESISTOR, fixed: composition; 220 ohms tion; $1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times 0.249^{\prime \prime}$ dian; JAN type RC21BE221K.

151. MAINTEMANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
$\begin{gathered} \text { R257, } \\ 259 \end{gathered}$	3RC4OBE471J	RESISTOR, fixed: composition; 470 ohms t5\%; 2 w ; max body dimen 1.41" lg x O.405" diam; JAN type RC4OBE471J.
R246	3RC4OBE561K	RESISTOR, fixed: composition; 560 ohms t1O\%; 2 w ; max body dimen $1.41^{\prime \prime} 1 \mathrm{~g} \times 0.405^{\prime \prime} \mathrm{diam}$; JAN type RC4OBE561K.
$\begin{gathered} \text { R112, } \\ 240 \end{gathered}$	3RC21BE621J	RESISTOR, fixed: composition; 620 ohms t5\%; 1/2 w; max body dimen O.655" lg x O.249" diam; JAN type RC21BE621J.
R104	3RC31BE1O2 J	RESISTOR, fixed: composition; 1,000 ohms t5\%; 1 w ; max body dimen 1.28" lg x O.310" diam; JAN type RC31BE1O2J.
R101, 202, 254	3RC21BE102K	RESISTOR, fixed: composition; 1,000 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; max body dimen O.655" lg x O.249" diam; JAN type RC21BE1O2K.
$\begin{gathered} \text { R141, } \\ 227 \end{gathered}$	3RC21BE222K	RESISTOR, fixed: composition; 2,200 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime} \mathrm{lg} \times \mathrm{O}$.249" diam; JAN type RC21BE222K.
$\begin{gathered} \text { R224, } \\ 234 \end{gathered}$	3RC21BE3O2J	RESISTOR, fixed: composition; 3,000 ohms $\pm 5 \%$; $1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times \mathrm{O} .249^{\prime \prime}$ diam; JAN type RC21BE3O2J.
$\begin{aligned} & \text { R107, } \\ & \text { 111, } \\ & 114, \\ & 132, \\ & 133, \\ & 206, \\ & 211, \\ & 225, \\ & 229 \end{aligned}$	3RC24BE472K	RESISTOR, fixed: composition; 4,700 ohms t10\%; 1/2 w; max body dimen $0.655^{\prime \prime}$ lg $x$ O.249" diam; JAN type RC21BE472K.

151. MAINTEMANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbo! } \end{gathered}$	Signal Corps stock No.	Name of part and description
$\begin{gathered} \text { R207, } \\ 250, \\ 263 \end{gathered}$	3RC21BE1O 3K	RESISTOR, fixed: composition; 10,000 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime}$ lg $\times 0.249^{\prime \prime}$ diam; JAN type RC21BE1O3K.
R255	3RC31BE1O3K	RESISTOR, fixed: composition; 10, 000 ohms $\pm 10 \%$; 1 w ; max body dimen $1.28 " \mathrm{lg} \times 0.310 \mathrm{l}$ diam; JAN type RC31BE1O3K.
R1 34	3RC21BE183K	RESISTOR, fixed: composition; 18,000 ohms t10\%; 1/2 w; max body dimen $0.655^{\prime \prime} \mathrm{lg} \times 0.249^{\prime \prime}$ diam; JAN type RC21BE183K.
$\begin{aligned} & \text { R236 } \\ & \text { R237 } \end{aligned}$	3RC21BE223K	RESISTOR, fixed: composition; 22,000 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime}$ lg $\times 0.249^{\prime \prime}$ diam; JAN type RC21BE223K.
R109	3RC4OBE223K	RESISTOR, fixed: composition; 22,000 ohms t10\%; 2 w ; max body dimen 1.41" lg x O. 405" diam; JAN type RC4OBE223K.
R267	3RC21BE273K	RESISTOR, fixed: composition; 27,000 ohms t10\%; 1/2 w; max body dimen O.655" lg $\times$ O. 249 " diam; JAN type RC21BE273K.
$\begin{gathered} \text { R1 25, } \\ 126 \end{gathered}$	3RC31 BE273K	RESISTOR, fixed: composition; 27,000 ohms t10\%; 1 w; max body dimen $1.28 " \mathrm{lg} \times 0.310^{\prime \prime}$ diam; JAN type RC31BE273K.
$\begin{aligned} & \text { R203, } \\ & 274, \\ & 235, \\ & 276, \\ & 277 \end{aligned}$	3RC21BE303J	RESISTOR, fixed: composition; 30,000 ohms t5\%; 1/2 w; max body dimen $0.655^{\prime \prime} 19 \times 0.249^{\prime \prime}$ diam; JAN type RC21BE3O3J.
$\begin{gathered} \text { R222, } \\ 223 \end{gathered}$	3RC31 BE3 33K	RESISTOR, fixed: composition; 33,000 ohms t10\%; 1 w; max body dimen $1.28 " 1 g \times 0.310^{\prime \prime}$ diam; JAN type RC31BE333K.

(51. MAINTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
$\begin{gathered} \text { R2O4, } \\ 216 \end{gathered}$	3RC4OBE513J	RESISTOR, fixed: composition; 51,000 ohms t5\%; 2 w ; max body dimen 1.41" lg $\times 0.405^{\prime \prime}$ diam; JAN type .RC40BE513J.
$\begin{gathered} \text { R1 10, } \\ 119, \\ 137, \\ 138, \\ 201, \\ 212, \\ 230, \\ 243, \\ 252 \end{gathered}$	3RC21 BE56 3K	RESISTOR, fixed: composition; 56,000 ohms t10\%; 1/2 w; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times 0.249^{\prime \prime}$ diam; JAN type RC21BE563K.
$\begin{gathered} \text { R102, } \\ 106, \\ 113, \\ 120 \end{gathered}$	3RC31BE56 3K	RESISTOR, fixed: composition; 56,000 ohms tio\%; 1 w ; max body dimen $1.28^{\prime \prime} 1 \mathrm{~g} \times 0.310^{\prime \prime}$ diam; JAN type RC31BE563K.
$\begin{gathered} \text { R1 } 30, \\ 135 \end{gathered}$	3RC21BE683K	RESISTOR, fixed: composition; 68,000 ohms t10\%; 1/2 w; max body dimen $0.655^{\prime \prime} \mathrm{lg} \times 0.249^{\prime \prime}$ diam; JAN type RC21BE683K.
R140, 278, 228	3RC31 BE8 23K	RESISTOR, fixed: composition; 82,000 ohms t10\%; 1 w; max body dimen 1.28 " $1 \mathrm{~g} \times \mathrm{O}$.310" diam; JAN type RC31BEE 23K.
$\begin{aligned} & R 136, \\ & 221, \\ & 242, \\ & 260, \\ & 261 \end{aligned}$	3RC21BE1O4K	RESISTOR, firad: composition; 100,000 ohms t10\%; 1/2 w; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times 0.249{ }^{\prime \prime}$ diam; JAN type RC21BE1O4K.
R214	3RC21BE1 24K	RESISTOR, fixed: composition; 120,000 ohms t10\%; 1/2 w; max body dimen O.655" 1g $\mathbf{x}$ O.249" diam; JAN type RC21BE124K.

151. MAINTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
$\begin{gathered} \text { R262, } \\ 265 \end{gathered}$	3RC31BE1 24 K	RESISTOR, fixed: composition; 120,000 ohms t10\%; 1 w; max body dimen $1.28^{\prime \prime} 1 \mathrm{~g} \times 0.310^{\prime \prime}$ diam; JAN type RC31BE124K.
$\begin{aligned} & \text { R115, } \\ & 121, \\ & 122, \\ & 273 \end{aligned}$	3RC21BE224K	RESISTOR, fixed: composition; 220,000 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times 0.249{ }^{\prime \prime}$ diam; JAN type RC21BE224K.
R251	3RC21BE224J	RESISTOR, fixed: composition; 240,000 ohms t5\%; 1/2 w; max body dimen $0.655^{\prime \prime} \mathrm{lg} \times 0.249^{n}$ diam; JAN type RC21BE224J.
$\begin{gathered} \text { R2 } 39, \\ 245 \end{gathered}$	3RC21BE274J	RESISTOR, fixed: composition; 270,000 ohms t5\%; 1/2 w; max body dimen $0.655^{\prime \prime} \mathrm{lg} \times 0.249^{n}$ diam; JAN type RC21BE274J.
$\begin{gathered} \text { R128, } \\ 129, \\ 213 \end{gathered}$	3RC21BE334K	RESISTOR, fixed: composition; 330,000 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times 0.249^{\prime \prime}$ diam; JAN type RC21BE334K.
$\begin{aligned} & \text { R205, } \\ & 209, \\ & 217, \\ & 218, \\ & 241, \\ & 244, \\ & 269, \end{aligned}$	3RC21BE56 4K	RESISTOR, fixed: composition; 560,000 ohms t10\%; $1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times 0.249^{\prime \prime}$ diam; JAN type RC21BE564K.
$\begin{gathered} \text { R247, } \\ 248, \\ 249 \end{gathered}$	3RC40BE105J	RESISTOR, fixed: composition; 1 meg t5\%; 2 w ; max body dimen 1.41" lg $\times 0.405^{\prime \prime}$ diam; JAN type RC4OBE1O5J.
$\begin{aligned} & \text { R105, } \\ & 108, \\ & 208, \\ & 219, \\ & 220, \\ & 226, \\ & 253, \\ & 256, \\ & 271, \\ & 275 \\ & \hline \end{aligned}$	3RC21BE105K	RESISTOR, fixed: composition; 1 meg $\pm 10 \%$; $1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times \mathrm{O} .249{ }^{\prime \prime}$ diam; JAN type RC21BE1O5K.

151. MA IMTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
R117	327410-59	RESISTOR, variable: carbon; 10,000 ohms $\pm 10 \%$ Fed Tele \& Rad dwg \%F-34327-2-2; Navy type-631432.
R1 27,   264,   266	327450-41	RESISTOR, variable: carbon; 50,000 ohms $\pm 10 \%$; IRC type C; Navy *631343.
R210	327499-1.40	$\begin{aligned} & \text { RESISTOR, variable: carbon; } 1 \text { meg } \pm 10 \% \text {; IRC type C; Navy } \\ & \begin{array}{l} 631314 . \end{array} \end{aligned}$
R131	327499-1.39	RESISTOR, variable: carbon; dual sect; 1 meg $t 10 \%$ from sect, 10,000 ohms $\pm 10 \%$ rear sect; IRC type C; Navy type - 631341.
R139	227277.81	RESISTOR, variable: wire-wound; 2 lugs; 15 ohms; 25 w; 1-9/16" diam $\times 1-3 / 8^{\prime \prime} \mathrm{d}$; Ohmite $\% 0146$ (dial dimmer).
R268, 270, 272	327498-50.46	RESISTOR, variable (potentiometer): 500,00 ohms $\pm 10 \%$; IRC type C; Navy type \#631344.
X 215	2 Z 8762	SOCKET, tube: 4 prong wafer; ceramic; Navy \#49362.
X102,	228678.29	SOCKET, tube: octal; ceramic; Navy \#49367.
$\begin{aligned} & \text { 103, } \\ & 104, \end{aligned}$		
106,		
107,		
108,		
110,		
201,		
202,		
203,		
204,		
206,		
208,		

151. MAINTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
X209,		
210,		
211.		
212,		
213,		
214,		
217		
$\times 216$	228637-1	SOCKET ASSEMBLY, tube: 11 prong wafer; ceramic; Amphenol
		*49-11-L; Navy \#49387.
3106	4C4999.1	SWITCH, lever: Fed Tele \& Rad spec \#RF-1109-1, and dwg
		ERF-2145-2 (sense switch).
S205	3Z9903A-4.1	SWITCH ASSEMBLY: rotary; 1 SPST switch, 1 SPDT switch; non-
		shorting fiber; $2^{\prime \prime} h \times 1-3 / 4^{\prime \prime} 1 g \times 13 / 16^{\prime \prime} d$, shank $15 / 32^{\prime \prime}$ diam; AH\&H part $\% 1570 N F$; Navy $\% 24161$ (power - standby).
S107	329826-83.3	SWITCH, rotary: SPDT; 3 position; OAK as per Fed Tele \& Rad
		dwg tr-34455-2-3 (function switch).
3105	329903E-22.2	SWITCH, rotary: 2 position, 3 circuits; ceramic; OAK as per
		Fed Tele \& Rad dwg \#36710-1 (oscillator band switch).
$\begin{gathered} 5102 \\ 103 \end{gathered}$	329903E-22	SWITCH, rotary: 2 position, 4 circuits; ceramic; OAK as per Fed Tele \& Rad dwg :F-36708-1 (r-f amplifier band switch).
$\begin{gathered} 5101, \\ 104 \end{gathered}$	329903E-22.1	SWITCH, rotary: 2 position, 4 circuits; ceramic; OAK as per Fed Tele \& Rad dwg 36709-1 (sense amplifier band switch).
S2O1	329550.7	WITCH, rotary: 2 position, 4 circuits; ceramic; $2^{\prime \prime} 1 \mathrm{lg} x$
		1-7/8" diam; mig bushing $3 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}-32$ thd, shaft $7 / 16^{\prime \prime} 1 g$ $x$ 1/4" diam; Fed Tele \& Rad dwg F-34455-2-1 (i-f selectivity switch).
S202	329826-83.4	SWITCH, rotary: 3 position, 5 circuits; ceramic; OAK as per  

151. MAINTENANCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

$\begin{aligned} & \text { Ref } \\ & \text { symbol } \end{aligned}$	Signal Corps stock No.	Name of part and description
$\begin{array}{\|c} \hline 3207, \\ 206, \\ 209 \end{array}$	329859-38.2	SWITCH, toggle: $20 \mathrm{amp}, 250$ V; C-H part 7403 KJ ; Fed.Tele \& Rad dwg NCP-40-17 (motor power).
3204	329858-8.178	SWITCH, toggle: SPDT; Navy \%24,000 (blanking.
S206	329847-1.1	BWITCH, toggle: DPST; bakelite body; 2-41/64" lg $x$ 1-9/32" wd $x$ 1-17/64" d overall behind panel; bushing 13/32"-32 $x$ 11/32" 1g; C-H $\% 7402 \mathrm{K3}$ (master a-c power).
T202	229636.99	TRANSFORMER, AF: interstage; pri 1025 ohms, secd 4500 ohms ct at 2; UTC $\# 66389$; Navy $\# 30935$ (interstage).
L206	229641.241	TRANSFORMER, AF: output; secd inductance $0.16 \mathrm{mh}, \mathrm{d}-\mathrm{c}$ resistance $11.3 \pm 2$ ohms, pri inductance 1.3 mh , pri d-c resistance $11 \pm .5$ ohms; Fed Tele \& Rad dwg F-35510-3-4 (i,-f indicator channel).
T201	229632.417	TRANSFORMER, AF: output; pri 188 ohms, sec \%1, 15.3 ohms, sec \$2,0.22 ohms; UTC as per Fed Tele \& Rad dwg \%F-33093-1; Navy \#30934 (audio output).
	229641.234	TRANSFORMER, IF: 175 kc ; variable inductance; indicator channel i-f output assembly; shielded; Fed Tele \& Rad dwg *F-40649-2 (indicator channel i-f output assembly).
	229641.233	TRANSFORMER, IF: 175 kc peak freq; variable inductance; i-f output assembly; shielded; Fed Tele \& Rad dwg \#40650-2.
T203	279613.472	TRANSFORMER, power: plate and fil, pri 115 V $60 \mathrm{cps} ;$ secd $\$ 1.5 \vee 3 \mathrm{amp}$, secd $\# 2,500 \vee 2 \mathrm{ma}$, secd $\# 3,630 \nabla 150 \mathrm{ma}$, secd    amp, secd $77,6.6$ V 8 amp ; UTC 66391 ; Navy $\geqslant 30936$ (power).
V216	2 J2AP1	TUBE, electron: JAN-2AP1 (cathode-ray bearing indicator).
V215	2J2X2A	TUBE, electron: JAN-2X2A ( $\mathrm{h}-\mathrm{V}$ supply rectifier).

151. MAIMTEMAMCE PARTS FOR RADIO RECEIVER ASSEMBLY R-128/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	$\begin{aligned} & \text { Signal Corps } \\ & \text { stock No. } \end{aligned}$	Name of part and description
V213	2J504-6	TUBE, electron: JAN-504-G (B-supply rectifier).
V102, 106, 107, 108, 109	2 J 6 AC7	TUBE, electron: JAN-6AC7 (sense channel-amplifier).
$\begin{array}{r} \text { V203, } \\ 20, \\ 214, \\ 217 \end{array}$	2J6H6	TUBE, electron: JAN-6H6 (2d detector).
V208	23655	TUBE, electron: JAN-6J5 (a-f amplifier).
V104	$2 \mathrm{~J} 6 \mathrm{Sa7}$	TUBE, electron: JAN-6SA7 (1st detector).
$\begin{gathered} v_{11} 0, \\ 204 \end{gathered}$	256857	TUBE, electron: JAN-6S 77 (r-f oscillator).
V103 201, 202, 205, 209	2J6sK7	TUBE, electron: JAN-6SK7.
$\begin{aligned} & \mathrm{V} 212 \\ & \mathrm{~V} 211 \\ & \mathrm{~V} 210 \end{aligned}$	2J6SN7GT   256897   2J6V6	TUBE, electron: JAN-6SN7-GT (oscillator amplifier).   TUBE, electron: JAN-6SO7 (low-frequency oscillator).   TUBE, electron: JAN-6V6 (power output).

152. MAINTENANCE PARTS FOR CONTROL-RECTIFIER POWER UNIT PP-135/CRD-3.

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	$3 H 1099 P-135$	CONTROL-RECTIFIER POWER UNIT PP-135/CRD-3: steel chassis, panel and cabinet, chassis zinc pl; grey wrinkle finish; electron tube type; input $117 \nabla 50 / 60 \mathrm{c}$ ac, $\# 1$ output 250 V dc, 2 output 7.5 vac; 22-11/16" lg x 10-7/8" wd $\times 11-1 / 4 " \mathrm{~d}$; Fed Tele \& Rad part/dwg *RF-4353-1.
	229402.334	BOARD, terminal: two 30 amp fuse clips w/tinned copper solder lugs; bakelite; 3-5/8" $1 \mathrm{~g} \times 3 / 4^{\prime \prime} \mathrm{wd} \times 1-5 / 46^{\prime \prime} \mathrm{h}$; marked R-353 in black characters; Fed Tele \& Rad part/dwg \#RF-4383-1-1 (resistor mtg).
	229402.333	BOARD, terminal: two 30 amp fuse clips w/tinned copper solder lugs; bakelite; $3-5 / 8^{\prime \prime} 1 \mathrm{~g} x \mathrm{3} / 4^{\prime \prime} \mathrm{wd} \times 1-5 / 16^{\prime \prime} \mathrm{h}$; marked R-352 in black characters; Fed Tele \& Rad part/dwg *RF-4383-1-2 (resistor mtg).
C351, C352, C353	3DB4-234	CAPACITOR, fixed: paper, oil filled; $4 \mathrm{mf}+20 \%-10 \% ; 600$ vdew; 1-1/2" diam x 4-1/2" 1g; JAN type CP4OB2FF4O5V.
$\begin{gathered} \text { L351, } \\ 352 \end{gathered}$	3C315-10	COIL, AF: filter choke; single winding; inclosed metal case; $10 \mathrm{~h}+30 \%-0 \% ; 120 \mathrm{ma}$ dc; 220 ohms $\pm 10 \%$; 3-5/8" lg $\times$ 3-1/4" wd $\times 5-5 / 16^{\prime \prime}$ overall; Fed Tele \& Rad part/dwg \#NCP-104-1-8.

152. MAIMTENANCE PARTS FOR CONTROL-RECTIFIER POWER UNIT PP-135/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
J352	628367-2	CONNECTOR, female contact: 2 flat polarized cont; straight; 1-9/32" wd x 1-7/8" $1 \mathrm{~g} \times 33 / 64^{n}$ thk; Amphenol "M1P-61F (auxiliary ac).
$\begin{aligned} & \text { J353, } \\ & \text { J354, } \\ & \text { J355, } \\ & \text { J356, } \\ & \text { J357 } \end{aligned}$	228675.15	CONNECTOR, female contact: 5 round polarized cont; straight; 1-5/8" wd $\times 1-5 / 8^{\prime \prime} 1 \mathrm{~g} \times 1-11 / 32^{\prime \prime}$ thk; Amphenol \#AN-3102-22-13S (phase inverter power).
J351	627813-2	CONNECTOR, male contact: 3 twist lock blade polarized cont; straight type; 1-1/2" diam $x$ 1-1/8" h; Hubbel *7556.
F352	322585	FUSE, cartridge: $1 / 8 \mathrm{amp}, 250 \mathrm{~V}$; glass body; metal ferrules $1 / 4^{\prime \prime}$ diam $\times 1 / 4^{\prime \prime} 1 g ; 1-1 / 4^{\prime \prime} 1 g \times 1 / 4^{\prime \prime}$ diam overall; Littelfuse \#1044, type 3AG (meter fuse).
F351	322605.2 $323285-2$	FUSE, cartridge: $5 \mathrm{amp}, 250 \mathrm{v}$; glass body; metal ferrules 1/4" lg : 1/4" diam; 1-1/4" $1 \mathrm{~g} \times \mathrm{x}$ 1/4" diam overall; Littelfuse 1358, type 3AG (power fuse).   HOLDER, fuse: extractor post; for single 3AG fuse; bakelite and metal; 2-13/32" lg $\times 11 / 16^{\prime \prime}$ diam; white filled arrow and word FUSE on knob; Buss type NAM.

152. MAINTENANCE PARTS FOR CONTROL-RECTIFIER POWER UNIT PP-135/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	3G1838-220.1	INSULATOR, washer: round; $x \times x$ paper base bakelite; 3/32" thk $x$ 55/64" OD, 49/64" ID; Fed Tele \& Rad part/dwg \#RF-2299-1.
1351	225889-13	LAMP, glow: 105-125 v, 1/4 w; T4-1/2 clear, 1-1/2" 1g; candelabra screw base; neon gas filled; Wemco "T4-1/2 (power pilot).
M351	3F905-32	METER, milliammeter: dc; 0 to 50 ma w/ 50 one ma divisions; round flush mtg bakelite case; body dimen $2.8^{\prime \prime}$ diam $x$ 2.8" max $d^{\prime \prime}$ w/3-1/2" diam flange; JAN type MR34WO5ODCMA (plate current).
	6L3507-32-122	NUT, hexagon: brass, zinc pl; 15/32"-32 thd; 1/8" thk;   3/4" across flats; Fed Tele \& Rad part/dwg NL-43070-1
R3 51	3RC21BF474K	RESISTOR, fixed: composition; 470,000 ohms $\pm 10 \% ; 1 / 2 \mathrm{w}$; max body dimen $0.655^{\prime \prime} \mathrm{lg} \times \mathrm{O} .249^{\prime \prime}$ diam; JAN type RC21BF474K.
R352	3RW2O115	RESISTOR, fixed: wire-wound; 200 ohms $\pm 5 \%$; 15 w ; body dimen 1-3/8" lg x 3/4" diam w/2 ferrules ea 1/2" lg $x$ 9/16" diam; JAN type RW16F2O1 (regulator bias).
R353	3RW22504	RESISTOR, fixed: wire-wound; 500 ohms $\pm 5 \%$; 15 w ; body dimen 1-3/8" lg $x$ 3/4" diam w/2 ferrules oa 1/2" $1 g$ $\times$ 9/16" diam; JAN type RW16F5O1 (regulator load).

152. MAINTENANCE PARTS FOR CONTROL-RECTIFIER POWER UNIT PP-135/CRD-3 (contd).

Ref symbel	Signal Corps steck No.	Name of part and description
$\begin{aligned} & \text { R355, } \\ & \text { R356, } \\ & \text { R357, } \\ & \text { R358 } \end{aligned}$	3RA7514	RESISTOR, Variable: wire-wound; 10,000 ohms $110 \%$; 4 w ;   3 term; max body dimen 1-7/8" diam $\times 0.98^{\prime \prime}$ thk; bushing $0.375^{\prime \prime} \mathrm{lg}$, slotted shaft $1 / 4^{\prime \prime}$ diam $\times 1-1 / 4^{\prime \prime} \mathrm{lg}$; JAN type RA3OA1SG103AK (gain).
R354	227280-13	RESISTOR, variable: wire-wound; 10,000 ohms; $25 \mathrm{w} ; 3$ term; 1-5/8" diam $\times 1-1 / 8^{\prime \prime} d$ w/1/4" shaft 7/8" lg; Clarostat type PW-25-W per Fed Tele \& Rad part/dwg *NCP-32-2-159 (sense gain).
	222642.2	RETAINER, tube: spring, brass; cadmium pl; 2-3/16" lg x 1-13/16" wd $x$ O.O15" thk; Cinch \#8526.
X351	228659-6	SOCKET, tube: octal; molded bakelite w/metal mtg plate; 1-9/32" wd x 1-7/8" $\lg \times 45 / 64^{\prime \prime} \mathrm{d}$; Amphenol MPIP8-M.
	221410-8	STUD: brass, dull white nickel pl; male to female w/hex shoulder; $1^{\prime \prime} 1 \mathrm{~g} \times 5 / 8{ }^{\prime \prime}$ across flats, shoulder 1/2" 1 g tapped 3/8"-32 thd 5/16" d, shank 1/2" lg w/15/32"-32 thd, 0.277 axial hole thru center; Fed Tele \& Rad part/dwg NL-43071-1 (for mounting potentiometer to panel).
3357	229826-83	SWITCH, rotary: 6 position; 2 sect; ceramic; 2-1/8" lg $x$ 1-5/8" wd $x$ 1-15/16" d; Oak type HC per Fed Tele \& Rad part/dwg :RF-4330-2.

152. MAINTENANCE PARTS FOR CONTROL-RECTIFIER POWER UNIT PP-I35/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
$\begin{aligned} & \text { S351, } \\ & \text { S353, } \\ & \text { S354, } \\ & \text { S355, } \\ & \text { S356 } \end{aligned}$	329865-42A	SWITCH, toggle: SPST; phenolic body; 41/64" wd $x$ 1-9/16" lg $\times 2-7 / 32^{\prime \prime} h$ overall; AWS type ST42A.
3352	3Z9849.107	SWITCH, toggle: SPDT; bakelite body; 41/64" wd x 1" lg x 2-7/32" h overall; AWS type ST42D.
T351	229613.59	TRANSFORMER, power: plate and fil; inclosed metal case; pri 115 v 50/60 c, secd $\# 1,700$, 120 mact; secd $\$ 2$, 5 v. 3 amp ct, secd $\# 36.3 \vee 3 \mathrm{amp}$, secd $\# 412 \nabla 10 \mathrm{amp}$ tapped at 7.5, 9, and $10.5 \mathrm{\nabla}$; Fed Tele \& Rad part/dwg \#NCP-104-2-7.
V351	2J5U46	TUBE, electron: JAN-5U4G.
V352	2J6L6G	TUBE, electron: JAN-6I6G.
	$2 \mathrm{JOC3} / \mathrm{VR}-105$	TUBE, electron: JAN-OC3/VR-105.
		- .

153. MAIMTENANCE PARTS FOR AMPLIFIER-RECTIFIER POWER UNIT PP-151/CRD-3.

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	3H1 38.1-151	AMPLIFIER RECTIFIER POWER UNIT PP-151/CRD-3: electron tube; furnishes fil and plate voltage for bearing indicator; input $110 / 120$ v $55 / 65 \mathrm{c}, 51.2 \mathrm{w}$; $19^{\prime \prime}$ wd $\times 8-3 / 4^{\prime \prime} \mathrm{h} \times 13-1 / 2^{\prime \prime}$ lg; Navy type 20209.
c406	3DA 50-46	CAPACITCR, fixed: paper; 50,000 mmf +10\%-3\%; 600 vdew; 1-13/16" lg x $1^{\prime \prime}$ wd $x$ 3/4" thz; Dubilier ${ }^{\prime \prime}$ DY-6005.
$\begin{gathered} C 401, \\ 402 \end{gathered}$	3DA100-616	CAPACITOR, fixed: paper; oil filled; 100,000 mmf; 7,500 vdew; 2-1/4" diam x 4-3/4" h; Aerovox $\$ 7512$ (high-voltage filter).
C403, 404, 405,	3DB4-43	CAPACITOR, fired: paper, oil filled; $4 \mathrm{mf} \pm 10 \%$; 600 vdew; 1-1/2" diam $x$ 4-1/2" 1g; Dublier "TLA-6040 (low-voltage filter).
$\begin{array}{\|c} \text { L401, } \\ 402 \end{array}$	3C31 5-47	COIL, AF: filter reactor; single winding; $15 \mathrm{~h} ; 85 \mathrm{ma}, 375$ ohms ; $1,000 \mathrm{~V}$ dc; $2-11 / 16^{\prime \prime}$ wd $\times 2-13 / 16^{\prime \prime} 1 \mathrm{~g} \times 3-9 / 16^{\prime \prime} \mathrm{h}$; Fed Tele \& Rad dwg \#NCP-4-6 (low-voltage filter).
J402	228674.21	CONNECTOR, female contact: 4 round cont; straight, $1-3 / 8^{\prime \prime}$ sq x 1-11/32." 1g; Amphenol \#AN-3102-18-4S (relay control).
J404	228799-163	CONNECTOR, female contact: 4 round cont; straight; 1-5/8" sq x 1-11/32" 1g; Amphenol \#AN-31O2-22-1OB (high-voltage output).
J403	228799-242	CONNECTOR, female contact: 7 cont; straight; 1-3/4" sq $x$ 1-11/32" 1g; Amphenol \#AN-3102-24-3S (a-c power and deflection coil connections).
J401	228799-155	CONNECTOR, male contact: 2 round cont; straight; 1-3/32" sq $x$ 29/32" 1g; Amphenol (AN-3102-12S-3P (amplifier input cable).

153. MAIMTENAMCE PARTS FOR AMPLIFIER-RECTIFIER POWER UNIT PP-I5I/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
J405	228799-209.1	CONNECTOR, male contact: 4 round cont; straight; 1-5/8" sq x 1-11/32" 1g; Amphenol EAN-3102-22-10P.
$\begin{gathered} \mathrm{F} 4 \mathrm{Cl}, \\ 403 \end{gathered}$	321926	FUSE FU-26: cartridge; 1 amp, 250 V ; glass body; ferrule $1 / \mathrm{cm}^{\mathrm{n}}$  
F402	321957	FUSE FU-57: cartridge; 5 amp, 250 v; glass body ferrule; 9/16" diam $x$ 1/4" lg; 9/16" diam $x 2^{\prime \prime} 1 \mathrm{~g}$ overall (motor).
	323275	HOLDER, fuse: extractor post; for \#3AG fuse; molded black bakelite; 10 amp max; Littelfuse 11075.
	32327 5-5	HOLDER, fuse: for Fuse FU-57.
K401	227588-45	RELAY, armature: DPDT noirmally closed; 2-3/4" $1 \mathrm{~g} \times 1-5 / \mathbf{1 6 n}^{n}$ h $\times 1-13 / 32^{\prime \prime}$ wa; Adv Elec $\# 1000$ (sense relay).
R412	3RC2OBF 510 J	RESISTOR, fixed: composition; 51 ohms $\pm 5 \%$; $1 / 2 \mathrm{w}$; max body dimen $0.468^{\prime \prime} \mathrm{lg} \times 0.249^{\prime \prime}$ diam; JAN type RC2OBF5LOJ (fixed catnode bias).
$\begin{aligned} & \text { R405, } \\ & 406 \end{aligned}$	3RC41BF184K	RESISTOR, fixed: composition; 180,000 ohms $410 \% 2 \mathrm{w}$; max body dimen $1.78^{\prime \prime} 1 \mathrm{~g} \times 0.405^{\prime \prime}$ diam; JAN type RC41BF184K (high-voltage filter).
$\begin{aligned} & \text { R407, } \\ & 408, \\ & 409, \\ & 410 \end{aligned}$	3RC31 BFIO5K	RESISTOR, fixed: composition; 1 meg t10s; 1 w; max body dimen $1.28 \mathrm{Bn}, 1 \mathrm{~g} \times 0,310^{\prime \prime}$ diam; JAN typ MC31BF105K (high-voltage bleeder).
R404	3RW28506	RESISTOR, fixed: wire-wound; 5,000 ohms $\pm 5 \pi$; $20 \mathrm{w} ; 2-13 / 16^{\prime \prime}$. lg $\times 3 / 4^{\prime \prime}$ diam; Sprague ${ }^{20}$ (screan).

153. MAIMTENAMCE PARTS FOR AMPLIFIER-RECTIFIER PONER UNIT PP-I5I/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
\$40,	326610-269	RES ISTOR, fixed: wire-wound; 10.000 thme $\pm 5 \%$; $20 \mathrm{~W} ; 2-15 / 16^{\prime \prime}$  
R411	326615-151	RESİGTOR, flyed: Wife-wound; 15,000 ohms $\pm 5 \%$; $10 \mathrm{~W} ; 2-3 / \mathrm{on}^{\mathrm{n}}$ ig $3 / 4^{\prime \prime}$ dian; sptague 10 (deflection colle current limiting).
R403	227278-41	RESISTOR, vutiable: wite-wound; 500 ohms $t 10 \% ; 2 \mathrm{w}$; 1-1/4" diam $\times 9 / 16^{\prime \prime} d ;$ IRC $W-500$ (amplifier bias).
R401	327499-2.17	RESISTOR, variable: 2 meg $\pm 10 \% ; 1 / 2 \mathrm{w} ; 1-1 / 4^{\prime \prime}$ diam $\times 9 / 16^{n}$ d w-3/8" $\times 3 / 8^{\prime \prime}$ bushing; IRC type C's per Fed Tele \& Rad dwg :NCP-32-16 (amplifier gain).
$\begin{gathered} \times 403 \\ 404 \end{gathered}$	228762.1	SOCKET, tube: 4 prong; steatite; fits 1.172" intg hole or w/mtg plate to fit $1-1 / 2^{\prime \prime}$ centers; Amphonol ${ }^{\text {mSS }} 4$.
$\begin{gathered} \text { X401, } \\ 402 \end{gathered}$	22K8678.74	SOCKET, tube: std octal; steatite; fits 1.172" mtg hole or w/mtg plate to fit 1-1/2" centers; Amphenol ${ }^{\prime \prime}$ RSS8.
T402	229613.293	TRANSFORNIER, pOwer: pri 115 v, $60 \mathrm{c} ;$ secd 11,700 \%, 0.070 dimp, ct; secd $\$ 2,6.3 \forall$, 6 amp , secd $3,63 \mathrm{v}, 2 \mathrm{amp}$; Fed Tole \& Rad dwg INCP-47-10.
T401	229613.470	TRANSFORNE, power: pri $115 \mathrm{\nabla}, 60 \mathrm{c}$; secd !1, 2300 \%, 0.002 anp, secd $\geqslant 2,2.5 \mathrm{v}, 1.75 \mathrm{amp}$, secd 3.6 .3 , 0.6 amp fed Tele Rad dwg wncp-47-8 (high-voltage power).
V403	$2 \mathrm{~J} 2 \times 2$	TUBE, electron: JAN-2X2 (higharoltage rectifler)
v401	2 J 6 AC7	TUBE, electron: JAN-6AC7 (deflection amplifier).
V402	256x50r/6	TUBE, electron: JAN-6X5-GT/G (low-هoltage rectifier).
V404	2 J003/VR1 50	TUBE, electron: JAN-VR-150-30 (voltage regulator).

154. MAINTEMANCE PARTS FOR PHASE INVERTER MC-4II-A.

Ref symbol	Signal Corps stock No.	Name of part and description.
	2A2771A	PHASE INVERTER MC-411-A: mounted in cylindrical casting; 5-9/16" wd $\times 5-9 / 16^{\prime \prime} h \times 13^{\prime \prime} 1 g$ overall; 8ig C spec *271-1612.
C302	3K2010021	CAPACITOR, fixed: mica; 10 mmf tiow; 500 vdew; max body dimen 51/64" Ig $\times 15 / 32^{\prime \prime}$ wd $\times 7 / 32^{\prime \prime}$ thk; CM2OB100K.
$\begin{gathered} C 301, \\ 307, \\ 308 \end{gathered}$	3K4010312	CAPACITOR, fixed, mica; 10,000 mmf $\pm 5 \%$; 300 vdow; max body dimen 1-1/32" lg x 41/64" wd $x$ 11/32" thk; CM40A103J (input coupling).
$\begin{aligned} & \text { C303, } \\ & 304, \\ & 305, \\ & 306 \end{aligned}$	3K4010311	CAPACITOR, fixed: mica; $10,000 \mathrm{mmf} \pm 10 \%$; 300 vdcw; max body dimen 1-1/32" $1 \mathrm{~g} \times 41 / 64^{\prime \prime}$ wd $\times 11 / 32^{\prime \prime}$ thk; CM40A103K.
	225574,1	CONNECTOR, famale contact: single round cont; straight; 3/8" diam $\times 1 / 2^{\prime \prime} \mathrm{lg}$ overall; $G R$ "274-J (plate and filament contact).
	227111.21	CONNECTOR, male contact: single giant banana cont; straight; 1-7/16" lg overall, drilled and tapped for 1/4"-20; Birnbach, 309 (fof antenna).
$\sqrt{304}$	228673.4	CONNECTOR, female contacti. 3 round cont; 1-3/4" 10 $\times 1-5 / 8^{n}$ sq overall; Amphengl (AN-3102-22-28 per AN 9534 (plate and cathode r-f equnection).
	227227-4	CONNECTOR, male contact: aingle banana type cont; straight; 4" lg overall; é and filament male contact).
J 302	227123	CONNECTOR, male contact: 5 round cont; straight; 1-3/4" $1 \mathrm{~g} x$ 1-5/8" sq overall; Amphenol \#AN-3102-22-13P per AN 9534 (plate and filament power supply).

154. MAINTENANCE PARTS FOR PHASE INVERTER MC-4II-A (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
K 301	227585-8	RELAY, armature: SPDT; 1-7/16" h x $1^{\prime \prime}$ wd $\times 15 / 16^{\prime \prime} \mathrm{d}$; Kurman \#12C-40 (grounding antenna relay).
R302	3Z6005A1-6	RESISTOR, fixed: composition; 55 ohms to. 5 ohm; $1 / 2 \mathrm{w}$; O.780" $\lg \times 0.280^{\prime \prime}$ diam.
R303	3Z6008B2-7	RESISTOR, fixed: composition; 94 ohms t1.5 ohms; 1/2w; 0.780" $\lg \times 0.280^{\prime \prime}$ diam.
R305	326013-4	RESISTOR, fixed: composition; 155 ohms $\pm 2.5$ ohms; $1 / 2 \mathrm{w}$; $0.780^{\prime \prime} 1 \mathrm{~g} \times 0.280^{\prime \prime}$ diam.
R301	3RC21BE243J	RESISTOR, fixed: composition; 24,000 ohms t5\%; 1/2 w; max body dimen $0.655^{\prime \prime} \mathrm{lg} \times 0.249{ }^{\prime \prime}$ diam; RC218E243J.
R304	3RC21BE303J 228678.35	RESISTOR, fixed: composition; 30,000 ohms t5\%; 1/2 w; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times 0.249 \mathrm{ldiam}$; RC21BE303J.   SOCKET, tube: loctal; mica filled bakelite; Amphenol \#78-8LT (fits in 1.172" hole w/retainer ring).
$\begin{gathered} \text { V } 301 \text {, } \\ 302 \end{gathered}$	2J7V7	TUBE, electron: JAN-7V7.

155. MhIMTENANCE PARTS FOR PHASE IMVERTER MC-413-A.

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	2A2773A	PHASE INVERTER MC-413-A: mtd in cylindrical casting, 5-9/16" wd $\times 5-9 / 16^{\prime \prime} h \times 13^{\prime \prime} 1 g$ overall; Sig C spec 71-1612.
$\begin{aligned} & C 402 \\ & C 445 \end{aligned}$	3K2010021	CABACITOR, fixed: mica; 10 mmf 土10\%; 500 vdew; max body dimen 51/64" lg x 15/32" wd $\times 7 / 32^{\prime \prime}$ thk; CM2OB100k.
$\begin{gathered} C 401, \\ 407, \\ 408, \\ 409, \\ 410, \\ 416 \end{gathered}$	3K4010312	CAPACITOR, fixed: mica; 10,000 mmf $\pm 5 \%$; 300 vdcw; max body dimen $1-1 / 32^{\prime \prime} \lg \times 41 / 64^{\prime \prime}$ wd $\times 11 / 32^{\prime \prime}$ thk; CM 40A103J.
$\begin{aligned} & \text { C403, } \\ & 404, \\ & 405, \\ & 406, \\ & 411, \\ & 412, \\ & 413, \\ & 414 \end{aligned}$	3K4010311	CAPACITOR, fixed: mica; 10,000 mmf $\pm 10 \% ; 300$ vdcw; max body dimen 1-1/32" lg x 41/64" wd $\times 11 / 32^{\prime \prime}$ thk; CM 4OA103K.
$\begin{gathered} \mathrm{J} 401 \\ \mathrm{~J} 402 \end{gathered}$	225574.1 228673.1	CONNECTOR, female contact: single round cont; straight; 3/8" diam $\times 1 / 2^{\prime \prime} 1 \mathrm{~g}$ overall; GR $3274-\mathrm{J}$ (plate and filament contact).   CONNECTOR, female contact: 3 round cont; 1-3/4" ig $x$ 1-5/8" sq overall; Amphenol \#AN-3102-22-2S, per \#AN-9534 (plate and cathode RF cable connector).

155. MAINTENANCE PARTS FOR PHASE INVERTER MC-413-A (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
J403	227111.21	CONNECTOR, male contact: single giant banana type cont; straight; 1-7/16" lg overall, drilled and tapped for 1/4"-20; Birnbach 397 (for antenna).
	227227-4	CONNECTOR, male contact: single banana type cont; straight; 1" lg overall; GR \#274P; Air Forces dwg ${ }^{\text {K }}$ (34A4793 (plate and filament connection).
	2 77123	CONNECTOR, male contact: 5 round cont; straight; 1-3/4n lg $x$ 1-5/8" sq overall; Amphenol \#AN-3102-22-13P, per AN-9534 (plate and filament power supply connector).
$\begin{gathered} \text { R4O2, } \\ 407 \end{gathered}$	326005A1-6	RESISTOR, fixed: composition; 55 ohms to. 5 ohm; 1/2 w; 3/8" $1 \mathrm{~g} \times 9 / 64^{\prime \prime}$ diam; Allen Bradley type $E$ modified.
$\begin{array}{\|c} \text { R403, } \\ 408 \end{array}$	326008B2-7	RESISTOR, fixed: composition; 94 ohms $\pm 1.5$ ohms; $1 / 2 \mathrm{w}$; 3/8" $1 \mathrm{~g} \times 9 / 64^{\prime \prime}$ diam; Allen Bradley type E modified.
$\begin{gathered} \text { R405, } \\ 410 \end{gathered}$	326013-4	RESISTOR, fixed: composition; 155 ohms $\pm 2.5$ ohms; $1 / 2 \mathrm{w} ;$ 3/8" lg x 9/64" diam; Allen. Bradley type modified.
R401, 409	326625-4	RESISTOR, fixed: composition; 25, 00 ohms $\pm 5 \%$; $1 / 2$ w; 5/8" $1 \mathrm{~g} \times 1 / 4 " \mathrm{diam}$; IRC \#BT-1/2.
$\begin{array}{\|c} \text { R4O4, } \\ 406 \end{array}$	3RC21BF3O3J	RESISTOR, fixed: composition; 30,000 ohms t5\%; 1/2 w; max body dimen $0.655^{\prime \prime} 1 \mathrm{~g} \times 0.249{ }^{\prime \prime}$ diam; RC21BF303J.
	228678.35	SOCKET, tube: loctal; mica filled bakelite; Amphenol *78-8LT (fits in 1.172" hole, w/retainer ring).
$\begin{array}{r} \text { V4O1, } \\ 402, \\ 403, \\ 404 \end{array}$	2J7V7	TUBE, electron: JAN-7V7.

156. MAINTENANCE PARTS FOR TEST OSCILLATOR (NAVY MODEL OAN).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	3F3864-1	TEST OSCILLATOR (Navy Model OAN): r-f signal; am 200 to 2000 kc in three bands; metal portable case with handle on each end; 16-1/4" wd $x$ 16-3/16" $d \times 9-3 / 16^{\prime \prime} h$; Navy type CFT-60054-A.
	2A27-29	ANTENNA ASSEMBLY: whip; cold drawn seamless steel tubing, cadmium pl over copper; sectionalized, 5 sect; 15 ft extended, $36 "$ collapsed, $1 / 2^{\prime \prime}$ OD tapering to 5/16" OD; Navy type CFT-66082.
B604, B605, B606, B607	3A35	BATTERY BA-35: dry; 1.5 v ; rectangular; 2-11/16" lg x 2-11/16" wd x 4" $h$; Burgess $\# 4 \mathrm{FH}$; Navy spec \#RE-19AA-105 (heater supply).
B601, B602, B6O3	3A59	BATTERY BA-59, dry: 45 v; rectangular; 3-9/16" h x 1-13/16" wd x 5-5/8n' h ; Bright Star \#30-33; Navy spec \#RE-15A-101 (plate and screen suppiy).
	1F425-22.120	CABLE ASSEMBLY, RF: Coaxial; flexible; $10 \mathrm{ft} 1 \mathrm{~g} ; 2$ axial cond; air dielectric with polystyrene beads; Fed Tele \& Rad dwg \#RF-1516-2-2.
0605	3D9050-21	CAPACITOR, fixed: silver mica; 50 mmf t5\%; 500 vdcw;   Dubilier \#5RST; Navy type CFT-48895-D5.
$\begin{aligned} & \text { C606, } \\ & \text { C608 } \end{aligned}$	3D9 100-72	CAPACITOR, fixed: mica; 100 mmf t10\%; 500 Vdcw ; Dubilier \#5WLS; Navy type CFT-48674-B-10.
C607-   A, B   C609-   A, B	3DA100-444	CAPACITOR, fixed: paper, oil filled; 2 sect; 100,000100,000 mmf, $\pm 15 \%$; 600 vdew; Dubilier \#DYRT-6011-12; Navy type CFT-481674.

156. MAINTENANCE PARTS FOR TEST OSCILLATOR (NAVY MODEL OAN) (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
$\begin{aligned} & C 611, \\ & C 612 \end{aligned}$	3DA250-20.2	CAPACITOR, fixed: paper, oil filled; 2 sect; 250,000250,000 mmf, t15\%; 600 vdew; Dubilier \#DYRT-6022-1; Navy type CFT-481003-15.
$\begin{aligned} & C 613, \\ & C 614 \end{aligned}$	3DB2.6 200-6	CAPACITOR, fixed: paper, 2 mf 士10\%; 600 vdew; Dubilier :DYR-6200-5; Navy type CFT-48403-B1O.
C6O2, C603, C 604	3D9050V-113	CAPACITOR, variable: ceramic; $50 \mathrm{mmf}+20 \%-5 \% ; 0.0195^{n}$ air gap; Fed Tele \& Rad dwg F-34356-2-3; Navy type CFT-481695 (oscillator trimmer - band 1).
C6 10	3D9 100V-73	CAPACITOR, variable: ceramic; $100 \mathrm{mmf}+20 \%-5 \% ; 0.0245 "$ air gap; Fed Tele \& Rad $\ddagger$ F-41846-2; Navy type CFT-481696 (amplifier tuning trimmer).
C601-   A, B, C, D	3D9 402V-5	CAPACITOR, $\cdot$ variable: 4 sect; 402 mmf ea sect; Fed Tele \& Rad dwg $F$ F-35867-2 (oscillator and amplifier tuning).
L607,   L608,   L609A   L610	3C57 4K-3	COIL, AF: filter; Fed Tele \& Rad dwg \#F-36920-1-5; Navy type CFT- 30966 (line filter).
L611	3C574K-4	COIL, AF: filter; $120 \mathrm{~h} ; 17 \mathrm{ma}$; Fed Tele \& Rad dwg tr-358691; NaVy type CFT-301189.
L601	3C108 4K-64	COIL, RF: oscillator band 1; Fed Tele \& Rad dwg \#RF-1411-3-1.
L604	3C1084K-65	COIL, RF: r-f amplifier band 1; Fed Tele \& Rad dwg *RF-1411-3-4.
L602	3C1084K-63	COIL, RF: oscillator, band 2; Fed Tele \& Rad dwg *RF-1411-3-2.
1605	3C108 4K-61	COIL, RF: r-f amplifier, band 2; Fed Tele \& Rad dwg ERF-1411-3-5.

156. MAIMTENANCE PARTS FOR TEST OSCILLATOR (NAVY MODEL OAN) (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corpe stock No.	Name of part and description
L603	3C108 4K-62	COIL, RF: oscillator, band 3; Fed Tele \& Rad \%1411-3-3.
1606	3C108 4K-66	COIL, RF: r-f amplifier, band 3; Fed Tele \& Rad dwg 1411-3-6.
J602	228799-127	CONNECTOR, male contact; sig C Socket so-127; 3 cont; straight; 1-3/8" sq $\times$ 1-11/32"; Amphenol AN-3102-18-5P.
J601	227113.9	CONNECTOR, male contact: 3 cont; straight; 1-1/2" $1 \mathrm{~g} x$ 1-11/32" sq; Ampherol AN-3102-20-6P (power).
$\begin{aligned} & \text { F601, } \\ & \text { F602 } \end{aligned}$	321926	FUSE FU-26: 1 amp, 250 v; glass body; ferrule, $1 / 4^{\prime \prime}$ diam $x$ 1/4" 1 g ; $1 / 4^{\prime \prime}$ dian $x 1-1 / 4^{\prime \prime} 1 \mathrm{~g}$.
V603	225954	LAMP LM-54: glow; 105-125 v; bulb T-2, clear (neon indicator).
$\begin{array}{r} \text { R612, } \\ 613, \\ 615, \\ 616, \\ 618, \\ 619, \\ 620, \\ 628 \end{array}$	3RC21BE1O1J	RESISTOR, fixed: 105 ohms $\pm 5 \%$; (except $2 / 100$ ohm marking) $1 / 2 \mathrm{w}$; Navy spec RE-13A-340 (attenuator series).
R608, 611, 624, 625	3RC21BF111J	RESISTOR, fixed: 111 ohms t5\%; (except w/ 110 ohm marking: $1 / 2 \mathrm{w}$; JAN type RC21BF111J (attenuator shunt).
f606, 607	326012-4	RESISTOR, fixed: 116 ohms t5\%; (except w/120 ohm marking) 1/2 w; Navy type CFT-63335 (attenuator series).

156. MAIMTEMAMCE PARTS FOR TEST OSCILLATOR (MAYY MODEL OAN) (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
P 21	326014-10	REsISTOR, fixed 140 ohms t5\%; 1/2w; Navy type CFT-63335 (output load)
$\begin{aligned} & \text { R614, } \\ & 617, \\ & 626, \\ & 627 \end{aligned}$	326021-4	RESISTOR, fixed: 210 ohms t5\%; 1/2 w; Navy type CFT-63335 (attenuator shunt).
$\begin{gathered} \text { R609 } \\ 610 \end{gathered}$	326170	RESISTOR, fixed: 1,747 ohms t5\%; (except $w / 1,700$ ohm marking) 1/2 w; Navy type CFT-63335 (attenuator series).
R623	3RC41 BE332K	RESISTOR, fixed: composition; 3,300 ohms t10\%; 2 w; JAN. type RC41BE332K (series plate supply).
R605	3RC3OBE103R	RESISTOR, fixed: composition; 10,000 ohms tion; 1 w ; $0.718^{\prime \prime} \lg \times 0.280^{\prime \prime}$ dian; JAN type RC3OBE1O3K (amplifier screen bias).
$\begin{gathered} \mathrm{R} 601, \\ 603 \end{gathered}$	3RC21BF3338	RESISTOR, fixed: composition; 33,000 ohms tiow; $1 / 2 \mathrm{w}$; $0.655^{\prime \prime}$ max $\lg \times 0.249^{\prime \prime}$ diam; JAN type RC21BF333K (08cillator grid bias).
$\begin{gathered} \text { R602, } \\ 604 \end{gathered}$	3RC21BF104K	RESISTOR, fixed; composition; 100,000 ohms t10\%; 1/2 w; max body dimen $0.655^{\prime \prime} 1 g \times 0.249^{\prime \prime}$ dian; JAN type RC21BF104K (oscillator screen bias).
P6 22	3RC418E1O4X	RESISTOR, fixed: composition; 100,000 ohms t10\%; '2 w; max body dimen $1.78^{\prime \prime} 1 g \times 0.342^{n}$ diam; JAN type RC41BEIO4K (rectifier filter bleeder).
X601, 602. 604	228762.1	SOCKET, tube: octal; steatite; Amphenol type RSS8.
5601	3298 26-83.1	sWITCA, rotary: 3 position; 3 section; ceramic; Oak type f per Fed Tele \& Rad dwg fr-38517-2 (band switch).

156. MAIntewance parts for test oscillator (navy model oan) (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
5602	329826-83.2	SWITCH, rotary: 6 position; 4 section; ceramic; Oak type  
S603	329859-56	SWITCH, toggle: DPST; 5/8" 1g; AH \& H type 2902-GP; NaVY spec *RE-24AA-118 (power input).
S604	3X98 59-56, 1	SWITCH, toggle: DPDT; AH \& H tYpe \%20905-GL (battery On - OFF).
T601	229613.469	TRANSFORMER, pOWer: pri $115 \mathrm{~V}, 60 \mathrm{c}$; secd $510 \mathrm{~V} \mathrm{ct}, 25 \mathrm{ma}$,  
V6O1, 602	2J6SK7	TUBE, electron: JAN-6SK7.
V604	2J6 X 5 GT/G	TUBE, electron: JAN-6X5GT/G.

157. MAINTENANCE PARTS FOR AMTENNA ASSEMBLY AS-204/CRD-3.

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	2A264-204	ANTENNA ASSEMBLY AS-2O4/CRD-3: steel and aluminum; olive drab; telescopic in 9 sect; 64 ft extended, 9 ft collapsed, 3" OD; w/Mast Base AB-57/CRD-3; Sig C spec *271-3175.
	3E6000-459	CABLE ASSEMBLY, power: Army-Navy Ground Conductor CX-459/CRD-3; general purpose; flat, 5/8" wd; 44" 1g; tinned copper braid; with one set of Dot fasteners at one end, 1 spade lug opposite ends, 1 spade lug 24" from end and one $32^{\prime \prime}$ from end; Sig C spec ${ }^{\text {271-3175. }}$
	2A1348-298	GUY MX-298/CRD-3: nylon; green; 4,000 lb breaking strength; $40 \mathrm{ft} \lg \times 5 / 16^{\prime \prime}$ diam; ring and Fastner FT-9 one end, snap hook and thimble other end.
	2A1348-299	GUY MX-299/CRD-3: nylon; green; 4,000 lb breaking strength; $55 \mathrm{ft} \mathrm{lg} \times 5 / 16 \mathrm{l}$ diam; ring and Fastner FT-9 one end, snap hook and thimble other end.
	2A1348-300	GUY MX-300/CRD-3: nylon; green; 4,000 lb breaking strength; $70 \mathrm{ft} \lg \mathrm{x}$ 5/16" diam; ring and Fastner FT-9 one end, snap hook and thimble other.
	2A2450-57	MAST BASE AB-57/CRD-3: cast steel; olive drab; supports Antenna Assembly AS-204/CRD-3; 12" x 12" $\times 12^{\prime \prime}$ overall; base 12" $x$ 1/2" thk; Sig C spec $\% 271-3175$.
	2A2450-65	MAST SECTION AB-65/CRD-3: antenna; steel and aluminum; olive drab E; 9 ft $\times 3^{\prime \prime}$ diam; Sig C spec $\# 271-3175$.

157. MAINTENANCE PARTS FOR ANTENNA ASSEMBLY AS-204/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	2A450-66	MAST SECTION AB-66/CRD-3: antenna; steel and aluminum with brass sleeve; olive drab; 9 ft 6" lg x $3^{\prime \prime}$ diam; Sig C spec *271-3175.
	2A2450-67	MAST SECTION AB-67/CRD-3: antenna; steel and aluminum;    *271-3175.
	2A2450-68	MAST SECTION AB-68/CRD-3: antenna; steel and aluminum; Olive drab E; 9 ft 6 " $1 \mathrm{~g} \times 2-1 / 4 \mathrm{l}$ diam; Sig C spec *271-3175.
	2A2450-69	MAST SECTION AB-69/CRD-3: antenna; steel and aluminum; Olive drab E; $9 \mathrm{ft} \mathbf{~ 6 " ~}^{\prime \prime} \mathrm{lg} \times 2 \mathrm{ln}$ diam; Sig C spec *271-3175.
	2A2450-70	MAST SECTION AB-7O/CRD-3: antenna; steel and aluminum;  
	2A2416	MAST SECTION MS-116A: antenna; steel tubing; copper pl; 3/8" diam $\times$ 39-1/2" lg; Sig C dwg \#SC-D-12521.
	2A3302	STAKE GP-2: steel; galv; 16" $1 \mathrm{~g} \times 3 / 4^{\prime \prime}$ diam; Sig C spec *1-393.
	2A3325	STAKE GP-25: metal; 36 " $1 \mathrm{~g} \times 1.34^{\prime \prime}$ diam at top tapering to $1 / 8^{\prime \prime}$ diam at bottom $w / 2-3 / 8^{\prime \prime}$ diam cap on top and bolt w/wing nut 2-1/4" from top of shaft; Sig C dwg \#RL-D-5659.

158. MAINTENANCE PARTS FOR BEARING INDICATOR ID-121/CRD-3.

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
C5O2	2C1565-121	BEARING INDICATOR ID-121/CRD-3: cast aluminum housing; olive drabe; consists of goniometer, cathode ray tube and control circuit; $9^{\prime \prime}$ wd x 12" h x 38" d; Sig C spec *271-3175.
	22 5991-57	ALIDADE ASSEMBLY: Fed Tele \& Rad dwg \%NL-43234-2.
	2C1557-1159A/B1	BRUSH, electrical contact: Carbon; 11/16" $1 \mathrm{~g} \times 9 / 32^{\prime \prime}$. wd $x$ 5/32" thk excluding pigtail; Fed Tele \& Rad dwg inl-40174 (for rotating unit).
	3DB70	CAPACITOR, fixed: electrolytic; 70 mf ; 110 V ac; Aerovox $\# 196$ (motor starting).
C5O1	3DB1-76	CAPACITOR, fixed: paper, oil filled; $1 \mathrm{mf} \pm 10 \%$ 2000; vdew; 2-1/2" $\lg x$ 13/16" wd x 3-3/8" h; Dubilier
	3C388	COIL, deflection: single winding, layer wound; $155 \mathrm{mh} \pm 10 \%$; O-14 ma, pulsating dc, 470 ohms resistance; 1-9/16" $x$ 1-1/4" x 9/16"; Fed Tele \& Rad dwg *NL-412O3 (replacement for coils *NL-40954, \#NL-40955-1 and NL-40956-1).
	227227-4	CONNECTOR, male contact: single banana type cont; straight; metal head; Fed Tele \& Rad dwg ${ }^{(N C P-19-4 ~(u / w ~ c o n t r o l ~ u n i t) . ~}$
J501	228799-209.1	CONNECTOR, male contact: 4 round cont; straight; 1-5/8" sq $x$ 1-11/32" lg less cont; Amphenol \#AN-3102-22-1OP (highvoltage supply).
J502	228799-241	CONNECTOR, male contact: 7 round cont; straight; 1-3/4" sq $x$ 1-11/32" lg less cont; Amphenol \#AN-3102-24-3P (deflection coil current).
	2 Z 6912	COUPLING, flexible: leather w/4 metal spacers; 2-5/8" ID, 3-7/8" OD $\times 5 / 32^{\prime \prime}$ thk; Fed Tele \& Rad Nim40142.

158. MAINTENANCE PARTS FOR BEARING IMDICATOR ID-12I/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	224868.349	GASKET: neoprene; Fed Tele \& Rad dwg inlm-42109.
	22 4868.346	GASKET: neoprene; Fed Tele \& Rad dwg \#NL-40140.
	22 4868.347	GASKET: neoprene; Fed Tele \& Rad dwg \%NL-42966.
	2Z 4868.348	GASKET: neoprene; Fed Tele \& Rad dwg \%NL-40139.
	3H2507-45	HOLDER, contact brush: Fed Tele \& Rad dwg \#RF-1370-2 (for rotating unit).
	323285-3	HOLDER, fuse: extractor post; Fed Tele \& Rad dwg tr-37118-1.
I501, 502, 503,	225934-1	LAMP, incandescent: 6-8 7 , 0.2 amp ; bayonet base; 15/16" lg $\times 7 / 16^{\prime \prime}$ diam; GE \#51-G3-1/2 (pilot lamp).
	3H300011 2-8	MOTOR, AC: induction; 1/8" hp; 110-120 $\mathrm{v}, 55 / 65 \mathrm{c}$, single ph, $3.2 \mathrm{amp} ; 1140 \mathrm{rpm} ;$ Fed Tele \& Rad $\mathrm{FNL}^{\mathrm{N}} 42183$.
$\begin{array}{r} R 503, \\ 504 \end{array}$	3RC21 BE51 3J	RESISTOR, .fixed: composition; 51, 000 ohms $\pm 5 \%$; 1/2 w; max dimen $0.655^{\prime \prime}$ lg $x$ 0.249" diam; RC21BE513J (voltage divider).
R508	3RC31AE104K	RESISTOR, fixed: composition; 100,000 ohms $\pm 10 \% ; 1 \mathrm{w}$; max dimen 1.28" $1 \mathrm{~g} \times 0.310^{\prime \prime}$ diam; RC21AE1O4K (voltage divider).
R505	3RC41 BE51 4J	RES ISTOR, fixed: composition; 500,000 ohms $\pm 5 \%$; 2w; max body dimen 1.78" $1 \mathrm{~g} \times 0.405^{\prime \prime}$ diam; RC41BE514J (voltage divider).
R507	227296-25M	RES ISTOR, variable (potentiometer): carbon; 25,000 ohms; 1/2 w; 3 term; body 1-1/4" diam $x$ 9/16" d, shaft $1 / 4^{\prime \prime}$ diam $x$ 5/8" 1g; IRC type CS per Fed Tele \& Rad \#NCP-32-10 (intensity control).

158. MINTENANCE PARTS FOR BEARING INDICATOR ID-12I/CRD-3 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
R506	227272-18	RESISTOR, variable: carbon; 250,000 ohms; 1/2 w; 3 term; body 1-1/4" diam $x$ 9/16" d, shaft 1/4" diam $x$ 5/8" lg; IRC type CS per Fed Tole \& Rad \#NCP-32-9 (focus control).
$\begin{gathered} \text { R5O1, } \\ 502 \end{gathered}$	227274-2	RESISTOR, variable (potentiometer) : carbon; 2 meg; $1 / 2 \mathrm{w}$; body $1-1 / 4^{\prime \prime}$ diam $x 9 / 16^{\prime \prime} d$, shaft $1 / 4^{\prime \prime}$ diam $x 33 / 64^{\prime \prime} 1 g ;$ IRC type CS per Fed Tele \& Rad \#NCP-32-11 (deflection control).
R509	227277.81	RESISTOR; variable: wire-wound; 15 ohms $\pm 10 \% ; 25 \mathrm{w}$; 1-9/16" diam $\times 1-3 / 8^{\prime \prime} \mathrm{d}$; Chmite type $H 0146$ (ac limiting).
	22 3876.8Q	ROTATING UNIT ASSEMBLY: Fed Tele \& Rad \#RF-2O73-14.
X 501	228637-1.1	SOCKET, tube: 11 round cont; ceramic; 1-23/32" diam $x$ 0.646". h ; w/spcl mtg ring; Fed Tele \& Rad $\#$ RF-2688-1 (for V-5O1).
	$\begin{gathered} 2 \mathrm{C} 1557-1159 \mathrm{~A} / \\ \mathrm{B} 1 / 1 \end{gathered}$	SPRING: extension; 4 turns $\# 20$ cadmium pl spring steel wire, wound counterclockwise; 3/16" diam x 9/32" lg; Fed Tele \& Rad dwg NL-40816 (spring for motor brush).
T501	229611.383	TRANSFORMER, pOWer: pri $115 \mathrm{v}, 10 \mathrm{amp}$; secd 8 v , 1 amp, ct; Fed Tele \& Rad dwg \#NCP-104-4 (pilot light).
V501	255NP1	TUBE, electron: JAN-5NP1 (pattern).
	2ZA1352-116	WINDOW: clear plastic; 1/64" thk x 5" diam; Fed Tele \& Rad dwg ${ }^{\text {WNL }} 42141$ (anti-reflection lens).

159. MAINTENANCE PARTS FOR JUMCTION BOX J-99/CRD-3.

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corpe stock No.	Name of part and description
	225600-99	JUNCTION BOX J-99/CRD-3: sheet steel; gray wrinkle E; 18" $1 \mathrm{~g} \times 10-1 / 2^{\prime \prime} \mathrm{d} \times 6-3 / 4^{\prime \prime} \mathrm{h}$; Navy No CFT-62127.
C451	3K3539232	CAPACITOR, fixed: mica; 3,900 mmf $\pm 5 \%$; 500 vdew; max body dimen $53 / 64^{\prime \prime}$ sq $\times 11 / 32^{\prime \prime}$ thk; JAN type CM35C392J.
L451	3C1084K-52	COIL, RF: dummy goniometer; pri 565 ohms d-c resistance, secd 3.27 ohms d-c resistance; Fed Telc \& Rad part/dwg *RF-723-2 (simulates goniometer in sense channel).
J461, 462, 463	228673.1	CONNECTOR, female contact: 3 round polarized cont; straight; $1-5 / 8^{\prime \prime} 1 \mathrm{~g} x 1-5 / 8^{n}$ wd $x 1-1 / 32^{\prime \prime} d$ less solder lugs; Amphenol :AN-3102-22-2S.
J451, 452, 453, 454, 455, 456, 457, 458	278799-129	CONNECTOR, male contact: Sig C Socket SO-129; 3 round polarized cont; straight; 1-3/8" sq $\times 1-11 / 32^{\prime \prime} 1 \mathrm{~g}$; Amphenol \#AN-3102-18-5P (receives non-directional channel input).
J459	227115.3	CONNECTOR, male contact: 3 round polarized cont; straight; 1-9/32" $\times 58 / 64^{\prime \prime}$; Amphenol AN-3102-16s-5P (receiver junction box control).
J460	227113.9	CONNECTOR, male contact; 3 round polarized cont; straight; 1-1/2" $\times 1-11 / 32^{\prime \prime}$; Amphenol AN-3102-20-6P (power input).
$\begin{aligned} & \text { F451 } \\ & \text { F452 } \end{aligned}$	321950	FUSE FU-50: cartridge; 3 amp, 250 V ; glass body; metal ferrules $1 / 4^{\prime \prime}$ diam $\times 1 / 4^{\prime \prime} 1 g ; 1-1 / 4^{\prime \prime} 1 g \times 1 / 4^{\prime \prime}$ diam overall (power).
$\begin{aligned} & K-451, \\ & K-452 \end{aligned}$	227585-145	RELAY, armature: SPST, normally open; 15 amp, 115 Vac; 6 V a-c coil; WL per Fed Tele \& Rad F37217-1, Navy type $\$ 29187$

159. MAINTENANCE PARTS FOR JUNCTION BOX J-99/CRD-3 (contd).

Ref symbol	Signal Corps stock No.	Name of part and description
$\begin{aligned} & \text { K453, } \\ & \text { K454 } \end{aligned}$	3C1999-6G	RELAY, solenoid: 115 V ac coil rated at 4.5 lb pull at $1^{\prime \prime}$ displacement; GE *F-37094-2 (actuates switches s-451,452 \& 453.).
R460	3RC2OAE510J	RESISTOR, fixed: composition; 51 ohms t5\%; 1/2 w; max body dimen $0.468^{\prime \prime} \mathrm{lg} \times 0.249{ }^{\prime \prime}$ diam; JAN type RC2OAE510J.
R457, 458, 459	3RC20AE121J	RESISTOR KIT: fixed; composition; three 120 ohms $1 / 2 \mathrm{w}$; JAN type RC2OAE121J; resistors matched to $\pm 1 \%$; ea max body dimen 0.468 l lg $\times$ O.249" diam, (loop transmission line terminating).
R451 thru R456	3RC21AE103J	RESISTOR, fixed: composition; 10,000 ohms $\pm 5 \%$; $1 / 2 \mathrm{w}$; max body dimen 0.655" lg x O.249"; JAN type RC21AE1O3J.
$\begin{aligned} & \text { S451, } \\ & \text { S452, } \\ & \text { S453 } \end{aligned}$	329550.6	SWITCH, rotary; 12 cont, 2 ckt, 4 position; ceramic wafer; 1-9/16" diam $\times$ O.180" thk; Fed Tele \& Rad *F-36334-1 (r-f switching).
$\begin{aligned} & \text { S454, } \\ & \text { S455 } \end{aligned}$	329558-16	SWITCH, sensitive: SPST normally closed; micro ow \#WZRQ1 (limit control on solenoid).

160. MAINTENANCE PARTS FOR HEADSET HS-29-( ).

161. MAINTENANCE PARTS FOR TOOL EQUIPMENT TE-41.

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	6R38041 6Q335   6Q2O44   621372   6G184.1   6Q38033-8   6Q38 500-6   624002   626762   6Q49712   6Q52208   6060229   627072   6R1913   6R4513   6R4603   6R46 26   6R4712-6	TOOL EQUIPMENT TE-41: 2d echelon radio repair kit.   ALIGNMENT TOOL: neutralizing and compensating; 5-in 1; ICA *1022.   BAG BG-44: tool; canvas.   BRUSH TL-72: camel's hair; flat; 1/2".   CARBON TETRACHLORIDE: in 8 oz metal screw-top can.   FILE: flat; second-cut, 8 ".   FILE: TL-133: round, bastard; 6".   FLASHLIGHT TL-122: Includes the following:   LAMP: flashlight; pre-focused; 2.7v, 0.15 amp , single cont; miniature flange base; $B-3-1 / 2$ bulb; GE \#PR-9.   HAMMER: machinist's; ball pein; 1202.   HOLDING TOOL: 8 " reach, 10-3/4" overall; Bonney $\# \mathrm{k} 8$.   KNIFE TL-29.   MIRROR: dental; 6-3/4" lg overall WECO \#376A.   NUT DRIVER: hollow shaft; nut size $3 / 8$ ", depth of hole 5 ", 6" lg, Xcelite *HS-12.   PLIERS TL-13: side cutting, 6".   PLIERS TL-103: diagonal cutting, 5".   PLIERS TL-126: lg chain nose, 6 or 6-1/2" 1 g.   PLIERS: short chain nose; 6".

161. MAINTFNANCE PARTS FOR TOOL EQUIPMENT TE-41 (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	$\begin{aligned} & \text { 6R4719-7A } \\ & \text { 6R15371 } \end{aligned}$	PLIERS: combination, side cutting, 7-1/2n, Bonney B537.   SCREWDRIVER: 2-1/2" blade, 5/16" diam, 5/32" tip; knurled handle, 5" overall; swivel hex head and chuck to admit interchange of blades, complete $w / 2$ blades and screw holder; Starrett $\% 552$.
	6R15999	SCREWDRIVER: Phillips \#1A; 3".
	6R15600	SCREWDRIVER: 4" blade; Phillips 2A.
	6R15811	SCREWDRIVER: 5" blade; 8-1/2" overall; insulated wood handle; Stanley 77.
	6R16410	SCREWDRIVER TI- 105: 8" blade, 5/16" tip; insulated wood handle; 15" overall; Stanley $\$ 25$.
	6R16890	SCREWDRIVER: 10" blade, 3/16" diam, 13-3/8" overall; Stanloid handle; Stanley $\# 1008$.
	6R24617	SOLDERING IRON TI-117: 110\%, 70/100w.
	6R24503H	SOLDERING IRON TL-132: 3 oz, jewelers', w/ handle.
	6R24618	SOLDERING IRON: 100w, 12v; American Beauty 3138.
	6R41065C	TOOL: swbd; contact burnisher; WECO 265-C: Includes the following:
	6R41066B	BURNISHER: steel blade; for cleaning surface of relay cont; WECO 266B.
	6R41066C	BURNISHER: steel music wire; for cleaning pits on relay cont; WECO 266 C .
	6R42167	TORCH TL-130: blow, gasoline, 1 pt, flat type.
	6R38005/2C	TWEEZERS: $5^{\prime \prime}$ steol.

161. MAINTENANCE PARTS FOR TOOL EQUIPMENT TE-4I (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	6R55006	WRENCH TL-111: adj; single end; 6", 3/4" capacity; Crescent \#A-16..
	6R55502	WRENCH SET: midgat; J.H. Williams Co. 1285 ; in steel case 5-1/2" $\times 3 \times 1$ :
	6Q36881	EXTENSION DRIVER: 5-3/8" 1g; w/1/4" sq dr; Williams \#NM-110.
	6051 207-1	HANDLE: wrench; sliding T ; 4-1/2" 1g; Williams \#NM-20A.
	6R4780-4.5	PLIERS: slip joint; 4-1/2" lg; 4 position joint opens O-9/16"; Williams superpliers ${ }^{\prime \prime} 1519$.
	6R24313-6	SOCKET: wrench; hex; 3-1/6", 1/4" sq dr; Williams Supersocket NNM -606.
	6R24313-7	SOCKET: wrench; hex; 7/32", 1/4" sq dr; Williams Supersocket NM-607.
	6R24313-8	SOCKET: wrenoh; hex; 1/4", 1/4" sq dr; Williams Supersocket NM-608.
	6R24313-9	SOCKET: wrench, hex; 9/32", 1/4" sq dr; Williams Supersocket *NM-609.
	6R24313-10	SOCKET: wrench; 12 point; $5 / 16^{n \prime}, 1 / 4^{\prime \prime} 8 q \mathrm{dr}$; Williams Supersocket NM-1210.
	6R24313-11	SOCKET: wrench; 12 point; 11/32", 1/4" sq dr; Williams Supersocket $\mathrm{NMM}-1211$.
	6R24313-1:2	SOCKET: wrench; 12 point; 3/8", 1/4" sq dr; Williams Supersocket *NM-1217.
	6R24313-14	SOCKET: wrench; 12 point; 7/16", 1/4" sq dr; Williams Supersocket NM-1214.

161. MAINTENANCE PARTS FOR TOOL EQUIPMENT TE-4I (contd).

$\begin{gathered} \text { Ref } \\ \text { symbol } \end{gathered}$	Signal Corps stock No.	Name of part and description
	6R55507-7	WRENCH: double open end; 7/32" - 13/64"; Williams Superwrench \#1106.
	6R55507-8.1	WRENCH: double open ond; 15/64" - 1/4"; Williams Superwrench 1107.
	6R55511-9	WRENCH: double open end; 11/32" - 9/32"; Williams Superwrench 1108.
	6R55510-12.1	WRENCH: double open end; 5/16" - 3/8" Williams Superwrench \#1109.
	6R57400	WRENCH: hex, Allon; 5/64" w; for $\% 8$ setscrew, 4 cap screw.
	6R55496	WRENCH: hex, Allon; 3/32" w; for \#10 setscrew, \#5 \& $\begin{aligned} & \text { w cap }\end{aligned}$ screw.
	6R55230	WRENCH: hex, spline type, Bristol \#6.
	6R59231	WRENCH: hex, spline type; Bristol 8. EXPENDABLE SUPPLIES
	6051014	HANDLE TL-14: file; wood; w/brass ferrule; 4" overall.
	6Q51135	HANDLE TL-215: file; wood; w/brass ferrule; 4-1/2" overall.
	6G1007	OIL: PS: lubricating; preservative special; 402.
	627 500-000	PAPER: sand; flint, $9 \times 11$, *000.
	6N4102	PASTE: soldering; 2 oz cans.
	6N7531	SOLDER M-31: resin core.
	6N8583	TAPE TL-83: friction, cotton; 3/4"; 1/2 lb rolls.
	6N8692	TAPE TL-192: rubber; 3/4"; $15 \mathrm{ft} \mathrm{rls}$.

161. MAINTEMANCE PARTS FOR TOOL EQUIPMENT TE-4I (contd).



M. 1,000 a

PINS	$\begin{gathered} \text { d40n } \\ \text { T0 d } 206 \\ \text { ming noraton } \end{gathered}$	$\begin{gathered} \text { J } 408 \\ \text { MO J } 108 \\ \text { MOOLLATOR RECENE: } \end{gathered}$	$\begin{gathered} \text { J } 403 \\ \text { TO JS02 } \\ \text { CF,T-S6022-A } \end{gathered}$	$\begin{gathered} \text { J404 } \\ \text { TO } 1500 \\ \text { abt } \mathrm{T} \cdot \mathrm{S5092-a} \end{gathered}$	$\begin{gathered} d 408 \\ 10 \mathrm{~J} 207 \\ \text { nowe mo } \end{gathered}$
a	anerno	AOI OLAME	Deflection con	cnoumo	commom
B	ast out	no runction	moton	CAT FM	moren
6		nelar comther	netumi ren ny	CAT PLL	cem
-		conouno	cmouno	men voltace	armana
E	.		OEFL Con commen		
$F$			orplegtion con		
-			moten commem		

Figure 159. Schematic diagram of Amplifier-Rectifier Power Unit PP-135/CRD-3.


Figure 160. Schematic diagram of Control-Rectifier Power Unit PP-135/CRD-3.


Figure 162. Schematic diagram of OAN test oscillator.

remere


Figure 162. Schematic diagram of OAN test oscillator.


Digitized by GOOgle

Datmeatib Google


[^0]:    CAUTION: POSition Ground Onductor CX-459/CRD-3 in such a marner that it will not touch the mast section or the rain shield atteched to the mast section.

[^1]:    57. POWER TRANSFORMERS, FILTER CHOKES, AND AUDIO TRANSFORMERS.
[^2]:    * If only one vacuum tube voltmeter is avilable alternately connect it as reguired for $v v_{1}{ }_{1}$ and $v \operatorname{tum}_{2}$.

[^3]:    Items starred are of interest primarily to depot and higher echelon repair personnel.

[^4]:    -Items atarred are of intercet primarily to depor and higher echelon repair personsel.
    This is not a JAN apecification. These capacitors are covered by AWS C75/221.

[^5]:    * Refor to for applicable techaical bulletias, sapply bulletias, modification work orders, and Chages.
    $f$ in advance.

[^6]:    6 ESCTC-SC-PA 188 45-202FM-11-45-94M

